《2.3设计轴对称图案》同步练习含答案解析

合集下载

专题2.3 设计轴对称图案(备作业)八年级数学上册同步备课系列(苏科版)

专题2.3 设计轴对称图案(备作业)八年级数学上册同步备课系列(苏科版)

第二章轴对称图形2.3 设计轴对称图案一、单选题(共8小题)1.长城是我国古代劳动人民创造的伟大奇迹,是中国悠久历史的见证,是中华民族的象征,被列为世界文化遗产.下列以长城为背景的标志设计中,不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【知识点】利用轴对称设计图案2.下列有关“安全提示”的图案中,可以看作轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、是轴对称图形,本选项正确;D、不是轴对称图形,本选项错误.故选:C.【知识点】利用轴对称设计图案3.如图,在2×2网格中放置了三枚棋子,在其他格点处再放置1枚棋子,使图形中的四枚棋子成为轴对称A.B.C.D.【解答】解:如图所示:使图形中的四枚棋子成为轴对称图形的概率是:=,故选:C.【知识点】利用轴对称设计图案、概率公式4.如图,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,不能与图中阴影部分构成轴对称图形的是()A.①B.②C.③D.④【解答】解:选择标有序号①②③④中的一个小正方形涂黑,不能与图中阴影部分构成轴对称图形的是:④.故选:D.【知识点】利用轴对称设计图案5.在由相同的小正方形组成的3×4的网格中,有3个小正方形已经涂黑,请你再涂黑一个小正方形,使涂黑的四个小正方形构成的图形为轴对称图形,则还需要涂黑的小正方形序号是()A.①或②B.③或⑥C.④或⑤D.③或⑨【解答】解:由图可知,当涂黑③或⑥时,涂黑的四个小正方形构成的图形为轴对称图形.故选:B.【知识点】利用轴对称设计图案6.如图的四个图形中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程A.1B.2C.3D.4【解答】解:图形①可以分别旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形②可以旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形③可以旋转180°得到,不可以经过轴对称得到,故此选项错误;图形④可以旋转180°得到,也可以经过轴对称,沿一条直线对折,能够完全重合.故既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有3个.故选:C.【知识点】利用轴对称设计图案、利用旋转设计图案7.如图,方格纸上有2条线段,请你再画1条线段,使图中的3条线段组成一个轴对称图形,最多能画()条线段.A.1B.2C.3D.4【解答】解:如图所示,共有4条线段.故选:D.【知识点】利用轴对称设计图案8.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.B.C.D.【解答】解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:.故选:B.【知识点】利用轴对称设计图案、概率公式二、填空题(共7小题)9.如图是3×3正方形网格,其中已有4个小方格涂成了黑色.移动其中一个黑色方块到其他无色位置,使得整个图形成为轴对称图形(包括黑色部分),你有种不同的移法.【解答】解:如图所示:有8种不同的移法,.故答案为;8.【知识点】利用轴对称设计图案10.如图,在4×4的正方形网格中有五个同样大小的正方形被涂黑,移动其中一个正方形到空白方格中,使其与其余四个被涂黑的正方形构成一个轴对称图形,共有种这样的移法.【解答】解:如图所示:故一共有13种画法.故答案是:13.【知识点】利用轴对称设计图案11.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有种.【解答】解:如图所示:这个格点正方形的作法共有4种.故答案为:4.【知识点】利用旋转设计图案、利用轴对称设计图案12.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影涂在图中标有数字的格子内.【解答】解:如图所示,把阴影凃在图中标有数字3的格子内所组成的图形是轴对称图形,故答案为:3.【知识点】利用轴对称设计图案13.如图,在3×3正方形网格中,黑色部分的图形构成一个轴对称图形,若在其余网格中再涂黑一个小正方形,使黑色部分的图形仍然构成一个轴对称图形,则可涂黑的小正方形共有.【解答】解:如图所示:当在空白处1到4个数字位置涂黑时,使黑色部分的图形仍然构成一个轴对称图形.故答案为:4.【知识点】利用轴对称设计图案14.如图,是4×4正方形网格,其中已有4个小方格涂成了黑色,现在要从其余12个白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有个.【解答】解:如图所示:1,2,3位置即为符合题意的答案.故答案为:3.【知识点】利用轴对称设计图案15.以图(1)(以O为圆心,半径为1的半圆作为“基本图形”,分别经历如下变换不能得到图(2)的有①只要向右平移1个单位;②先以直线AB为对称轴进行翻折,再向右平移1个单位;③先绕着点O旋转180°,再向右平移1个单位;④绕着OB的中点旋转180°即可.【解答】解:由图可知,图(1)先以直线AB为对称轴进行翻折,再向右平移1个单位,或先绕着点O旋转180°,再向右平移一个单位,或绕着OB的中点旋转180°即可得到图(2),只要向右平移1个单位不能得到图(2),符合题意.故答案为:①.【知识点】几何变换的类型、利用轴对称设计图案、利用旋转设计图案、利用平移设计图案三、解答题(共5小题)16.如图是一个4×4的正方形网格,每个小正方形的边长为1.请你在网格中以左上角的三角形为基本图形,通过平移、对称或旋转变换,设计一个精美图案,使其满足:①既是轴对称图形,又是以点O为对称中心的中心对称图形;②所作图案用阴影标识,且阴影部分的面积为4.【解答】解:如图所示;答案不唯一.【知识点】利用轴对称设计图案、利用旋转设计图案17.如图,在4×3正方形网格中,阴影部分是由5个小正方形组成的一个图形,请你用三种方法分别在下图方格内添涂2个小正方形,使这7个小正方形组成的图形是轴对称图形.【解答】解:如图所示:都是轴对称图形.【知识点】利用轴对称设计图案18.如图,每个小方格都是边长为1的正方形,在图中添加阴影,使阴影部分既是轴对称图形,又是中心对称图形,且阴影部分的面积是9,请在图①、②、③中各画出一幅图形,所画的三幅图形互不全等.【解答】解:如图所示:.【知识点】利用轴对称设计图案、利用旋转设计图案19.如图,下列4×4网格图都是由16个相间小正方形组成,每个网格图中有4个小正方形已涂上阴影,在空白小正方形中,选取2个涂上阴影,使6个阴影小正方形组成个轴对称图形,请设计出四种方案.【解答】解:如图所示:【知识点】利用轴对称设计图案20.如图是网格中由五个小正方形组成的图形,根据下列要求画图(涂上阴影)(1)图①中,添加一块小正方形,使之成为轴对称图形,且有两条对称轴;(2)图②中,添加一块小正方形,使之成为轴对称图形,且只有一条对称轴(画出一个即可)【解答】解:(1)如图①所示:即为所求;(2)如图②所示:即为所求.【知识点】利用轴对称设计图案。

