高中数学高考题详解-基本不等式

合集下载

(完整版)高考数学-基本不等式(知识点归纳)

(完整版)高考数学-基本不等式(知识点归纳)

高中数学基本不等式的巧用一.基本不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。

高中数学专题7-1 基本不等式和对钩函数(解析版)

高中数学专题7-1 基本不等式和对钩函数(解析版)

4
4
无法直接使用基本不等式,需要凑配位和定:
f (x) 4x(3 2x) 22x(3 2x) 2( 2x 3 2x)2 9 ;
2
2
再如:f (x) 4x 2 1 直接使用基本不等式,则 f (x) 4x 2 1 2 (4x 2) 1 ,
4x 5
4x 5
4x 5
发现积不定,则需要凑配为积定:
【答案】1
【详解】因为 a 1,所以 a 2 a 1 2 1 2 a 1 2 1 2 2 1,
a 1
a 1
a 1
当且仅当 a 1 2 时取等号.故 m 2 2 1, n 2 1,所以, 2n m 1. 故答案为:1. 2.(2022·云南·屏边苗族自治县第一中学高一阶段练习)( 若 x 2 ,求: x 2 的最小值.
【答案】(1) 9
【详解】(1)由题得 y 4x 1 1 4(x 1) 1 5,
x 1
x 1
因为 x 1,所以 x 1 0 ,
所以 4(x 1) 1 5 2 4(x 1) 1 5 9 ,
x 1
x 1
当且仅当 4(x 1) 1 ,即 x 3 时取得等号,
x 1
2
所以 y 4x 1 1 的最小值为 9 . x 1
y
4x2
9 x2
2
4x2
9 x2
12 ,
当且仅当 4x2
9 x2
,即 x
6 时取等号,
2
所以 ymin 12 , 故选:C.
2.(2022·黑龙江·哈尔滨工业大学附属中学校高二学业考试)若 x 0 ,则 x 1 1的最小 x
值是( )
A.0 【答案】B
B.1
C. 3 2

利用基本不等式求最值(解析版)-高中数学

利用基本不等式求最值(解析版)-高中数学

利用基本不等式求最值题型梳理【题型1直接法求最值】【题型2配凑法求最值】【题型3常数代换法求最值】【题型4消元法求最值】【题型5构造不等式法求最值】【题型6多次使用基本不等式求最值】【题型7实际应用中的最值问题】【题型8与其他知识交汇的最值问题】命题规律基本不等式是高考热点问题,是常考常新的内容,是高中数学中一个重要的知识点.题型通常为选择题或填空题,但它的应用范围很广,涉及到函数、三角函数、平面向量、立体几何、解析几何、导数等内容,它在高考中常用于大小判断、求最值、求最值范围等.在高考中经常考察运用基本不等式求函数或代数式的最值,具有灵活多变、应用广泛、技巧性强等特点.在复习中切忌生搬硬套,在应用时一定要紧扣“一正二定三相等”这三个条件灵活运用.知识梳理【知识点1利用基本不等式求最值的方法】1.利用基本不等式求最值的几种方法(1)直接法:条件和问题间存在基本不等式的关系,可直接利用基本不等式来求最值.(2)配凑法:利用配凑法求最值,主要是配凑成“和为常数”或“积为常数”的形式.(3)常数代换法:主要解决形如“已知x+y=t(t为常数),求的最值”的问题,先将转化为,再用基本不等式求最值.(4)消元法:当所求最值的代数式中的变量比较多时,通常考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”的形式,最后利用基本不等式求最值.(5)构造不等式法:构建目标式的不等式求最值,在既含有和式又含有积式的等式中,对和式或积式利用基本不等式,构造目标式的不等式求解.【知识点2基本不等式的实际应用】1.基本不等式的实际应用的解题策略(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值.(2)解应用题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数的最值时,若等号取不到,则可利用函数的单调性求解.