第二章 第九节 函数模型及其应用

合集下载

高中数学复习:函数模型及其应用

高中数学复习:函数模型及其应用
栏目索引
第九节 函数模型及其应用
总纲目录 栏目索引
教 1.几种常见的函数模型 材 2.三种增长型函数模型的图象与性质 研 读 3.解函数应用题的步骤(四步八字)
总纲目录 栏目索引
考 考点一 用函数图象刻画变化过程
点 突
考点二 应用所给函数模型解决实际问题
破 考点三 构建函数模型解决实际问题
教材研读
教材研读 栏目索引
3.在某个物理实验中,测量得变量x和变量y的几组数据如下表:
x
0.50
0.99
2.01
3.98
y
-0.99
0.01
0.98
2.00
则对x,y最适合的拟合函数是 ( D )
A.y=2x B.y=x2-1
C.y=2x-2 D.y=log2x
答案 D 根据x=0.50,y=-0.99,代入计算,可以排除A;根据x=2.01,y=0. 98,代入计算,可以排除B,C;将各数据代入函数y=log2x,可知满足题意.
间T内完成预测的运输任务Q0,各种方案的运输总量Q与时间t的函数关 系如图所示,在这四种方案中,运输效率(单位时间的运输量)逐步提高的
是 (B)
考点突破 栏目索引
考点突破 栏目索引
(2)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描述 了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确 的是 ( D )
教材研读 栏目索引
教材研读 栏目索引
知识拓展 形如f(x)=x+ a (a>0)的函数模型称为“对勾”函数模型:
x
(1)该函数在(-∞,- a )和( a ,+∞)上单调递增,在[- a ,0)和(0, a ]上单调 递减. (2)当x>0时,在x= a 处取最小值2 a , 当x<0时,在x=- a 处取最大值-2 a .

函数模型及其应用

函数模型及其应用

演 实 战


∵R(x)在[0,210]上是增函数,∴x=210时,
场 点


搏 核 心
R(x)有最大值为-15(210-220)2+1 680=1 660.


∴年产量为210吨时,可获得最大利润1 660万元.
课 时



菜单
高三总复习·数学(理)


考向二 指数函数模型的应用
养 满




[典例剖析]
高三总复习·数学(理)
















第九节 函数模型及其应用
战 沙










ห้องสมุดไป่ตู้





菜单
高三总复习·数学(理)










考纲要求:1.了解指数函数、对数函数以及幂函数的增

纲 考
长特征,知道直线上升、指数增长、对数增长等不同函数类



型增长的含义.2.了解函数模型(如指数函数、对数函数、幂

考 向
数模型和实验数据,可以得到最佳加工时间为(
)
演 实













第9节函数模型及其应用

第9节函数模型及其应用

第9节函数模型及其应用
函数模型是数学中的一个重要概念,它是一种关系,将一个集合的元
素映射到另一个集合的元素。

在数学中,函数模型被广泛应用于各种领域,如物理学、经济学、工程学等。

在物理学中,函数模型可以描述物理现象中的关系。

例如,牛顿第二
定律F=ma中的加速度a可以看作是力F和质量m之间的函数关系。

通过
函数模型,我们可以推导出物体在受到力作用下的运动轨迹和速度变化。

在经济学中,函数模型可以描述供求关系、价格弹性和成本效益等。

例如,需求曲线和供应曲线的交点可以表示市场均衡状态,价格弹性可以
用来衡量消费者对价格变化的敏感度,成本效益模型可以帮助企业决策时
做出合理的成本分析。

在工程学中,函数模型经常用于设计和优化过程。

例如,一个工程师
可以使用函数模型来描述一个机械系统的运动,分析其动力学和静力学特性,从而进行设计和改进。

另外,函数模型还可以用来优化一些参数,使
系统在给定约束条件下达到最佳性能。

除了以上领域之外,函数模型还广泛应用于计算机科学、统计学和生
物学等领域。

在计算机科学中,函数模型用于数据处理、算法设计和模拟
等方面。

在统计学中,函数模型用于描述变量之间的关系和概率分布。


生物学中,函数模型用于描述生物体的生理过程和遗传机制。

总之,函数模型是描述现实世界中各种关系的数学工具。

它不仅提供
了定量分析的方法,还可以帮助我们理解和预测复杂的现象。

通过函数模
型的应用,我们可以深入研究问题,做出合理的决策,并推动各个领域的
发展。

2023年高考数学总复习第二章 函数概念与基本初等函数第9节:函数模型及其应用(学生版)