八年级数学上册 2.3《设计轴对称图案》什么是镜面对称素材 (新版)苏科版

八年级数学上册 2.3《设计轴对称图案》什么是镜面对称素材 (新版)苏科版

什么是镜面对称?
难易度:★★★★
关键词:镜面对称
答案:
1、镜面对称:有时我们把轴对称也称为镜面(镜子、镜像)对称,如果沿着图形的对称轴上放一面镜子,那么在镜子里所放映出来的一半正好把图补成完整的(和原来的图形一样).
2、镜面实质上是无数对对应点的对称,连接对应点的线段与镜面垂直并且被镜面平分,即镜面上有每一对对应点的对称轴.
3、关于镜面问题动手实验是最好的办法,如手头没有镜面,可以写在透明纸上,从反面看到的结果就是镜面反射的结果.
【举一反三】
典例:李明从镜子里看到自己身后的一个液晶屏幕上显示的数字58,请问液晶屏幕上显示的数实际是()
A.58 B.85 C.28 D.82
思路导引:若在镜子上看到的数字是58,那么真实数字应该是将此数字反转为:82.
标准答案:D.
1。

轴对称图形练习题及答案

轴对称图形练习题及答案

轴对称图形练习题及答案轴对称图形是一种在几何学中常见的图形,它具有对称轴,使得图形的任何一部分都可以沿着这条轴对折,与另一部分完全重合。

下面是一些轴对称图形的练习题及答案,供学生练习和理解轴对称图形的概念。

练习题1:在下列图形中,哪一个是轴对称图形?A. 正方形B. 圆形C. 五角星D. 所有选项答案:D. 所有选项解析:轴对称图形的定义是:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

正方形、圆形和五角星都满足这个条件,因此它们都是轴对称图形。

练习题2:如果一个轴对称图形的对称轴是垂直于地面的直线,那么这个图形的对称轴与地面的夹角是多少度?答案:90度解析:垂直于地面的直线与地面的夹角是90度,这是根据垂直的定义得出的。

练习题3:在平面直角坐标系中,如果点A(2,3)关于x轴对称的点是B,求点B的坐标。

答案:点B的坐标是(2,-3)解析:在平面直角坐标系中,如果一个点关于x轴对称,那么这个点的x坐标保持不变,而y坐标的值变为其相反数。

因此,点A(2,3)关于x轴对称的点B的坐标是(2,-3)。

练习题4:给定一个轴对称图形,如果图形的对称轴是y=x,那么这个图形的中心点是什么?答案:图形的中心点是(0,0)解析:如果一个图形的对称轴是y=x,这意味着图形关于这条直线对称。

对于任何点(x,y)在图形上,其对称点是(y,x)。

因此,图形的中心点是对称轴与原点的交点,即(0,0)。

练习题5:在一个轴对称图形中,如果图形的对称轴是一条斜线y=mx+b,那么这个图形的中心点坐标是什么?答案:图形的中心点坐标是(-b/m, b)解析:对于斜线y=mx+b,这条直线与x轴的交点是(-b/m, 0),与y轴的交点是(0, b)。

由于图形是轴对称的,图形的中心点将位于这两个交点的中点,即(-b/m, b)。

通过这些练习题,学生可以加深对轴对称图形的理解,并掌握如何识别和应用对称轴。

2.3设计轴对称图案

2.3设计轴对称图案

2.3 设计轴对称图案教学目标:1.欣赏生活中的轴对称图案,感受数学丰富的文化价值.2.经历“操作——猜想——验证”的实践过程,积累数学活动的经验.3.能利用轴对称的性质设计简单的轴对称图案.教学重点:利用对称轴掌握颜色对称与图形对称.教学难点:利用对称性质设计轴对称图形.教学过程:一、情境创设欣赏轴对称图案,思考这些图案是怎样形成的?你想学会制作这种图案的方法吗?欣赏轴对称图案:1.绿色食品标志、中国环境标志、国家免检产品标志等;2.课本P48美丽的“盆花”图案.二、探索活动1.对称的美术图案,除图形对称外,有时颜色也“对称”.如果不包括色彩因素在内,下列图形有几条对称轴?请你画出图中(1)和(2)的对称轴.动手实践、探究、交流,分别画出下列图形的对称轴.要点:画全.2.如果不考虑颜色的“对称”,图2-13中(1)和(2)中各有几条对称轴?考虑颜色的“对称”呢?3.如果将图2-13(1)中左上方和右下方的小方格也涂上色,那么它有几条对称轴?4.改变图2-13(2)哪些小方格的颜色,就能使它有4条对称轴?学生动脑想、动手画,积极参与活动.2.答案:4条,4条;2条,1条.(1) (2)3.答案:4条.4. 答案:涂色如图.试一试:1.如图,阴影部分是由5个小正方形组成的一个直角图形,请用二种方法分别在右图方格内填涂黑二个小正方形,使它们成为轴对称图形.2.完成课本上练习2、3.三、数学实验(一)制作4张如图2-14的正方形纸片,将纸片拼合.1.图2-15中的3个图案各有几条对称轴?2.这些图案可以看成是由一个小正方形纸片经过怎样的变换得到的?3.你有不同于课本的拼法吗?拼出的图案是轴对称图形吗?如果是,有几条对称轴?(二)人们在剪纸时,常常利用轴对称设计图案.欣赏剪纸作品,探讨它是怎么得到的?例如,按照图2-16(1)进行剪切,就能得到“庆丰灯笼”的剪纸作品(如图2-16(2)).你来试试看呢?画出图案的对称轴,并说出它的变换方式.展示学生拼合的图案,交流所拼图案的对称轴及图形变换方式.讨论、交流剪纸的要点,动手操作,展示作品.四、实践操作利用轴对称,设计并剪出一幅奖杯图案,班内展览,评选精品.五、全课小结1.能按要求完成某些轴对称图案.2.会设计简单轴对称标志.3.轴对称具有美感,轴对称在生活中无处不在.六、课后作业1.课本P49练习1和P50习题2.3习题1、2.2.拓展:请用2块大小一样的三角尺(两锐角分别是60°和30°)拼出不同的轴对称图形,看看你能拼出几种.。