举一反三【题型1直接法求最值】1(2023上·北京·高一校考阶段练习)已知a>0,则a+1a+1的最小值为()A.2B.3C.4D.5【解题思路】用基本不等式求解即可.【解答过程】因为a>0,所以a+1a+1≥2a⋅1a+1=3,当且仅当a=1a即a=1时取等号;故选:B.【变式训练】1(2023·北京东城·统考一模)已知x>0,则x-4+4x的最小值为()A.-2B.0C.1D.22【解题思路】由基本不等式求得最小值.【解答过程】∵x>0,∴x+4x-4≥2x×4x-4=0,当且仅当x=4x即x=2时等号成立.故选:B.2(2023上·山东·高一统考期中)函数y=x2-x+9x(x>0)的最小值为()A.1B.3C.5D.9【解题思路】利用均值不等式求最小值即可.【解答过程】y=x2-x+9x=x+9x-1≥2x⋅9x-1=5,当且仅当x=9x,即x=3时等号成立,故选:C.3(2023下·江西·高三校联考阶段练习)3+1 x21+4x2的最小值为()A.93B.7+42C.83D.7+43【解题思路】依题意可得3+1 x21+4x2=7+1x2+12x2,再利用基本不等式计算可得.【解答过程】3+1 x21+4x2=7+1x2+12x2≥7+21x2⋅12x2=7+43,当且仅当1x2=12x2,即x4=112时,等号成立,故3+1 x21+4x2的最小值为7+4 3.故选:D.【题型2配凑法求最值】1(2023·浙江·校联考模拟预测)已知a>1,则a+16a-1的最小值为()A.8B.9C.10D.11【解题思路】运用基本不等式的性质进行求解即可.【解答过程】因为a>1,所以由a+16a-1=a-1+16a-1+1≥2a-1⋅16a-1+1=9,当且仅当a-1=16a-1时取等号,即a=5时取等号,故选:B.【变式训练】1(2023上·吉林·高一校考阶段练习)已知x>3,则y=2x-3+2x的最小值是()A.6B.8C.10D.12【解题思路】利用基本不等式求和的最小值,注意取值条件.【解答过程】由x-3>0,则y=2x-3+2(x-3)+6≥22x-3⋅2(x-3)+6=10,当且仅当x=4时等号成立,故最小值为10.故选:C.2(2023上·海南省直辖县级单位·高三校联考阶段练习)设x>2,则函数y=4x-1+4x-2,的最小值为()A.7B.8C.14D.15【解题思路】利用基本不等式求解.【解答过程】因为x>2,所以x-2>0,所以y=4x-1+4x-2=4x-2+4x-2+7≥24x-2⋅4x-2+7=15,当且仅当4x -2 =4x -2,即x =3时等号成立,所以函数y =4x -1+4x -2的最小值为15,故选:D .3(2023上·辽宁·高一校联考期中)若x >0,y >0且满足x +y =xy ,则2xx -1+4y y -1的最小值为()A.6+26B.4+62C.2+46D.6+42【解题思路】结合条件等式,利用基本不等式求和的最小值.【解答过程】若x >0,y >0且满足x +y =xy ,则有1x +1y=1,所以x >1,y >1,2x x -1+4y y -1=2x -1 +2x -1+4y -1 +4y -1=6+2x -1+4y -1≥6+22x -1⋅4y -1=6+28xy -x +y +1=6+42,当且仅当2x -1=4y -1,即x =1+22,y =1+2时等号成立.所以2x x -1+4y y -1的最小值为6+4 2.故选:D .【题型3 常数代换法求最值】1(2023上·内蒙古通辽·高三校考阶段练习)已知a >0,b >0,若2a +3b=1,则2a +b3的最小值是()A.8B.9C.10D.11【解题思路】利用基本不等式“1”的应用即可求解.【解答过程】由题意得a >0,b >0,2a +3b=1,所以2a +b 3=2a +b 3 2a +3b =4+1+2b 3a +6ab ≥5+22b 3a ×6a b=9,当且仅当2b 3a =6ab 时,即a =3,b =9,取等号,故B 项正确.