2023年高考数学总复习第二章 函数概念与基本初等函数第9节:函数模型及其应用(学生版)

2023年高考数学总复习第二章函数概念与基本初等函数第9节函数模型及其应用考试要求1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义;2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.1.指数、对数、幂函数模型性质比较函数性质y =a x (a >1)y =log a x (a >1)y =x n (n >0)在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图像的变化随x 的增大逐渐表现为与y 轴平行随x 的增大逐渐表现为与x 轴平行随n 值变化而各有不同2.几种常见的函数模型函数模型函数解析式一次函数模型f (x )=ax +b (a ,b 为常数,a ≠0)二次函数模型f (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0)与指数函数相关的模型f (x )=ba x +c (a ,b ,c 为常数,a >0且a ≠1,b ≠0)与对数函数相关的模型f (x )=b log a x +c (a ,b ,c 为常数,a >0且a ≠1,b ≠0)与幂函数相关的模型f (x )=ax n +b (a ,b ,n 为常数,a ≠0)1.“直线上升”是匀速增长,其增长量固定不变;“指数增长”先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;“对数增长”先快后慢,其增长量越来越小.2.充分理解题意,并熟练掌握几种常见函数的图像和性质是解题的关键.3.易忽视实际问题中自变量的取值范围,需合理确定函数的定义域,必须验证数学结果对实际问题的合理性.1.思考辨析(在括号内打“√”或“×”)(1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.()(2)函数y=2x的函数值比y=x2的函数值大.()(3)不存在x0,使a x0<x n0<log a x0.()(4)在(0,+∞)上,随着x的增大,y=a x(a>1)的增长速度会超过并远远大于y=x a(a>0)的增长速度.()2.(易错题)已知f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,对三个函数的增长速度进行比较,下列选项中正确的是()A.f(x)>g(x)>h(x)B.g(x)>f(x)>h(x)C.g(x)>h(x)>f(x)D.f(x)>h(x)>g(x)3.(易错题)当生物死亡后,其体内原有的碳14的含量大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用该放射性探测器探测不到,则它经过的“半衰期”个数至少是()A.8B.9C.10D.114.(2022·江苏新高考基地大联考)香农定理是所有通信制式最基本的原理,它可以用香农公式C=B log21+SN来表示,其中C是信道支持的最大速度或者叫信道容量,B是信道带宽(Hz),S是平均信号功率(W),N是平均噪声功率(W).已知平均信号功率为1000W,平均噪声功率为10W,在不改变平均信号功率和信道带宽的前提下,要使信道容量增大到原来的2倍,则平均噪声功率约降为()A.0.1WB.1.0WC.3.2WD.5.0W5.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为________.6.(2020·北京卷)为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改.设企业的污水排放量W与时间t的关系为W=f(t),用-f(b)-f(a)b-a的大小评价在[a,b]这段时间内企业污水治理能力的强弱.已知整改期内,甲、乙两企业的污水排放量与时间的关系如图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强.其中所有正确结论的序号是__________.考点一利用函数图像刻画变化过程1.已知高为H,满缸水量为V的鱼缸的轴截面如图所示,其底部破了一个小洞,满缸水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f(h)的大致图像是()2.小菲在学校选修课中了解到艾宾浩斯遗忘曲线,为了解自己记忆一组单词的情况,她记录了随后一个月的有关数据,绘制图像,拟合了记忆保持量f (x )与时间x (天)之间的函数关系f (x )-720x +1,0<x ≤1,15+920x -12,1<x ≤30.则下列说法错误的是()A.随着时间的增加,小菲的单词记忆保持量降低B.第一天小菲的单词记忆保持量下降最多C.9天后,小菲的单词记忆保持量低于40%D.26天后,小菲的单词记忆保持量不足20%3.(2022·郑州质检)水池有两个相同的进水口和一个出水口,每个口进出水的速度如图甲、乙所示,某天0时到6时该水池的蓄水量如图丙所示,给出以下3个论断:①0时到3时只进水不出水;②3时到4时不进水只出水;③4时到5时不进水也不出水.则一定正确的论断是________(填序号).4.(2021·西安调研)为研究西南高寒山区一种常见树的生长周期中前10年的生长规律,统计显示,生长4年的树高为73米,如图所示的散点图,记录了样本树的生长时间t(年)与树高y(米)之间的关系.请你据此判断,在下列函数模型:①y=2t-a;②y=a+log2t;③y=12t+a;④y=t+a中(其中a为正的常实数),拟合生长年数与树高的关系最好的是________(填写序号),估计该树生长8年后的树高为________米.考点二二次函数模型例1(1)某汽车销售公司在A,B两地销售同一种品牌的汽车,在A地的销售利润(单位:万元)为y1=4.1x-0.1x2,在B地的销售利润(单位:万元)为y2=2x,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是()A.10.5万元B.11万元C.43万元D.43.025万元(2)某地西红柿上市后,通过市场调查,得到西红柿种植成本Q(单位:元/100kg)与上市时间t(单位:天)的数据如下表:时间t60100180种植成本Q11684116根据上表数据,从下列函数中选取一个函数描述西红柿种植成本Q与上市时间t 的变化关系:Q=at+b,Q=at2+bt+c,Q=a·b t,Q=a·log b t.利用你选取的函数,求:①西红柿种植成本最低时的上市天数是________;②最低种植成本是________元/100kg.训练1(1)(2021·广州模拟)某工厂生产某种产品固定成本为2000万元,并且每生产一单位产品,成本增加10万元.又知总收入K是单位产品数Q的函数,K(Q)=40Q-120Q2,则总利润L(Q)的最大值是________万元.(2)某城市对一种售价为每件160元的商品征收附加税,税率为R%(即每销售100元征税R元),若每年销售量为30-52R万件,要使附加税不少于128万元,则R的取值范围是()A.[4,8]B.[6,10]C.[4%,8%]D.[6%,10%]考点三指数、对数函数模型例2(1)一个放射性物质不断衰变为其他物质,每经过一年就有34的质量发生衰变.若该物质余下质量不超过原有的1%,则至少需要的年数是()A.6B.5C.4D.3(2)(2021·唐山联考)尽管目前人类还无法准确地预报地震,但科学家通过研究,已经对地震有所了解,例如,地震释放出的能量E(单位:焦耳)与地震里氏震级M 之间的关系为lg E=4.8+1.5M.①已知地震等级划分为里氏12级,根据等级范围又分为三种类型,其中小于2.5级的为“小地震”,介于2.5级到4.7级之间的为“有感地震”,大于4.7级的为“破坏性地震”,若某次地震释放能量约1012焦耳,试确定该次地震的类型;②2008年汶川地震为里氏8级,2011年日本地震为里氏9级,问:2011年日本地震所释放的能量是2008年汶川地震所释放的能量的多少倍?