八年级数学苏科版上册课时练第2单元《2.3设计轴对称图案》 练习试题试卷 含答案

八年级数学苏科版上册课时练第2单元《2.3设计轴对称图案》 练习试题试卷 含答案

课时练2.3设计轴对称图案一.选择题(共5小题)1.下列由全等的等边三角形拼成的图形中,不是轴对称图形的是()A.B.C.D.2.如图,在44´正方形网格中,将图中的2个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么符合条件的小正方形共有()A.7个B.8个C.9个D.10个3.如图,正方形网格中,已有两个小正方形被涂黑,再涂黑另外一个小正方形,使整个被涂黑的图案构成一个轴对称图形的方法有()A.5B.6C.4D.74.如图,是44´正方形网格,其中已有4个小方格涂成了黑色.现在要从其余白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有( )A.1个B.2个C.3个D.4个5.在44´的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有()种.A.5B.6C.8D.13二.填空题(共5小题)6.在44´的方格中有五个同样大小的正方形如图摆放,请你添加一个正方形到空白方格中,使它与其余五个正方形组成的新图形是一个轴对称图形,这样的添法共有种.7.如图,在22´的正方形格纸中,有一个以格点为顶点的ABCD,请你找出格纸中所有与D成轴对称且也以格点为顶点的三角形,这样的三角形共有个.ABC8.如图,图案甲是由左面的五种基本图形中的两种拼接而成的,这两种基本图形是.9.如图是44´正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有个.10.仔细观察下列图案,并按规律在横线上画出合适的图形.三.解答题(共13小题)11.在下列的图形上补一个小正方形,使它成为一个轴对称图形.12.如图,在43´正方形网格中,阴影部分是由5个小正方形组成的一个图形,请你用两种方法分别在下图方格内添涂2个小正方形,使这7个小正方形组成的图形是轴对称图形.13.(1)观察图①~图④中阴影部分的图形,写出这4个图形具有的两个共同特征:;.(2)在图⑤中设计一个新的图形,使它也具有这两个共同特征.14.利用网格作图,(1)请你在图①中画出线段AB关于线段CD所在直线成轴对称的图形;(2)请你在图②中添加一条线段,使图中的3条线段组成一个轴对称图形.请画出所有情形.15.在44´的方格中有三个同样大小的正方形如图摆放,请你在图1-图3中的空白处添加一个正方形方格(涂黑),使它与其余三个黑色正方形组成的新图形是一个轴对称图形.16.在44´的方格中有五个同样大小的正方形如图摆放,请你添加一个正方形到空白方格中,使它与其余五个正方形组成的新图形是一个轴对称图形,请在备用图中画出4种不同的轴对称图形.17.指出各图形各有多少条对称轴,并在各个轴对称图形上画出它所有的对称轴.18.由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图).请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形.19.在44´的方格中有五个同样大小的正方形如图摆放,请你在图1-图4中的空白处添加一个正方形方格,使它与其余五个正方形组成的新图形是一个轴对称图形.20.观察图①~④中阴影部分构成的图案:(1)请写出这四个图案都具有的两个共同特征;.(2)在图⑤、⑥中各设计一个新的图案,使该图案同时具有图①~④中的两个共同性质.21.如图,由小正方形组成的L形图中,请你用三种方法分别在图中添加一个小正方形使它成为轴对称图形.22.如图,点A、B、C都在方格纸的格点上,请你再找一个格点D,使A、B、C、D 组成一个轴对称图形.23.如图,OP是MONÐ的平分线,请你利用该图形,用三角板和圆规画一对以OP所在直线为对称轴的全等三角形,并标注字母.你画的是△@△,依据是.参考答案一.选择题(共5小题)1.D.2.D.3.A.4.C.5.D.二.填空题(共5小题)6.4.7.5.8.②⑤.9.4.10..三.解答题(共13小题)11.解:如图所示.12.解:如图所示,答案不唯一,参见下图.13.解:(1)答案不唯一,例如四个图案具有的共同特征可以是:①都是轴对称图形;②面积都等于四个小正方形的面积之和;故答案为:都是轴对称图形;面积都等于四个小正方形的面积之和;(2)答案示例:.14.解:(1)、(2)如图所示:.15.解:如图所示:.16.解:如图所示..17.解:(1)有6条对称轴;(2)有4条对称轴;(3)有1条对称轴;(4)有2条对称轴;(5)有1条对称轴;(6)有1条对称轴;作图如下:18.解:作图如下:19.解:如图所示..20.解:(1)这四个图案都具有的两个共同特征轴对称图形;旋转得到,故答案为:轴对称图形,旋转得到;(2)如图:.21.解:如图:22.解:如图所示:23.解:作图过程:以O为圆心任意长为半径作弧,交射线ON,OM为C,B两点,在射线OP上任取一点(A O点除外),连接AB,AC,所得AOB AOCD@D,Ð=Ð,,OA是公共边,OP是角平分线AOB AOC=OB OC\全等的依据是SAS.。

苏科版八上2.3设计轴对称图案练习

苏科版八上2.3设计轴对称图案练习

苏科版数学八上第2章轴对称图形2.3设计轴对称图案练习一、选择题1.下列图形都是由两个全等三角形组合而成,其中是轴对称图形的是()A. B. C. D.2.随着现代室内设计的不断发展,具有个性和时代感的设计风格在当今时代被人们所追捧,多数设计风格植入了山西大院窗格的图案、纹样等元素,以下是部分窗格的设计图案,其中不属于轴对称图形的是( )A. B. C. D.3.如图,将正方形图案翻折一次,可以得到的图案是()A. B. C. D.4.如图,点A、B、C都在方格纸的“格点”上,请找出“格点"D,使点A、B、C、D组成一个轴对称图形,这样的点D共有( )个.A.1B.2C.3D.4(4题图)(5题图)(6题图)5.如图,在由小正方形组成的网格图中再涂黑一个小正方形,使它与原来涂黑的小正方形组成的新图案为轴对称图形,则涂法有( )A.1种B.2种C.3种D.4种6.如图,方格纸上有2条线段,请你再画一条线段,使图中3条线段组成轴对称图形,最多能画线段的条数是( )A.2条B.3条C.4条D.5条二、填空题7.画轴对称图形,应该先确定,再找出对称点,最后将对称点依次连接起来.8.如图,在3×4的正方形网格中已有2个正方形涂黑,再选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置共有处.9.如图的2×5的正方形网格中,OA BC的顶点都在小正方形的格点上,这样的.三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有个.10.如图l所示是个轴对称图形,且每个角都是直角,长度如图所示,小颖按照图2所示的方法玩拼图游戏,两两相扣,相互间不留空隙,那么小颖用2022个这样的图形(图1)拼出来的图形的总长度是 .( 结果用含m, n代数式表示)三、解答题11.下列正方形网格图中,部分方格涂上了阴影,请按照不同要求作图.(1)如图①,整个图形是轴对称图形,画出它的对称轴.(2)如图②,将某一个方格涂上阴影,使整个图形有两条对称轴.(3)如图③,将某一个方格涂上阴影,使整个图形有四条对称轴.12.认真观察下面四幅图中阴影部分构成的图案,回答下列问题.(1)请你写出这四个图案都具有的两个共同特征:特征1 :特征2 :(2)请你借助下面的网格,设计出三个不同图案,使它也具备你所写出的上述特征. (注意:新图案与以上四幅图中的图案不能相同)。