故选:B .【变式训练】1(2023·河南·校联考模拟预测)已知正实数a ,b ,点M 1,4 在直线xa +y b=1上,则a +b 的最小值为()A.4B.6C.9D.12【解题思路】根据题意可得1a+4b=1,结合基本不等式运算求解.【解答过程】由题意得1a+4b=1,且a>0,b>0,故a+b=a+b⋅1a+4b=5+b a+4a b≥5+2b a×4a b=9,当且仅当ba=4ab,即a=3,b=6时,等号成立.故选:C.2(2023上·重庆·高一统考期末)若正实数x,y满足2x+8y-xy=0,则2x+y的最大值为()A.25B.16C.37D.19【解题思路】根据等式计算得出1,再结合常值代换求和的最值,计算可得最大值.【解答过程】∵x>0,y>0,2x+8y-xy=0,∴2y+8x=1,x+y=x+y2y+8x=2x y+8+2+8y x≥22x y×8y x+10=18,∴2 x+y ≤218=19.故选:D.3(2023·重庆·统考一模)已知a,b为非负实数,且2a+b=1,则2a2a+1+b2+1b的最小值为()A.1B.2C.3D.4【解题思路】首先根据题意求出0≤a<12,0<b≤1,然后将原式变形得2a2a+1+b2+1b=2a+1+1b-1,最后利用1的妙用即可求出其最值.【解答过程】∵2a+b=1,且a,b为非负实数,b≠0,则a≥0,b>0则b=1-2a>0,解得0≤a<12,2a=1-b≥0,解得0<b≤1,∴2a2 a+1+b2+1b=2(a+1)2-4(a+1)+2a+1+b2+1b=2(a+1)-4+2a+1+b+1b=(2a+b-2)+2a+1+1b=2a+1+1b-12 a+1+1b=42a+2+1b=13(2a+2)+b⋅42a+2+1b=135+4b2a+2+2a+2b≥135+24b2a+2⋅2a+2b=3,当且仅当4b2a+2=2a+2b即2a+2=2b,2a+b=1时,即b=1,a=0时等号成立,故2a+1+1b-1min=2,故选:B.【题型4消元法求最值】1(2023上·江苏·高一校联考阶段练习)已知正数x,y满足3x-4=9y,则x+8y的最小值为12.【解题思路】根据指数方程,得出x,y的关系式,运用消元法将所求式化成关于y的关系式,再利用基本不等式求解.【解答过程】由3x-4=9y,可得x-4=2y,即x=2y+4,代入x+8y中,可得2y+4+8y=2y+8y+4≥22y⋅8y+4=12,当且仅当y=2,x=8时,取等号,所以x+8y的最小值为12.故答案为:12.【变式训练】1(2023上·安徽池州·高一统考期中)已知x,y∈R+,若2x+y+xy=7,则x+2y的最小值为62-5.【解题思路】根据题意,化简得到x+2y=x2-3x+14x+1,设t=x+1,求得x2-3x+14x+1=t+18t-5,结合基本不等式,即可求解.【解答过程】由x,y∈R+,且2x+y+xy=7,可得y=7-2xx+1,则x+2y=x+2×7-2xx+1=x2-3x+14x+1,设t=x+1,可得x=t-1且t>1,可得x2-3x+14x+1=t2-5t+18t=t+18t-5≥2t⋅18t-5=62-5,当且仅当t=18t时,即t=32时,等号成立,所以x+2y的最小值为62-5.故答案为:62-5.2(2023上·山东淄博·高一校考阶段练习)已知正实数a,b,且2a+b+6=ab,则a+2b的最小值为13.【解题思路】根据基本不等式即可求解.【解答过程】由2a+b+6=ab可得a=b+6b-2>0,由于b>0,所以b>2,故a+2b=b+6b-2+2b=8b-2+2b-2+5,由于b>2,所以8b-2+2b-2≥216=8,当且仅当b=4时等号成立,故a+2b=8b-2+2b-2+5≥13,故a+2b的最小值为13,故答案为:13.3(2023·上海崇明·统考一模)已知正实数a, b, c, d满足a2-ab+1=0,c2+d2=1,则当(a-c)2+(b-d)2取得最小值时,ab=22+1.