(取10=3.2)训练2(2021·贵阳调研)一片森林原来面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22.(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?考点四分段函数模型例3小王大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本3万元,每生产x万件,需另投入流动成本W(x)万元,在年产量不足8万件时,W(x)=13x2+x(万元).在年产量不小于8万件时,W(x)=6x+100x-38(万元).每件产品售价5元.通过市场分析,小王生产的商品当年能全部售完.(1)写出年利润L(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小王在这一商品的生产中所获利润最大?最大利润是多少?训练3某校高三(1)班学生为了筹措经费给班上购买课外读物,班委会成立了一个社会实践小组,决定利用暑假八月份(按30天计算)轮流换班去销售一种时令水果.在这30天内每斤水果的收入p(元)与时间t(天)满足如图所示的函数关系,已知日销售量Q(斤)与时间t(天)满足一次函数关系(具体数据如下表所示).t(天)281624Q(斤)38322416(1)根据提供的图像和表格,写出每斤水果的收入p(元)与时间t(天)所满足的函数关系式及日销售量Q(斤)与时间t(天)的一次函数关系式;(2)写出销售水果的日收入y(元)与t的函数关系式,并求这30天中第几天的日收入最大?最大为多少元?1.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系图像正确的是()2.(2022·绵阳诊断)某数学小组进行社会实践调查,了解到某公司为了实现1000万元利润目标,准备制订激励销售人员的奖励方案:在销售利润超过10万元时,按销售利润进行奖励,且奖金y (单位:万元)随销售利润x (单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.同学们利用函数知识,设计了如下函数模型,其中符合公司要求的是(参考数据:1.0021000≈7.37,lg 7≈0.845)()A.y =0.25xB.y =1.002xC.y =log 7x +1D.y =x10-13.(2021·全国大联考)如图,矩形花园ABCD 的边AB 靠在墙PQ 上,另外三边是由篱笆围成的.若该矩形花园的面积为4平方米,墙PQ 足够长,则围成该花园所需要篱笆的()A.最大长度为8米B.最大长度为42米C.最小长度为8米D.最小长度为42米4.(2022·兰州质检)设光线通过一块玻璃,光线强度损失10%,如果光线原来的强度为k(k>0),通过x块这样的玻璃以后光线的强度为y,则y=k·0.9x(x∈N+),那么光线强度减弱到原来的13以下时,至少通过这样的玻璃的块数为(参考数据:lg3≈0.477)()A.9B.10C.11D.125.(2021·济南检测)人们用分贝(dB)来划分声音的等级,声音的等级d(x)(单位:dB)与声音强度x(单位:W/m2)满足d(x)=9lgx1×10-13.一般两人小声交谈时,声音的等级约为54dB,在有50人的课堂上讲课时,老师声音的等级约为63dB,那么老师上课时声音强度约为一般两人小声交谈时声音强度的()A.1倍B.10倍C.100倍D.1000倍6.某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是()A.收入最高值与收入最低值的比是3∶1B.结余最高的月份是7月C.1至2月份的收入的变化量与4至5月份的收入的变化量相同D.前6个月的平均收入为40万元7.我国的烟花名目繁多,其中“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h(单位:米)与时间t(单位:s)之间的关系为h(t)=-4.9t2+14.7t+17,那么烟花冲出后在爆裂的最佳时刻距地面高度约为________米.8.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为________.9.(2021·武汉模拟)复利是一种计算利息的方法,即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率为2.25%,若放入微信零钱通或者支付宝的余额宝,年利率可达4.01%.如果将这1000元选择合适方式存满5年,可以多获利息________元.(参考数据:1.02255≈1.118,1.04015≈1.217)10.候鸟每年都要随季节的变化而进行大规模的迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量Q之间的关系为v=a+b log3Q 10 (其中a,b是实数).据统计,该种鸟类在静止时其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1m/s.(1)求出a,b的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s,则其耗氧量至少要多少个单位?11.近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司计划在甲、乙两座城市共投资240万元.根据行业规定,每个城市至少要投资80万元,由前期市场调研可知:甲城市收益P与投入a(单位:万元)满足P=42a-6,乙城市收益Q与投入a(单位:万元)满足Q+2,80≤a≤120,,120<a≤160,设甲城市的投入为x(单位:万元),两个城市的总收益为f(x)(单位:万元).(1)当投资甲城市128万元时,求此时公司的总收益;(2)试问:如何安排甲、乙两个城市的投资,才能使公司总收益最大?12.(2022·保定质检)分子间作用力是只存在于分子与分子之间或惰性气体原子间的作用力,在一定条件下,两个原子接近,则彼此因静电作用产生极化,从而导致有相互作用力,称范德瓦尔斯相互作用.今有两个惰性气体原子,原子核正电荷的电荷量为q,这两个相距R的惰性气体原子组成体系的能量中有静电相互作用能U,其计算式子为U=kcq2·(1R+1R+x1-x2-1R+x1-1R-x2),其中,kc为静电常量,x1,x2分别表示两个原子的负电中心相对各自原子核的位移.已知R+x1-x2=1+x1-x2R R+x1=R1+x1R R-x2=R1-x2R(1+x)-1≈1-x+x2,则U的近似值为()A.kcq2x1x2R3B.-kcq2x1x2R3C.2kcq2x1x2R3D.-2kcq2x1x2R313.天文学中为了衡量天体的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,天体就越亮;星等的数值越大,它就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森(M.R.Pogson)又提出了衡量天体明暗程度的概念.天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m1-m2=2.5(lg E2-lg E1).其中星等为m i的天体的亮度为E i(i=1,2).已知“心宿二”的星等是1.00,“天津四”的星等是1.25,“心宿二”的亮度是“天津四”的r倍,则与r最接近的是(当|x|较小时,10x≈1+2.3x+2.7x2)()A.1.24B.1.25C.1.26D.1.2714.已知一容器中有A,B两种菌,且在任何时刻A,B两种菌的个数乘积均为定值1010,为了简单起见,科学家用P A=lg n A来记录A菌个数的资料,其中n A为A 菌的个数.现有以下几种说法:①P A≥1;②若今天的P A值比昨天的P A值增加1,则今天的A菌个数比昨天的A菌个数多10;③假设科学家将B菌的个数控制为5万,则此时5<P A<5.5(注:lg2≈0.3).则正确的说法为________(写出所有正确说法的序号).。