八年级数学苏科版上册课时练第2单元《2.3设计轴对称图案》(2) 练习试题试卷 含答案

课时练2.3设计轴对称图案1.如图是5个小正方形纸片拼成的图形,现将其中一个小正方形纸片平移,使它与原图中剩下的小正方形纸片有一条或两条边重合后拼成一个轴对称图形,在拼出的所有不同位置的轴对称图形中,全等的图形共有()A.0对B.1对C.2对D.3对2.如图,由4个小正方形组成的田字格,△ABC的顶点都是小正方形的顶点,在田字格上能画出与△ABC成轴对称,且顶点都在小正方形顶点上的三角形的个数共有()A.2个B.3个C.4个D.5个3.如图,在4×4正方形网格中,已将图中的四个小正方形涂上阴影,若再从图中选一个涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么不符合条件的小正方形是()A.①B.②C.③D.④4.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影涂在图中标有数字()的格子内.A.1B.2C.3D.45.如图,点A,B在方格纸的格点位置上,若要再找一个格点C,使它们所构成的三角形为轴对称图形,则这样的格点C在图中共有()A.4个B.6个C.8个D.10个6.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有()A.1种B.2种C.3种D.4种7.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有种.8.如图,在3×3的正方形网格中,已有两个小正方形被涂黑.再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有种.9.如图,由小正方形组成的L形图中,请你用三种方法分别在下图中添画一个小正方形使它成为轴对称图形:.10.如图,正三角形网络中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有种.11.如图的2×5的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有个.12.四个单位正方形以边对边方式相连接而成,可以拼成如图的五种不同形状.用一片“L”形(图中第一个)分别于其余四个中的一片拼成轴对称图形,所有的可能共有种.13.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使涂黑部分构成一个轴对称图形的方法有种.14.如图,阴影部分是由5个小正方形组成的一个直角图形,请用三种不同方法分别在如图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.答案涂在答卷相应的位置.15.观察设计:(1)观察如图①、②中阴影部分构成的图案,请写出这2个图案都具有的2个共同特征;(2)借助后面的空白网格,请设计2个新的图案,使该图案同时具有你在解答(1)中所写出的2个共同特征.(注意:新图案与已有的2个图案不能重合)16.请在如图四个3×3的正方形网格中,画出与格点三角形(阴影部分)成轴对称且以格点为顶点的三角形,并将所画三角形涂上阴影.(注:所画的四个图不能重复)17.如图,在4×3正方形网格中,阴影部分是由5个小正方形组成的一个图形,请你用两种方法分别在下图方格内添涂2个小正方形,使这7个小正方形组成的图形是轴对称图形.18.如图,方格纸中每个小方格都是边长为1的正方形,我们把以格点连线为边的多边形称为“格点多边形”.如图(一)中四边形ABCD就是一个“格点四边形”.(1)作出四边形ABCD关于直线BD对称的四边形A′B′C′D′;(2)求图(一)中四边形ABCD的面积;(3)在图(二)方格纸中画一个格点三角形EFG,使△EFG的面积等于四边形ABCD 的面积且△EFG为轴对称图形.19.如图,4×5的方格纸中,请你用三种不同的方法在除阴影之外的方格中任意选择一个涂黑,使得图中阴影部分构成的图形是轴对称图形.20.如图所示,在4×4的正方形网格中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”.△ABC是一个格点三角形,请你在图1,图2,图3中分别画出一个与△ABC成轴对称的格点三角形,并将所画三角形涂上阴影.(注:所画的三个图不能重复.)参考答案1.D.2.C.3.A.4.C.5.D.6.C.7.13.8.5.9.10.3.11.4.12.5.13.5.14.解:如图所示:15.解:(1)都是轴对称图形,面积都是4个小正方形的面积和.(2)符合题意的图案如图所示:16.解:如图所示:.17.解:如图所示,答案不唯一,参见下图.18.解:(1)如图所示:.=S△ABC+S△ADC=×4×2+×4×4=4+8=12;(2)S四边形ABCD(3)如图所示:.19.解:如图所示:.20.解:答案不唯一,例如:。

2019-2020学年度初中数学八年级上册第二章 轴对称图形2.3 设计轴对称图案苏科版练习题五十四

2019-2020学年度初中数学八年级上册第二章轴对称图形2.3 设计轴对称图案苏科版练习题五十四第1题【单选题】下面四个图案中,既包含图形的旋转,又有图形的轴对称的设计是( )A、B、C、D、【答案】:【解析】:第2题【单选题】如图,正方形网格中,已有两个小正方形被涂黑,再将图其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有( )A、5B、6C、4D、7【答案】:【解析】:第3题【单选题】在由相同的小正方形组成的3×4的网格中,有3个小正方形已经涂黑,请你再涂黑一个小正方形,使涂黑的四个小正方形构成的图形为轴对称图形,则涂下列哪些正方形是正确的( )A、①或②B、③或⑥C、④或⑤D、③或⑨【答案】:【解析】:第4题【单选题】如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有( )A、2种B、3种C、4种D、5种【答案】:【解析】:第5题【单选题】如图,正方形网格中,已有两个小正方形被涂黑,再涂黑另外一个小正方形,使整个被涂黑的图案构成一个轴对称图形的方法有( )A、5B、6C、4D、7【答案】:【解析】:第6题【单选题】如图为5×5的方格,其中有A、B、C三点,现有一点P在其它格点上,且A、B、C、P为轴对称图形,问共有几个这样的点P( )?A、5B、4C、3D、2【答案】:【解析】:第7题【单选题】如图,图2的图案是由图1中五种基本图形中的两种拼接而成,这两种基本图形是( )?A、①②B、①③C、①④D、③⑤【答案】:【解析】:第8题【填空题】如图,在2×2方格纸中,有一个以格点为顶点的△ABC,请你找出方格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有______个.?【答案】:【解析】:第9题【填空题】在如图的方格纸上画有2条线段,若再画1条线段,使图中的三条线段组成一个轴对称图形,则这条线段的画法最多有______种.A、4【答案】:【解析】:第10题【解答题】如图,在正方形ABCD(正方形四边相等,四个角均为直角)中,E、F、P、H分别为四边的中点,请分别在图1、2、3中画一个以A、B、C、D、E、F、P、H中的三点为顶点的三角形,所画三角形要求与△APH成轴对称(三个三角形的位置要有区别)并画出相应的一条对称轴.?【答案】:【解析】:第11题【解答题】如图所示的图案是由一个梯形经过旋转和对称形成的,则该梯形应该满足什么条件?【答案】:【解析】:第12题【解答题】以给出的图形“○,○,△,△,有误”(两个相同的圆、两个相同的等边三角形、两条线段)为构件,各设计一个构思独特且有意义的轴对称图形或中心对称图形.举例:如图,左框中是符合要求的一个图形.你还能构思出其他的图形吗?请在右框中画出与之不同的图形.【答案】:【解析】:第13题【作图题】用四块如图(1)所示的正方形瓷砖拼成一个新的正方形,请你在图(2)、图(3)中各画一种拼法.(要求是轴对称图形)A、解:如图所示:答案不唯一.【答案】:【解析】:第14题【综合题】已知在网格中每个小正方形的边长都是1,图1中的阴影图案是由一条对角线和以格点为圆心,半径为2的圆弧围成的弓形.图1中阴影部分的面积是______(结果保留π);请你在图2中以图1为基本图案,借助轴对称,平移或旋转设计一个轴对称的花边图案(要求至少含有两种图形变换).【答案】:【解析】:第15题【综合题】在4×3的网格上,由个数相同的白色方块与黑色方块组成一幅图案,请仿照此图案,在下列网格中分别设计出符合要求的图案(注:①不得与原图案相同;②黑、白方块的个数要相同).是轴对称图形,又是中心对称图形;是轴对称图形,但不是中心对称图形;是中心对称图形,但不是轴对称图形.11/ 12【答案】:【解析】:12/ 12。