【解题思路】将(a-c)2+(b-d)2转化为a,b与c,d两点间距离的平方,进而转化为a,b与圆心0,0的距离,结合基本不等式求得最小值,进而分析求解即可.【解答过程】可将(a-c)2+(b-d)2转化为a,b与c,d两点间距离的平方,由a2-ab+1=0,得b=a+1 a,而c2+d2=1表示以0,0为圆心,1为半径的圆,c,d为圆上一点,则a,b与圆心0,0的距离为:a2+b2=a2+a+1 a2=2a2+1a2+2≥22a2⋅1a2+2= 22+2,当且仅当2a2=1a2,即a=±412时等号成立,此时a,b与圆心0,0的距离最小,即a,b与c,d两点间距离的平方最小,即(a-c)2+(b-d)2取得最小值.当a=412时,ab=a2+1=22+1,故答案为:22+1.【题型5构造不等式法求最值】1(2023下·河南·高三校联考阶段练习)已知2a+b=ab(a>0,b>0),下列说法正确的是()A.ab的最大值为8B.1a-1+2b-2的最小值为2C.a+b有最小值3+2D.a2-2a+b2-4b有最大值4【解题思路】根据基本不等式运用的三个条件“一正、二定、三相等”,可知ab≥8,所以A错误;将原式化成a-1b-2=2,即可得1a-1+2b-2=1a-1+a-1≥2,即B正确;不等式变形可得2b+1a=1,利用基本不等式中“1”的妙用可知a+b≥3+22,C错误;将式子配方可得a2-2a+b2 -4b=(a-1)2+(b-2)2-5,再利用基本不等式可得其有最小值-1,无最大值,D错误.【解答过程】对于A选项,ab=2a+b≥22ab,即ab≥22,故ab≥8,当且仅当a=2,b=4时等号成立,故ab的最小值为8,A错误;对于B选项,原式化为a-1b-2=2,b=2aa-1>0,故a-1>0;a=bb-2>0,故b-2>0;所以1a-1+2b-2=1a-1+a-1≥2,当且仅当a=2,b=4时等号成立,B正确;对于C选项,原式化为2b+1a=1,故a+b=a+b2b+1a=2a b+1+2+b a≥3+22,当且仅当a=2+1,b=2+2时等号成立,C错误;对于D选项,a2-2a+b2-4b=(a-1)2+(b-2)2-5≥2a-1b-2-5=-1,当且仅当a=1+2,b=2+2时等号成立,故有最小值-1,D错误.故选:B.【变式训练】1(2022上·山东青岛·高一青岛二中校考期中)已知x>0,y>0,且x+y+xy-3=0;则下列结论正确的是()A.xy的最小值是1B.x+y的最小值是2C.x+4y的最小值是8D.x+2y的最大值是42-3【解题思路】利用基本不等式得x+y+xy-3≥(xy+3)(xy-1)、x+y+xy-3≤(x+y)24+(x+y)-3分别求xy、x+y的最值,注意取等条件;由题设有x=3-yy+1且0<y<3代入x+4y、x+2y,结合基本不等式求最值,注意取等条件.【解答过程】由x+y+xy-3≥xy+2xy-3=(xy+3)(xy-1),当且仅当x=y=1时等号成立,即(xy+3)(xy-1)≤0,又x>0,y>0,故0<xy≤1,仅当x=y=1时等号成立,所以0<xy≤1,故xy的最大值是1,A错误;由x+y+xy-3≤(x+y)24+(x+y)-3,当且仅当x=y=1时等号成立,所以(x+y)24+(x+y)-3≥0,即(x+y+6)(x+y-2)≥0,又x>0,y>0,则x+y≥2,仅当x=y=1时等号成立,故x+y的最小值是2,B正确;由x+y+xy-3=0,x>0,y>0,可得x=3-yy+1,且0<y<3,所以x +4y =3-y y +1+4y =4y 2+3y +3y +1=4(y +1)2-5(y +1)+4y +1=4(y +1)+4y +1-5≥24(y +1)⋅4y +1-5=3,当且仅当y +1=1,即y =0、x =3时等号成立,故x +4y >3,C 错误;同上,x +2y =3-y y +1+2y =2y 2+y +3y +1=2(y +1)2-3(y +1)+4y +1=2(y +1)+4y +1-3≥22(y +1)⋅4y +1-3=42-3,当且仅当y +1=2,即y =2-1、x =22-1时等号成立,故x +2y ≥42-3,D 错误;故选:B .2(2023上·江苏·高一专题练习)下列说法正确的是()A.