第二章函数模型及其应用

第二章函数模型及其应用
[理 要 点]
一、三种增长型函数增长速度的比较
在区间(0,+∞)上,函数y=ax(a>1),y=logax(a>1),y
=xn(n>0)都是 函数,但它们增的
不同.增随长着速x度的
增大,y=ax(a>1)的增长速度越来越 ,会超过并远快远大
于y=xn(n>0)的增长速度;而y=logax(a>1)的增长速度则会
例4.求 3 3 的近似值。(精确度0.1)
解: x=3 3
x3 3
x3 3 0 再利用二分法求近似根
解:(1)每次购买原材料后,当天用掉的400公斤原材料不 需要保管,第二天用掉的400公斤原材料需保管1天,第三 天用掉的400公斤原材料需保管2天,第四天用掉的400公 斤原材料需要保管3天,…,第x天(也就是下次购买原材料 的前一天)用掉最后的400公斤原材料需保管(x-1)天. ∴每次购买的原材料在x天内的保管费用: y1=400×0.03×[1+2+3+…+(x-1)]=6x2-6x.
不改变本题的条件下,材料厂家有如下优惠条件:若一 次购买不少于4 800公斤,每公斤按9折优惠,问该工厂 是否可接受此条件?
解:购买一次原材料平均每天支付总费用为 f(x)=1x(6x2-6x+600)+1.5×400×0.9=60x0+6x +534(x≥12), f′(x)=-6x020+6=6x2-x2600, 当 x≥10 时,函数 f(x)为增函数. f(x)min=f(12)=656, 而 714>656,故该厂可接受此条件.
解:(1)1年后该城市人口总数为 y=100+100×1.2%=100×(1+1.2%). 2年后该城市人口总数为 y=100×(1+1.2%)+100×(1+1.2%)×1.2% =100×(1+1.2%)2. 3年后该城市人口总数为 y=100×(1+1.2%)2+100×(1+1.2%)2×1.2% =100×(1+1.2%)3. …