八年级数学上册第2章轴对称图形2.3设计轴对称图案课件(新版)苏科版

图2-3-9
2.3 设计轴对称图案
[解析] 要想使整个图形成为轴对称图形,首先必须确定对称 轴,然后根据轴对称性设计正方形和圆形花坛的位置,再画 出图形.
(1)
图2-3-3
(2)
2、用两个圆,两个正三角形,两条线段设计 三个轴对称图案,并说明你所作图案表达的 含意。
图(1)表示一辆小车,图(2)表示两支棒棒糖.
(无对称轴)
数学实验室:
用四个这样的图案拼图: 要求: 1、拼出轴对称图案,并指出有几条对称轴。 2、指出这些图案可以看成是由一个小正方形纸片经过怎
样的变幻得到的。 3、与同学交流作品。
动手实践 用四个这样的图案可以拼出多种图案,试一试。
题型二 综合创新设2.计3轴设对计称轴图对案称图案 例3 如图2-3-9是一块长方形空 地,要在空地上修一些正方 形和圆形的花坛,并使整个图形成为轴对称图形,请在图中 画出设计草图.
轴对称图形均衡、和谐,给人以美的享受!
张兰的姑姑过几天就要结婚了,她想请张兰帮
她剪几个“囍”字,装饰一下新房,张兰想请大
家一起帮她剪,好不好?
折第 叠一

折第 叠二

动手实践:在下列图形中选3个方格涂上红色, 使整个图形成轴对称,并指出你设计的图案有几 条对称轴
轴对称的图案,除图形对称外,还包括色彩之内,即颜色也“对称”。
1、轴对称图形只有一条对称轴(X)
√ 2、轴对称图形的对称轴是一条线段(X)
3、两个图形成轴对称,这两个图形是全等图形. ( )
4、全等的两个图形一定成轴对称. (X)
5、轴对称图形指一个图形,而轴对称是对两个图
√ 形而言( )
6、等腰三角形底边中线是等腰三角形的对称轴( X)

八年级数学苏科版上册课时练第2单元《2.3设计轴对称图案》(含答案解析)(1)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!课时练2.3设计轴对称图案一.选择题(每小题3分共30分)1.如图,阴影部分是由5个小正方形涂黑组成的一个直角图形,再将方格内空白的两个小正方形涂黑,得到新的图形(阴影部分),其中不是轴对称图形的是()A.B.C.D.2.把一张正方形纸片如图①、图②对折两次后,再按如图③挖去一个三角形小孔,则展开后图形是()A. B. C. D.3.如图,将一正方形纸片沿图①、②的虚线对折,得到图③.然后沿图③中虚线的剪去一个角,展开得平面图形④,则图③的虚线是(D)4.桌面上有A、B两球,若要将B球射向桌面任意一边,使一次反弹后击中A,则如图所示8个点中,可以瞄准的点的个数为()A.1B.2C.4D.6第4题图第5题图第6题图第7题图第8题图5.小军同学在网络纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个C.5个D.无数个6.如图,点A,B在方格纸的格点位置上,若要再找一个格点C,使它们所构成的三角形为轴对称图形,则这样的格点C在图中共有()A.4个B.6个C.8个D.10个7.如图,已知两个全等的直角三角形纸片的直角边分别为a、b(a≠b),将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有()A.3个B.4个C.5个D.6个8.如图,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,不能与图中阴影部分构成轴对称图形的是()A.①B.②C.③D.④9.如图,由4个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点,在田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形的个数有(不包含△ABC本身)()A.4个B.3个C.2个D.1个第9题图第10题图第12题图第13题图第14题图第15题图10.如图,在3×3的网格中,与△ABC成轴对称,顶点在格点上,且位置不同的三角形有()A.5个B.6个C.7个D.8个二.填空题(每小题3分共30分)11.请在下列一组图形符号中找出所蕴含的内在规律,然后在图形空白处填上恰当的图形.12.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形,使黑色部分成为轴对称图形,这样的白色小方格有:(填字母).13.如图,在3×3的正方形网格中,已有两个小正方形被涂黑.再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有种.14.如图,在2×2方格纸中,有一个以格点为顶点的△ABC,请你找出方格纸中所有与△ABC 成轴对称且也以格点为顶点的三角形,这样的三角形共有个.15.如图的2×5的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有个.16.如图所示,钻石型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂黑一个小三角形,使它与阴影部分合起来所构成的完整图形是一个轴对称图形.满足题意的涂色方式有____种.第16题图第17题图第18题图第19题图17.如图,在等边三角形网格中,已有两个小等边三角形被涂黑,若再将图中其余小等边三角形涂黑一个,使涂色部分构成一个轴对称图形,则有种不同的涂法.18.在九个相同的小正方形拼成的正方形网格中,其中两个小正方形涂成黑色,若再涂黑一个,使黑色部分组成一个轴对称图形,则共有种不同的涂法.19.如图,由4个小正方形组成的田字格,△ABC的顶点都是小正方形的顶点,在田字格上能画出与△ABC成轴对称,且顶点都在小正方形顶点上的三角形的个数共有个.20.如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是(结果用含a,b代数式表示).三.解答题(40分)21.(8分)认真观察下图的4个图中阴影部分构成的图案,回答下列问题:(1)请写出这四个图案都具有的两个共同特征.特征1:____________________________;特征2:____________________________.(2)请在下图中设计出你认为最美丽的图案,使它也具备你所写出的上述特征.22.(6分)用两个圆,两个三角形,两条线段,拼出至少两个对称图形.(画在以下方框内)23.(8分)如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形,并画出相应的对称轴.24.(6分)如图,阴影部分是由5个小正方形组成的一个直角图形,请用两种方法分别在下图方格内添涂两个小正方形,使阴影部分成为轴对称图形.25.(6分)某小区搞绿化,要在给定的一块空长方形地上设计一个花坛,只允许用正方形和圆形,并使整个图案成轴对称图形,请你帮助设计一个.26.(6分)现有8张纸条:,用每4张拼成一个正方形图案,拼成的正方形的每一行和每一列中,同色的小正方形仅为2个,且使每个正方形图案都是轴对称图形,在网格中画出你拼出的图案.(画出的两个图案不能相同)参考答案一.选择题(每小题3分共30分)1.D2.C3.D4.B5.C6.D.7.B.8.D.9.B.10.D.二.填空题(每小题3分共30分)11..12.c,h,k,m.13.5.14.5.15.4.16.317.318.519.420.a+8b三.解答题(40分)21.(1)都是轴对称图形面积均为4个单位(2)略22.解:如图,23.解:参考图如下图:24.