若x >2,则函数y =x +1x -1的最小值为3B.若x >0,y >0,3x +1y =5,则5x +4y 的最小值为5C.若x >0,y >0,x +y +xy =3,则xy 的最小值为1D.若x >1,y >0,x +y =2,则1x -1+2y的最小值为3+22【解题思路】选项A :将函数变形再利用基本不等式进行判断最值即可,选项B :由基本不等式进行判断即可,选项C :结合换元法与基本不等式求最值进行判断即可,选项D :对式子进行变形得到1+yx -1+2x -1 y+2,再利用基本不等式进行判断即可.【解答过程】解:选项A :y =x +1x -1=x -1+1x -1+1≥2x -1·1x -1+1=3,当且仅当x -12=1时可以取等号,但题设条件中x >2,故函数最小值取不到3,故A 错误;选项B :若x >0,y >0,3x +1y =5,则5x +4y =153x +1y 5x +4y =1519+5x y +12y x ≥1519+25x y ·12y x=19+4155,当且仅当5xy =12y x时不等式可取等号,故B 错误;选项C :3-xy =x +y ≥2xy ⇒xy +2xy -3≤0当且仅当x =y 时取等号,令xy =t t ≥0 ,t 2+2t -3≤0,解得-3≤t ≤1,即0<xy ≤1,故xy 的最大值为1,故C 错误;选项D :x +y =2,(x -1)+y =1,1x -1+2y =1x -1+2y·x -1 +y =1+y x -1+2x -1 y+2≥3+2y x -1·2x -1y=3+22,当且仅当y =2x -2时取等号,又因为x +y =2,故x =2y =2-2 时等号成立,即1x -1+2y最小值可取到3+22,故D 正确.故选:D .3(2023上·广东中山·高三校考阶段练习)设正实数x ,y 满足x +2y =3,则下列说法错误的是()A.y x +3y 的最小值为4 B.xy 的最大值为98C.x +2y 的最大值为2D.x 2+4y 2的最小值为92【解题思路】根据基本不等式以及“1”的妙用判断各选项.【解答过程】对于A ,y x +3y =y x +x +2y y =y x +x y +2≥2yxxy+2=4,当且仅当x =y =1时取等号,故A 正确;对于B ,xy =12⋅x ⋅2y ≤12×x +2y 2 2=12×94=98,当且仅当x =2y ,即x =32,y =34时取等号,故B 正确;对于C ,(x +2y )2=x +2y +22xy ≤3+22×98=3+3=6,则x +2y ≤6,当且仅当x =2y ,即x =32,y =34时,故C 错误;对于D ,x 2+4y 2=(x +2y )2-4xy ≥9-4×98=92,当且仅当x =32,y =34时取等号,故D 正确.故选:C .【题型6 多次使用基本不等式求最值】1(2023·河南·校联考模拟预测)已知正实数a ,b ,满足a +b ≥92a +2b,则a +b 的最小值为()A.5B.52C.52D.522【解题思路】先根据基本不等式求出92a +2ba +b ≥252.然后即可根据不等式的性质得出a +b2≥92a +2ba +b ≥252,列出两个等号同时成立的条件,即可得出答案.【解答过程】由已知可得,a >0,b >0,a +b >0.因为92a+2ba+b=92+2+9b2a+2ab≥29b2a×2ab+132=6+132=252,当且仅当9b2a=2ab,即2a=3b时等号成立.所以,a+b2≥92a+2ba+b≥252,当且仅当2a=3ba+b=92a+2b,即a=322b=2时,两个等号同时成立.