高考数学一轮总复习第2章函数的概念与基本初等函数(ⅰ)第9节函数模型及其应用跟踪检测文含解析

高考数学一轮总复习第2章函数的概念与基本初等函数(ⅰ)第9节函数模型及其应用跟踪检测文含解析

第二章 函数的概念与基本初等函数(Ⅰ)第九节 函数模型及其应用A 级·基础过关|固根基|1.一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,燃烧时剩下的高度h(cm)与燃烧时间t(h)的函数关系用图象表示为图中的( )解析:选B 由题意知h =20-5t(0≤t≤4),图象应为B 项.2.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( )A .118元B .105元C .106元D .108元解析:选D 设进货价为a 元,由题意知132×(1-10%)-a =10%·a ,解得a =108.3.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是( )(参考数据:lg 3≈0.48) A .1033B .1053C .1073D .1093解析:选D M≈3361,N≈1080,M N ≈33611080,则lg M N ≈lg 33611080=lg 3361-lg 1080=361lg 3-80≈93.∴M N≈1093. 4.某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x-0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( )A .10.5万元B .11万元C .43万元D .43.025万元解析:选C 设公司在A 地销售该品牌的汽车x 辆,则在B 地销售该品牌的汽车(16-x)辆. 所以利润y =4.1x -0.1x 2+2(16-x)=-0.1x 2+2.1x +32=-0.1⎝⎛⎭⎪⎫x -2122+0.1×2124+32.因为x∈[0,16],且x∈N,所以当x =10或11时,总利润取得最大值43万元.5.设某公司原有员工100人从事产品A 的生产,平均每人每年创造产值t 万元(t 为正数).公司决定从原有员工中分流x(0<x <100,x∈N *)人去进行新开发的产品B 的生产.分流后,继续从事产品A 生产的员工平均每人每年创造产值在原有的基础上增长了1.2x%.若要保证产品A 的年产值不减少,则最多能分流的人数是( )A .15B .16C .17D .18解析:选B 由题意,分流前每年创造的产值为100t 万元,分流x 人后,每年创造的产值为(100-x)(1+1.2x%)t 万元,则由⎩⎪⎨⎪⎧0<x <100,x∈N *,(100-x )(1+1.2x%)t≥100t,解得0<x≤503.因为x∈N *,所以x 的最大值为16.6.当生物死亡后,其体内原有的碳14的含量大约每经过5 730年衰减为原来的一半,这个时间称为“半衰期”.当死亡生物体内的碳14含量不足死亡前的千分之一时,用一般的放射性探测器就测不到了.若某死亡生物体内的碳14用该放射性探测器探测不到,则它经过的“半衰期”个数至少是( )A .8B .9C .10D .11解析:选C 设该死亡生物体内原来的碳14的含量为1,则经过n 个“半衰期”后的含量为⎝ ⎛⎭⎪⎫12n,由⎝ ⎛⎭⎪⎫12n<11 000,得n≥10,所以,若某死亡生物体内的碳14用该放射性探测器探测不到,则它至少需要经过10个“半衰期”.7.(2019届北京东城模拟)小菲在学校选修课中了解到艾宾浩斯遗忘曲线,为了解自己记忆一组单词的情况,她记录了随后一个月的有关数据,绘制图象,拟合了记忆保持量f(x)与时间x(天)之间的函数关系f(x)=⎩⎪⎨⎪⎧-720x +1,0<x≤1,15+920x-12,1<x≤30.某同学根据小菲拟合后的信息得到以下结论: ①随着时间的增加,小菲的单词记忆保持量降低; ②9天后,小菲的单词记忆保持量低于40%; ③26天后,小菲的单词记忆保持量不足20%.其中正确结论的序号有________.(请写出所有正确结论的序号)解析:由函数解析式可知f(x)随着x 的增加而减少,故①正确;当1<x≤30时,f(x)=15+920x -12,则f(9)=15+920×9-12=0.35,即9天后,小菲的单词记忆保持量低于40%,故②正确;f(26)=15+920×26-12>15,故③错误. 答案:①②8.有一批材料可以建成200 m 长的围墙,如果用此材料在一边靠墙的地方围成一块矩形场地,中间用同样的材料隔成三个面积相等的矩形(如图所示),则围成的矩形场地的最大面积为________ m 2.(围墙厚度不计)解析:设围成的矩形场地的长为x m ,则宽为200-x 4 m ,则S =x·200-x 4=14(-x 2+200x)=-14(x -100)2+2 500.∴当x =100时,S max =2 500 m 2. 答案:2 5009.已知投资x 万元经销甲商品所获得的利润为P =x 4;投资x 万元经销乙商品所获得的利润为Q =a2x(a >0).若投资20万元同时经销这两种商品或只经销其中一种商品,使所获得的利润不少于5万元,则a的最小值为________.解析:设投资乙商品x 万元(0≤x≤20),则投资甲商品(20-x)万元. 