解:如图所示.25.解:如图所示.26.解:如图所示.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.3 设计中心对称图案一、填空题1.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有__________2.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有______种.二、解答题3.如图,每个小方格都是边长为1个单位长度的正方形,△ABC和△A1B1C1在平面直角坐标系中位置如图所示.(1)△ABC与△A1B1C1关于某条直线m对称,画出对称轴m.(2)画出△A1B1C1绕原点O顺时针旋转90°所得的△A2B2C2.此时点A2的坐标为______.求出点A1旋转到点A2的路径长.(结果保留根号)4.在平面直角坐标系中,△ABC 的位置如图,网格中小正方形的边长为1,请解答下列问题:(1)将△ABC 向下平移3个单位得到△A 1B 1C 1,作出平移后的△A 1B 1C 1;(2)作出△ABC 关于点O 的中心对称图形△A 2B 2C 2,并写出点A 2的坐标.5.如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点A 1的坐标.(2)画出△A 1B 1C 1绕原点O 旋转180°后得到的△A 2B 2C 2,并写出点A 2的坐标.6.如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A (﹣3,2),B (0,4),C (0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C ;平移△ABC ,若点A 的对应点A 2的坐标为(0,﹣4),画出平移后对应的△A 2B 2C 2;(2)若将△A 1B 1C 绕某一点旋转可以得到△A 2B 2C 2;请直接写出旋转中心的坐标;(3)在x 轴上有一点P ,使得PA+PB 的值最小,请直接写出点P 的坐标.7.如图,在边长为1个单位长度的小正方形组成的两格中,点A 、B 、C 都是格点.(1)将△ABC 向左平移6个单位长度得到得到△A 1B 1C 1;(2)将△ABC 绕点O 按逆时针方向旋转180°得到△A 2B 2C 2,请画出△A 2B 2C 2.8.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (﹣4,3)、B (﹣3,1)、C (﹣1,3).(1)请按下列要求画图:①将△ABC 先向右平移4个单位长度、再向上平移2个单位长度,得到△A 1B 1C 1,画出△A 1B 1C 1; ②△A 2B 2C 2与△ABC 关于原点O 成中心对称,画出△A 2B 2C 2.(2)在(1)中所得的△A 1B 1C 1和△A 2B 2C 2关于点M 成中心对称,请直接写出对称中心M 点的坐标.9.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC向右平移3个单位后得到的△A1B1C1,再画出将△A1B1C1绕点B1按逆时针方向旋转90°后所得到的△A2B1C2;(2)求线段B1C1旋转到B1C2的过程中,点C1所经过的路径长.10.如图所示,在△OAB中,点B的坐标是(0,4),点A的坐标是(3,1).(1)画出△OAB向下平移4个单位长度、再向左平移2个单位长度后的△O1A1 B1(2)画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求出点A旋转到A2所经过的路径长(结果保留π)11.如图,已知△ABC 和点O .(1)把△ABC 绕点O 顺时针旋转90°得到△A 1B 1C 1,在网格中画出△A 1B 1C 1;(2)用直尺和圆规作△ABC 的边AB ,AC 的垂直平分线,并标出两条垂直平分线的交点P (要求保留作图痕迹,不写作法);指出点P 是△ABC 的内心,外心,还是重心?12.如图,在边长为1的正方形组成的网格中,△ABC 的顶点均在格点上,点A 、B 、C 的坐标分别是A (﹣2,3)、B (﹣1,2)、C (﹣3,1),△ABC 绕点O 顺时针旋转90°后得到△A 1B 1C 1.(1)在正方形网格中作出△A 1B 1C 1;(2)在旋转过程中,点A 经过的路径的长度为______;(结果保留π)(3)在y 轴上找一点D ,使DB+DB 1的值最小,并求出D 点坐标.13.如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC 在平面直角坐标系中的位置如图所示.(1)将△ABC 向上平移3个单位后,得到△A 1B 1C 1,请画出△A 1B 1C 1,并直接写出点A 1的坐标.(2)将△ABC 绕点O 顺时针旋转90°,请画出旋转后的△A 2B 2C 2,并求点B 所经过的路径长(结果保留x )14.如图,在方格纸上,以格点连线为边的三角形叫做格点三角形,请按要求完成下列操作:先将格点△ABC绕A点逆时针旋转90°得到△A1B1C1,再将△A1B1C1沿直线B1C1作轴反射得到△A2B2C2.15.如图,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°(1)画出旋转之后的△AB′C′;(2)求线段AC旋转过程中扫过的扇形的面积.16.如图,在方格纸中,△ABC的三个顶点和点P都在小方格的顶点上,按要求画一个三角形,使它的顶点在方格的顶点上.(1)将△ABC平移,使点P落在平移后的三角形内部,在图甲中画出示意图;(2)以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部,在图乙中画出示意图.17.如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(0,3),B(﹣3,5),C(﹣4,1).(1)把△ABC向右平移2个单位得△A1B1C1,请画出△A1B1C1,并写出点A1的坐标;(2)把△ABC绕原点O旋转180°得到△A2B2C2,请画出△A2B2C2.18.阅读以下材料,并按要求完成相应的任务.几何中,平行四边形、矩形、菱形、正方形和等腰梯形都是特殊的四边形,大家对于它们的性质都非常熟悉,生活中还有一种特殊的四边形﹣﹣筝形.所谓筝形,它的形状与我们生活中风筝的骨架相似.定义:两组邻边分别相等的四边形,称之为筝形,如图,四边形ABCD是筝形,其中AB=AD,CB=CD判定:①两组邻边分别相等的四边形是筝形②有一条对角线垂直平分另一条对角线的四边形是筝形显然,菱形是特殊的筝形,就一般筝形而言,它与菱形有许多相同点和不同点如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:(1)请说出筝形和菱形的相同点和不同点各两条;(2)请仿照图1的画法,在图2所示的8×8网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下:①顶点都在格点上;②所设计的图案既是轴对称图形又是中心对称图形;③将新图案中的四个筝形都涂上阴影(建议用一系列平行斜线表示阴影).2.3 设计中心对称图案参考答案与试题解析一、填空题1.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有_______种。