所以,a+b≥322+2=522.故选:D.【变式训练】1(2023·山东菏泽·统考一模)设实数x,y满足x+y=1,y>0,x≠0,则1x+2xy的最小值为()A.22-1B.22+1C.2-1D.2+1【解题思路】分为x>0与x<0,去掉绝对值后,根据“1”的代换,化简后分别根据基本不等式,即可求解得出答案.【解答过程】当x>0时,1x+2xy=x+yx+2xy=yx+2xy+1≥2yx⋅2xy+1=22+1,当且仅当yx=2xy,即x=2-1,y=2-2时等号成立,此时有最小值22+1;当x<0时,1x+2xy=x+y-x+-2xy=y-x+-2xy-1≥2y-x⋅-2xy-1=22-1.当且仅当y-x=-2xy,即x=-1-2,y=2+2时等号成立,此时有最小值22-1.所以,1x+2xy的最小值为22-1.故选:A.2(2023·河北衡水·衡水市第二中学校考模拟预测)已知实数x,y,z>0,满足xy+zx=2,则当4y+1z取得最小值时,y+z的值为()A.1B.32C.2 D.52【解题思路】两次应用基本不等式,根据两次不等式等号成立的条件列方程求解即可.【解答过程】因为实数x,y,z>0,满足xy+zx=2,所以xy +zx=2≥2xy ×z x =2yz ⇒yz ≤1,当且仅当z =yx 2时,yz =1,所以4y +1z≥24y ×1z=24yz≥241=4,当且仅当4y =1z且yz =1时,等号成立;所以当yz =1且4y =1z 时,4y +1z取得最小值4,此时解得y =2z =12 ⇒y +z =52,故选:D .3(2023上·辽宁大连·高一期末)若a >0,b >0,a +b =1,则a 2+3ab a +2b +2b +1-1b 的最大值为()A.2B.2-2C.3-2D.3-22【解题思路】由已知可得a 2+3ab a +2b +1b +1=3-2b -1b +1,进而有a 2+3ab a +2b +2b +1-1b =3-2b -1b,结合基本不等式求最大值,注意取值条件.【解答过程】由题设,a 2+3ab a +2b +1b +1=a (a +3b )+1b +1=a (2b +1)+1b +1,而a =1-b >0,b >0,所以a (2b +1)+1b +1=2+b -2b 2b +1=1+1-2b 2b +1=1+2(1-b 2)-1b +1=3-2b -1b +1,所以a 2+3ab a +2b +2b +1-1b =3-2b -1b 且0<b <1,又2b +1b≥22b ⋅1b =22,当且仅当b =22时取等号,所以a 2+3ab a +2b +2b +1-1b ≤3-22,当且仅当a =1-22,b =22时取等号,即目标式最大值为3-2 2.故选:D .【题型7 实际应用中的最值问题】1(2023上·四川眉山·高一校联考期中)如图,高新区某居民小区要建一座八边形的休闲场所,它的主体造型平面图是由两个相同的矩形ABCD 和EFGH 构成的面积为400m 2的十字形地域.计划在正方形MNPQ 上建一座花坛,造价为8400元/m 2;在四个相同的矩形(图中阴影部分)上铺花岗岩地坪,造价为420元/m 2;再在四个空角(图中四个三角形)上铺草坪,造价为160元/m 2.设总造价为y (单位:元),AD 长为x (单位:m ).(1)用x表示AM的长度,并求x的取值范围;(2)当x为何值时,y最小?并求出这个最小值.【解题思路】(1)由题意可得矩形AMQD的面积,即可得出AM=400-x2 4x;(2)先表示出总造价y,再由基本不等式求解即可.【解答过程】(1)由题意可得,矩形AMQD的面积为S AMQD=400-x24,因此AM=400-x24x,∵AM>0,∴0<x<20.(2)y=8400x2+420×400-x2+160×4×12×400-x24x2=8000x2+3200000x2+152000,0<x<20,由基本不等式y≥28000x2×3200000x2+152000=472000,当且仅当8000x2=3200000x2,即x=25时,等号成立,故当x=25时,总造价y最小,最小值为472000元.