则利润分别为Q =a 2x(a >0),P =20-x4,由题意得P +Q≥5,0≤x≤20时恒成立, 则化简得a x ≥x2,在0≤x≤20时恒成立.(1)x =0时,a 为一切实数; (2)0<x≤20时,分离参数a≥x2,0<x≤20时恒成立,所以a≥5,a 的最小值为 5. 答案: 510.已知某服装厂生产某种品牌的衣服,销售量q(x)(单位:百件)关于每件衣服的利润x(单位:元)的函数解析式为q(x)=⎩⎪⎨⎪⎧1 260x +1,0<x≤20,90-35x ,20<x≤180,求该服装厂所获得的最大效益是多少元?解:设该服装厂所获效益为f(x)元,则f(x)=100xq(x)=⎩⎪⎨⎪⎧126 000x x +1,0<x≤20,100x (90-35x ),20<x≤180.当0<x≤20时,f(x)=126 000x x +1=126 000-126 000x +1,f(x)在区间(0,20]上单调递增,所以当x =20时,f(x)有最大值120 000;当20<x≤180时,f(x)=9 000x -3005·x x , 则f′(x)=9 000-4505·x ,令f′(x)=0,所以x =80.当20<x <80时,f′(x)>0,f(x)单调递增;当80≤x≤180时,f′(x)≤0,f(x)为单调递减,所以当x =80时,f(x)有极大值,也是最大值240 000.由于120 000<240 000.故该服装厂所获得的最大效益是240 000元. B 级·素养提升|练能力|11.将甲桶中的a L 水缓慢注入空桶乙中,t min 后甲桶中剩余的水量符合指数衰减曲线y =ae nt.假设过5 min 后甲桶和乙桶的水量相等,若再过m min 甲桶中的水只有a4L ,则m 的值为( )A .5B .8C .9D .10解析:选A ∵5 min 后甲桶和乙桶的水量相等,∴函数y =f(t)=ae n t 满足f(5)=ae 5n=12a ,可得n =15ln 12,∴f(t )=a·⎝ ⎛⎭⎪⎫12t 5,因此,当k min 后甲桶中的水只有a4 L 时,f(k)=a·⎝ ⎛⎭⎪⎫12k 5=14a ,即⎝ ⎛⎭⎪⎫12k 5=14,∴k =10,由题可知m =k -5=5.12.“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品靠广告销售的收入R 与广告费A 之间满足关系R =a A(a 为常数),广告效应为D =a A -A.那么精明的商人为了取得最大广告效应,投入的广告费应为________.(用常数a 表示)解析:令t =A(t ≥0),则A =t 2,所以D =at -t 2=-t -12a 2+14a 2,所以当t =12a ,即A =14a 2时,D取得最大值.答案:14a 213.(2019年北京卷)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为________.解析:(1)当x =10时,一次购买草莓和西瓜各1盒,共60+80=140(元),由题可知顾客需支付140-10=130(元).(2)设每笔订单金额为m 元,当0≤m<120时,顾客支付m 元,李明得到0.8m 元,0.8m ≥0.7m ,显然符合题意,此时x =0; 当m≥120时,根据题意得(m -x)80%≥m ×70%, 所以x≤m8,而m≥120,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x≤⎝ ⎛⎭⎪⎫m 8min ,而⎝ ⎛⎭⎪⎫m 8min=15, 所以x≤15.综上,当0≤x≤15时,符合题意, 所以x 的最大值为15.答案:(1)130 (2)1514.十九大提出对农村要坚持精准扶贫,至2020年底全面脱贫.现有扶贫工作组到某山区贫困村实施脱贫工作,经摸底排查,该村现有贫困农户100家,他们均从事水果种植,2017年底该村平均每户年纯收入为1万元.扶贫工作组一方面请有关专家对水果进行品种改良,提高产量;另一方面,抽出部分农户从事水果包装、销售工作,其人数必须小于种植的人数.从2018年初开始,若该村抽出5x 户(x∈Z,1≤x≤9)从事水果包装、销售工作,经测算,剩下从事水果种植的农户的年纯收入每户平均比上一年提高x20,而从事包装、销售的农户的年纯收入每户平均为⎝ ⎛⎭⎪⎫3-14x 万元(参考数据:1.13=1.331,1.153≈1.521,1.23=1.728).(1)至2020年底,为使从事水果种植的农户能实现脱贫(每户年均纯收入不低于1万6千元),至少要抽出多少户从事包装、销售工作?(2)至2018年底,该村每户年均纯收入能否达到1.35万元?若能,请求出从事包装、销售的户数;若不能,请说明理由.解:(1)至2020年底,种植户平均收入 =(100-5x )⎝ ⎛⎭⎪⎫1+x 203100-5x≥1.6,即⎝ ⎛⎭⎪⎫1+x 203≥1.6, 即x≥20(31.6-1).由题中所给数据,知1.15<31.6<1.2,所以3<20(31.6-1)<4. 所以x 的最小值为4,此时5x≥20,即至少要抽出20户从事包装、销售工作. (2)至2018年底,假设该村每户年均纯收入能达到1.35万元.每户的平均收入为5x ⎝ ⎛⎭⎪⎫3-14x +(100-5x )⎝ ⎛⎭⎪⎫1+x 20100≥1.35,化简得3x 2-30x +70≤0.因为x∈Z 且1≤x≤9,所以x∈{4,5,6}.所以当从事包装、销售的户数达到20至30户时,能达到,否则,不能.。