【考点】利用旋转设计图案;利用轴对称设计图案.【分析】利用轴对称图形的性质以及中心对称图形的性质分析得出符合题意的图形即可.【解答】解:如图所示:组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有4种.【点评】此题主要考查了利用轴对称以及旋转设计图案,正确把握相关定义是解题关键.2.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有 4 种.【考点】利用旋转设计图案;利用轴对称设计图案.【专题】几何图形问题.【分析】利用轴对称图形以及中心对称图形的性质与定义,进而得出符合题意的答案.【解答】解:如图所示:这个格点正方形的作法共有4种.故答案为:4.【点评】此题主要考查了利用轴对称以及旋转设计图案,正确把握中心对称以及轴对称图形的定义是解题关键.二、解答题3.如图,每个小方格都是边长为1个单位长度的正方形,△ABC和△A1B1C1在平面直角坐标系中位置如图所示.(1)△ABC与△A1B1C1关于某条直线m对称,画出对称轴m.(2)画出△A1B1C1绕原点O顺时针旋转90°所得的△A2B2C2.此时点A2的坐标为(1,4).求出点A1旋转到点A2的路径长.(结果保留根号)【考点】作图-旋转变换;弧长的计算;作图-轴对称变换.【分析】(1)直接利用轴对称图形的性质结合网格得出对称轴m;(2)利用旋转的性质得出对应点位置进而得出答案,再利用弧长公式求出点A1旋转到点A2的路径长.【解答】解:(1)如图所示:直线m即为所求;(2)如图所示:△A 2B 2C 2,即为所求,点A 2的坐标为:(1,4),点A 1旋转到点A 2的路径长为:=.故答案为:.【点评】此题主要考查了轴对称变换以及旋转变换、弧长公式等知识,根据题意得出对应点位置是解题关键.4.在平面直角坐标系中,△ABC 的位置如图,网格中小正方形的边长为1,请解答下列问题:(1)将△ABC 向下平移3个单位得到△A 1B 1C 1,作出平移后的△A 1B 1C 1;(2)作出△ABC 关于点O 的中心对称图形△A 2B 2C 2,并写出点A 2的坐标.【考点】作图-旋转变换;作图-平移变换.【分析】(1)根据网格结构找出点A 、B 、C 平移后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;(2)根据网格结构找出点A 、B 、C 关于点O 的对称点A 2、B 2、C 2的位置,然后顺次连接得到△A 2B 2C 2,进而得到点A 2的坐标.【解答】解:(1)如图所示;(2)如图所示,点A 2的坐标是(﹣1,﹣2).【点评】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.5.如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点A 1的坐标.(2)画出△A 1B 1C 1绕原点O 旋转180°后得到的△A 2B 2C 2,并写出点A 2的坐标.【考点】作图-旋转变换;作图-轴对称变换.【分析】(1)分别找出A 、B 、C 三点关于x 轴的对称点,再顺次连接,然后根据图形写出A 点坐标;(2)将△A 1B 1C 1中的各点A 1、B 1、C 1绕原点O 旋转180°后,得到相应的对应点A 2、B 2、C 2,连接各对应点即得△A 2B 2C 2.【解答】解:(1)如图所示:点A 1的坐标(2,﹣4);(2)如图所示,点A 2的坐标(﹣2,4).【点评】本题考查图形的轴对称变换及旋转变换.解答此类题目的关键是掌握旋转的特点,然后根据题意找到各点的对应点,然后顺次连接即可.6.如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A (﹣3,2),B (0,4),C (0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△A 1B 1C ;平移△ABC ,若点A 的对应点A 2的坐标为(0,﹣4),画出平移后对应的△A 2B 2C 2;(2)若将△A 1B 1C 绕某一点旋转可以得到△A 2B 2C 2;请直接写出旋转中心的坐标;(3)在x 轴上有一点P ,使得PA+PB 的值最小,请直接写出点P 的坐标.【考点】作图-旋转变换;轴对称-最短路线问题.【分析】(1)延长AC 到A 1,使得AC=A 1C ,延长BC 到B 1,使得BC=B 1C ,利用点A 的对应点A 2的坐标为(0,﹣4),得出图象平移单位,即可得出△A 2B 2C 2;(2)根据△△A 1B 1C 绕某一点旋转可以得到△A 2B 2C 2进而得出,旋转中心即可;(3)根据B 点关于x 轴对称点为A 2,连接AA 2,交x 轴于点P ,再利用相似三角形的性质求出P 点坐标即可.【解答】解:(1)如图所示:(2)如图所示:旋转中心的坐标为:(,﹣1);(3)∵PO ∥AC ,∴=,∴=,∴OP=2,∴点P 的坐标为(﹣2,0).【点评】此题主要考查了图形的平移与旋转和相似三角形的性质等知识,利用轴对称求最小值问题是考试重点,同学们应重点掌握.7.如图,在边长为1个单位长度的小正方形组成的两格中,点A 、B 、C 都是格点.(1)将△ABC 向左平移6个单位长度得到得到△A 1B 1C 1;(2)将△ABC 绕点O 按逆时针方向旋转180°得到△A 2B 2C 2,请画出△A 2B 2C 2.【考点】作图-旋转变换;作图-平移变换.【分析】(1)将点A 、B 、C 分别向左平移6个单位长度,得出对应点,即可得出△A 1B 1C 1;(2)将点A 、B 、C 分别绕点O 按逆时针方向旋转180°,得出对应点,即可得出△A 2B 2C 2.【解答】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)如图所示:△A 2B 2C 2,即为所求.【点评】此题主要考查了图形的平移和旋转,根据已知得出对应点位置是解题关键.8.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (﹣4,3)、B (﹣3,1)、C (﹣1,3).(1)请按下列要求画图:①将△ABC 先向右平移4个单位长度、再向上平移2个单位长度,得到△A 1B 1C 1,画出△A 1B 1C 1; ②△A 2B 2C 2与△ABC 关于原点O 成中心对称,画出△A 2B 2C 2.(2)在(1)中所得的△A 1B 1C 1和△A 2B 2C 2关于点M 成中心对称,请直接写出对称中心M 点的坐标.【考点】作图-旋转变换;作图-平移变换.【分析】(1)①根据网格结构找出点A 、B 、C 平移后的对应点A 1、B 1、C 1的位置,然后顺次连接即可;②根据网格结构找出A 、B 、C 关于原点O 的中心对称点A 2、B 2、C 2的位置,然后顺次连接即可;(2)连接B 1B 2,C 1C 2,交点就是对称中心M .【解答】解:(1)①△A 1B 1C 1如图所示;②△A 2B 2C 2如图所示;(2)连接B 1B 2,C 1C 2,得到对称中心M 的坐标为(2,1).【点评】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.另外要求掌握对称中心的定义.9.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC向右平移3个单位后得到的△A1B1C1,再画出将△A1B1C1绕点B1按逆时针方向旋转90°后所得到的△A2B1C2;(2)求线段B1C1旋转到B1C2的过程中,点C1所经过的路径长.【考点】作图-旋转变换;作图-平移变换.【分析】(1)根据平移的性质得出对应点位置以及利用旋转的性质得出对应点位置画出图形即可;(2)根据弧长计算公式求出即可.【解答】解:(1)如图所示:(2)点C1所经过的路径长为:=2π.【点评】此题主要考查了图形的旋转与平移变换以及弧长公式应用等知识,根据已知得出对应点位置是解题关键.10.如图所示,在△OAB中,点B的坐标是(0,4),点A的坐标是(3,1).(1)画出△OAB向下平移4个单位长度、再向左平移2个单位长度后的△O1A1 B1(2)画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求出点A旋转到A2所经过的路径长(结果保留π)【考点】作图-旋转变换;作图-平移变换.