【变式训练】1(2023上·山东·高一校联考期中)某校地势较低,一遇到雨水天气校园内会有大量积水,不但不方便师生出行,还存在严重安全问题.为此学校决定利用原水池改建一个深3米,底面面积16平方米的长方体蓄水池.不但能解决积水问题,同时还可以利用蓄水灌溉学校植被.改建及蓄水池盖儿固定费用800元,由招标公司承担.现对水池内部地面及四周墙面铺设公开招标.甲工程队给出的报价如下:四周墙面每平方米150元,地面每平方米400元.设泳池宽为x米.2≤x≤6(1)当宽为多少时,甲工程队报价最低,并求出最低报价.(2)现有乙工程队也要参与竞标,其给出的整体报价为900a x+2x元(a>0)(整体报价中含固定费用).若无论宽为多少米,乙工程队都能竞标成功,试求a的取值范围.【解题思路】(1)根据题意,列出函数关系式,结合基本不等式代入计算,即可得到结果;(2)根据题意,列出不等式,分离参数,再结合基本不等式代入计算,即可得到结果.【解答过程】(1)设甲工程队的总造价为y 元,则y =150×2x +16x×3+400×16+800=900x +16x+7200≥900×2x ⋅16x +7200=14400当且仅当x =16x时,即x =4时等号成立.即当宽为4m 时,甲工程队的报价最低,最低为14400元.(2)由题意可得900x +16x +7200>900a x +2 x.对∀x ∈2,6 恒成立.即a <x 2+8x +16x +12令y =x 2+8x +16x +2=x +2 +4x +2+4∵2≤x ≤6,∴4≤x +2≤8.令t =x +2,t ∈4,8 ,则y =t +4t+4在4,8 上单调递增.且t =4时,y min =9.∴0<a <9.即a 的取值范围为0,9 .2(2023上·江苏苏州·高一校考阶段练习)因新冠疫情零星散发,某实验中学为了保障师生安全,同时考虑到节省费用,拟借助校门口一侧原有墙体建造一间高为4米、底面积为24平方米、背面靠墙体的长方体形状的隔离室.隔离室的正面需开一扇安全门,此门高为2米,且此门高为此门底的13.因此室的后背面靠墙,故无需建墙费用,但需粉饰.现学校面向社会公开招标,甲工程队给出的报价:正面为每平方米360元,左右两侧面为每平方米300元,已有墙体粉饰为每平方米100元,屋顶和地面以及安全门报价共计12000元.设隔离室的左右两侧面的底边长度均为x 米(1≤x ≤5).(1)记y 为甲工程队整体报价,求y 关于x 的关系式;(2)现有乙工程队也要参与此隔离室建造的竞标,其给出的整体报价为4800t (x +1)x元,问是否存在实数t ,使得无论左右两侧底边长为多少,乙工程队都能竞标成功(注:整体报价小者竞标成功),若存在,求出t 满足的条件;若不存在,请说明理由.【解题思路】(1)根据题意分别计算正面和侧面以及其它各面的费用,相加,可得答案;(2)由题意可得不等关系240184x +10x-3120>4800t (x +1)x,对任意x ∈[1,5]都成立,进而转化t <10x 2-13x +18420(x +1)恒成立,采用换元法,结合基本不等式求得答案.【解答过程】(1)由题意,隔离室的左右两侧的长度均为x米(1≤x≤5),则底面长为24x米,正面费用为3604×24x-2×6,故y=3604×24x-2×6+4×24x×100+2×300×4x+1200=240184x +10x-3120,1≤x≤5.