数学新高考第9节 函数的模型及其应用

数学新高考第9节 函数的模型及其应用

11
函数的模型及其应用
《高考特训营》 ·数学 返 回
4.[通性通法]复利公式 (1)某种储蓄按复利计算利息,若本金为A元,每期利率为R,设存期是X, 本利和(本金加上利息)为Y元,则本利和Y随X变化的函数关系式为Y=A(1+ R)X(X∈N*) (2)人口的增长、细胞分裂的个数以及存款利率(复利)的计算等问题都可以用 指数函数模型解决.
至5月份的收入的变化率相同 D.前6个月的平均收入为40万元
14
函数的模型及其应用
《高考特训营》 ·数学 返 回
解析:由题图可知,收入最高值为 90 万元,收入最低值为 30 万元,其比是 3∶1,故 A 正确;由题图可知,7 月份的结余最高,为 80-20=60(万元), 故 B 正确;由题图可知,1 至 2 月份的收入的变化率与 4 至 5 月份的收入的 变化率相同,故 C 正确;由题图可知,前 6 个月的平均收入为61×(40+60+ 30+30+50+60)=45(万元),故 D 错误.
6
函数的模型及其应用
《高考特训营》 ·数学 返 回
2.几种常见的函数模型
函数模型 一次函数 二次函数 指数函数 对数函数 幂函数
函数解析式 f(x)=ax+b(a,b为常数,a≠0) f(x)=ax2+bx+c(a,b,c为常数,a≠0) f(x)=bax+c(a,b,c为常数,a>0且a≠1,b≠0) f(x)=blogax+c(a,b,c为常数,a>0且a≠1,b≠0) f(x)=axn+b(a,b,n为常数,a≠0)
202函2届数的模型及其应用
《高考特《训高营考》特·训数营学》 ·返数回学
第9节 函数的模型及其应用
1 1
函数的模型及其应用