【分析】(1)根据平移的性质得出对应点坐标即可得出答案;(2)根据旋转的性质得出对应点坐标,进而利用弧长公式求出即可.【解答】解:(1)如图所示:△O 1A 1B 1,即为所求;(2)如图所示:△OA 2B 2,即为所求,∵AO==,∴点A 旋转到A 2所经过的路径长为:=π.【点评】此题主要考查了旋转变换以及平移变换和弧长计算公式,根据图形变化性质得出对应点坐标是解题关键.11.如图,已知△ABC 和点O .(1)把△ABC 绕点O 顺时针旋转90°得到△A 1B 1C 1,在网格中画出△A 1B 1C 1;(2)用直尺和圆规作△ABC的边AB,AC的垂直平分线,并标出两条垂直平分线的交点P(要求保留作图痕迹,不写作法);指出点P是△ABC的内心,外心,还是重心?【考点】作图-旋转变换;作图—复杂作图.【分析】(1)分别得出△ABC绕点O顺时针旋转90°后的对应点坐标,进而得到△A1B1C1,(2)根据垂直平分线的作法求出P点即可,进而利用外心的性质得出即可.【解答】解:(1)△A1B1C1如图所示;(2)如图所示;点P是△ABC的外心.【点评】此题主要考查了复杂作图,正确根据垂直平分线的性质得出P点位置是解题关键.12.如图,在边长为1的正方形组成的网格中,△ABC的顶点均在格点上,点A、B、C的坐标分别是A(﹣2,3)、B(﹣1,2)、C(﹣3,1),△ABC绕点O顺时针旋转90°后得到△A1B1C1.(1)在正方形网格中作出△A1B1C1;(2)在旋转过程中,点A经过的路径的长度为π;(结果保留π)(3)在y轴上找一点D,使DB+DB1的值最小,并求出D点坐标.【考点】作图-旋转变换;弧长的计算;轴对称-最短路线问题.【分析】(1)根据△ABC绕点O顺时针旋转90°后得到△A1B1C1,得出各对应点位置画出图象即可;(2)利用弧长公式求出点A经过的路径的长度即可;(3)利用待定系数法求一次函数解析式进而得出D点坐标.【解答】解;(1)如图所示:(2)在旋转过程中,点A经过的路径的长度为: =π;故答案为:π;(3)∵B,B1在y轴两旁,连接BB1交y轴于点D,设D′为y轴上异于D的点,显然D′B+D′B1>DB+DB1,∴此时DB+DB1最小,设直线BB1解析式为y=kx+b,依据题意得出:,解得:,∴y=﹣x+,∴D(0,).【点评】此题主要考查了图形的旋转变换以及待定系数法求一次函数解析式等知识,根据数形结合得出D点位置是解题关键.13.如图,方格纸中每个小正方形的边长都是1个单位长度,△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC向上平移3个单位后,得到△A1B1C1,请画出△A1B1C1,并直接写出点A1的坐标.(2)将△ABC绕点O顺时针旋转90°,请画出旋转后的△A2B2C2,并求点B所经过的路径长(结果保留x)【考点】作图-旋转变换;作图-平移变换.【分析】(1)根据△ABC向上平移3个单位,得出对应点位置,即可得出A1的坐标;(2)得出旋转后的△A2B2C2,再利用弧长公式求出点B所经过的路径长.【解答】解:(1)如图所示:A 1的坐标为:(﹣3,6);(2)如图所示:∵BO==, ∴==π.【点评】此题主要考查了弧长公式的应用以及图形的旋转与平移变换,根据已知得出对应点位置是解题关键.14.如图,在方格纸上,以格点连线为边的三角形叫做格点三角形,请按要求完成下列操作:先将格点△ABC 绕A 点逆时针旋转90°得到△A 1B 1C 1,再将△A 1B 1C 1沿直线B 1C 1作轴反射得到△A 2B 2C 2.【考点】作图-旋转变换;作图-轴对称变换.【分析】△ABC 绕A 点逆时针旋转90°得到△A 1B 1C 1,△A 1B 1C 1沿直线B 1C 1作轴反射得出△A 2B 2C 2即可.【解答】解:如图所示:【点评】此题主要考查了图形的旋转变换以及轴对称图形,根据已知得出对应点位置是解题关键.15.如图,在边长为1的小正方形组成的方格纸上,将△ABC绕着点A顺时针旋转90°(1)画出旋转之后的△AB′C′;(2)求线段AC旋转过程中扫过的扇形的面积.【考点】作图-旋转变换;扇形面积的计算.【专题】作图题.【分析】(1)根据网格结构找出点B、C旋转后的对应点B′、C′的位置,然后顺次连接即可;(2)先求出AC的长,再根据扇形的面积公式列式进行计算即可得解.【解答】解:(1)△AB′C′如图所示;(2)由图可知,AC=2,∴线段AC旋转过程中扫过的扇形的面积==π.【点评】本题考查了利用旋转变换作图,扇形面积的计算,是基础题,熟练掌握网格结构,准确找出对应点的位置是解题的关键.16.如图,在方格纸中,△ABC的三个顶点和点P都在小方格的顶点上,按要求画一个三角形,使它的顶点在方格的顶点上.(1)将△ABC平移,使点P落在平移后的三角形内部,在图甲中画出示意图;(2)以点C为旋转中心,将△ABC旋转,使点P落在旋转后的三角形内部,在图乙中画出示意图.【考点】作图-旋转变换;作图-平移变换.【专题】图表型.【分析】(1)根据网格结构,把△ABC向右平移后可使点P为三角形的内部的三个格点中的任意一个;(2)把△ABC绕点C顺时针旋转90°即可使点P在三角形内部.【解答】解:(1)平移后的三角形如图所示;(2)如图所示,旋转后的三角形如图所示.【点评】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构是解题的关键.17.如图,在平面直角坐标系中,△ABC 三个顶点的坐标分别为A (0,3),B (﹣3,5),C (﹣4,1).(1)把△ABC 向右平移2个单位得△A 1B 1C 1,请画出△A 1B 1C 1,并写出点A 1的坐标;(2)把△ABC 绕原点O 旋转180°得到△A 2B 2C 2,请画出△A 2B 2C 2.【考点】作图-旋转变换;作图-平移变换.【专题】作图题.【分析】(1)根据网格结构找出点A 、B 、C 平移后的对应点A 1、B 1、C 1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A 1的坐标;(2)根据网格结构找出点A 、B 、C 绕原点O 旋转180°后的点A 2、B 2、C 2的位置,然后顺次连接即可.【解答】解:(1)△A 1B 1C 1如图所示,点A 1(2,3);(2)△A 2B 2C 2如图所示.【点评】本题考查了利用旋转变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键.18.阅读以下材料,并按要求完成相应的任务.几何中,平行四边形、矩形、菱形、正方形和等腰梯形都是特殊的四边形,大家对于它们的性质都非常熟悉,生活中还有一种特殊的四边形﹣﹣筝形.所谓筝形,它的形状与我们生活中风筝的骨架相似.定义:两组邻边分别相等的四边形,称之为筝形,如图,四边形ABCD是筝形,其中AB=AD,CB=CD判定:①两组邻边分别相等的四边形是筝形②有一条对角线垂直平分另一条对角线的四边形是筝形显然,菱形是特殊的筝形,就一般筝形而言,它与菱形有许多相同点和不同点如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:(1)请说出筝形和菱形的相同点和不同点各两条;(2)请仿照图1的画法,在图2所示的8×8网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下:①顶点都在格点上;②所设计的图案既是轴对称图形又是中心对称图形;③将新图案中的四个筝形都涂上阴影(建议用一系列平行斜线表示阴影).【考点】利用旋转设计图案;菱形的性质;利用轴对称设计图案.【专题】几何图形问题.【分析】(1)利用菱形的性质以及结合图形得出筝形的性质分别得出异同点即可;(2)利用轴对称图形和中心对称图形的定义结合题意得出答案.【解答】解:(1)相同点:①两组邻边分别相等;②有一组对角相等;③一条对角线垂直平分另一条对角线;④一条对角线平分一组对角;⑤都是轴对称图形;⑥面积等于对角线乘积的一半;不同点:①菱形的对角线互相平分,筝形的对角线不互相平分;②菱形的四边都相等,筝形只有两组邻边分别相等;③菱形的两组对边分别平行,筝形的对边不平行;④菱形的两组对角分别相等,筝形只有一组对角相等;⑤菱形的邻角互补,筝形的邻角不互补;⑥菱形的既是轴对称图形又是中心对称图形,筝形是轴对称图形不是中心对称图形;(2)如图所示:.【点评】此题主要考查了利用旋转设计图案,借助网格得出符合题意的图形是解题关键.。

相关文档
最新文档