高考数学一轮总复习第二章函数导数及其应用2.9函数模型及其应用课件理

高考数学一轮总复习第二章函数导数及其应用2.9函数模型及其应用课件理
必修(bìxiū)部分
第二章 函数(hánshù)、导数及其应用
第九节 函数模型(móxíng)及其应用
第一页,共33页。

考情分析 1
(fēnxī)

基础自主(zìzhǔ) 2
3 考点疑难(yí
nán)突破

梳理

4 课时跟踪检测
第二页,共33页。
1
考情分析
第三页,共33页。
考点分布
考纲要求
第十三页,共33页。
3.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品 x 万件时的生产成本为 C(x)=12x2+2x+20(万元).一万件售价是 20 万元,为获取更大 利润,该企业一个月应生产该商品数量为________万件.
解析:利润 L(x)=20x-C(x)=-12(x-18)2+142,当 x=18 时,L(x)有最大值. 答案:18
第三十页,共33页。
指数函数与对数函数模型的应用技巧 (1)与指数函数、对数函数两类函数模型有关的实际问题,在求解时,要先学会 合理选择模型,在两类模型中,指数函数模型是增长速度越来越快(底数大于 1)的一 类函数模型,与增长率、银行利率有关的问题都属于指数函数模型. (2)在解决指数函数、对数函数模型问题时,一般先需要通过待定系数法确定函 数解析式,再借助函数的图象求解最值问题.
二次函数模型
f(x)=ax2+bx+c (a,b,c 为常数,a≠0)
第六页,共33页。
f(x)=bax+c 指数函数模型
(a,b,c 为常数,b≠0,a>0 且 a≠1)
对数函数模型
f(x)=blogax+c
(a,b,c 为常数,b≠0,a>0 且 a≠1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时规范练
A组基础对点练1.下列函数中随x的增大而增长速度最快的是()
A.v=
1
100·e
x B.v=100ln x
C.v=x100D.v=100×2x
答案:A
2.(2019·开封质检)用长度为24(单位:米)的材料围成一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为()
A.3米B.4米
C.6米D.12米
解析:设隔墙的长为x(0<x<6)米,矩形的面积为y平方米,则y=x×24-4x
2
=2x(6-x)=-2(x-3)2+18,所以当x=3时,y取得最大值.
答案:A
3.某商场销售A型商品,已知该商品的进价是每件3元,且销售单价与日均销售量的关系如表所示:
请根据以上数据分析,要使该商品的日均销售利润最大,则此商品的定价(单位:元/件)应为()
A.4 B.5.5
C.8.5 D.10
解析:由题意可设定价为x元/件,利润为y元,则y=(x-3)[400-40(x-4)]=40(-x2+17x-42),故当x=8.5时,y有最大值,故选C.
答案:C
4.(2019·济南模拟)某种动物繁殖量y只与时间x年的关系为y=a log3(x+1),设这种动物第2年有100只,到第8年它们将发展到()
A.200只B.300只
C.400只D.500只
解析:∵繁殖数量y只与时间x年的关系为y=a log3(x+1),这种动物第2年
有100只,
∴100=a log3(2+1),∴a=100,
∴y=100log3(x+1),
∴当x=8时,y=100log3(8+1)=100×2=200.故选A.
答案:A
5.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x,y应为()
A.x=15,y=12 B.x=12,y=15 C.x=14,y=10 D.x=10,y=14
解析:由三角形相似得24-y
24-8

x
20,
得x=5
4(24-y),由0<x≤20得,8≤y<24,
所以S=xy=-5
4(y-12)
2+180,
所以当y=12时,S有最大值,此时x=15.
答案:A
6.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x之间关系的是()
A.y=100x B.y=50x2-50x+100
C.y=50×2x D.y=100log2x+100
解析:根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型,代入数据验证即可得.
答案:C
7.(2019·南昌模拟)某电信公司推出两种手机收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内通话时间t(分钟)与电话费S(元)的函数关系如图所示,当通话150分钟时,这两种方式的电话费相差__________.。

相关文档
最新文档