(2)由题意知, 240184x +10x-3120>4800t(x+1)x,对任意x∈[1,5]都成立,即t<10x2-13x+18420(x+1)对任意x∈[1,5]恒成立,令k=x+1,则x=k-1,k∈[2,6],则t<10(k-1)2-13(k-1)+18420k=10k2-33k+20720k=k2+20720k-3320,而k2+20720k≥2k2⋅20720k=20710,当且仅当k=20710∈[2,6]取等号,故0<t<20710-3320,即存在实数0<t<20710-3320,无论左右两侧长为多少,乙工程队都能竞标成功.3(2023上·重庆·高一校考阶段练习)为宜传2023年杭州亚运会,某公益广告公司拟在一张面积为36000cm2的矩形海报纸(记为矩形ABCD,如图)上设计四个等高的宣传栏(栏面分别为两个等腰三角形和两个全等的直角三角形),为了美观,要求海报上所有水平方向和竖直方向的留空宽度均为10cm,设DC=xcm.(1)将四个宣传栏的总面积y表示为x的表达式,并写出x的范围;(2)为充分利用海报纸空间,应如何选择海报纸的尺寸(AD和CD分别为多少时),可使用宣传栏总面积最大?并求出此时宣传栏的最大面积.【解题思路】(1)根据题意列出总面积y表示为x的表达式即可.(2)根据(1)利用基本不等式求可使用宣传栏总面积最大时AD和CD的值.【解答过程】(1)根据题意DC=xcm,矩形海报纸面积为36000cm2,所以AD=36000xcm,又因为海报上所有水平方向和竖直方向的留空宽度均为10cm,所以四个宣传栏的总面积y =CD -5×10 AD -2×10 =x -50 36000x-20 ,其中x -50>036000x -20>0 所以x ∈50,1800 .即y =x -50 36000x-20,x ∈50,1800 .(2)由(1)知y =x -50 36000x-20 ,x ∈50,1800 ,则y =x -50 36000x -20 =37000-20x +1800000x,x ∈50,1800 20x +1800000x≥220x ×1800000x =12000,当且仅当x =300时取等号,则y =37000-20x +1800000x≤25000,当且仅当x =300时取等号,即CD =300cm ,AD =36000300=120cm 时,可使用宣传栏总面积最大为25000cm 2.【题型8 与其他知识交汇的最值问题】1(2023上·安徽·高三校联考阶段练习)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足c +b cos2A =2a cos A cos B A ≤B .(1)求A ;(2)若角A 的平分线交BC 于D 点,且AD =1,求△ABC 面积的最小值.【解题思路】(1)由已知结合正弦定理边化角即可求解;(2)表示出所求面积后运用基本不等式即可求解.【解答过程】(1)由已知和正弦定理可得:sin C +sin B cos2A =2sin A cos A cos B ,所以sin C =sin2A cos B -sin B cos2A =sin (2A -B )>0.又因为C ∈(0,π),2A -B ∈(0,π),所以C =2A -B 或者C +2A -B =π.当C =2A -B 时,A +B +2A -B =π,A =π3;当C +2A -B =π时,A =2B 与题设A ≤B 不符.综上所述,A =π3.(2)△ABC 面积S =12bc sin π3=34bc ,由AD 是角平分线,∠BAD =∠CAD =π6,因为S △ABC =S △ABD +S △ADC ,得12bc sin π3=12b sin π6+12c sin π6,即b +c =3bc ,由基本不等式3bc ≥2bc ,bc ≥43,当且仅当b=c=233时等号成立.所以面积S=34bc≥34×43=33.故△ABC面积的最小值3 3.【变式训练】1(2023上·安徽铜陵·高二校联考期中)已知圆C的圆心在坐标原点,面积为9π.(1)求圆C的方程;(2)若直线l,l 都经过点(0,2),且l⊥l ,直线l交圆C于M,N两点,直线l 交圆C于P,Q两点,求四边形PMQN面积的最大值.【解题思路】(1)根据面积解出半径,再应用圆的标准方程即可;(2)根据几何法求出弦长,再应用面积公式计算,最后应用基本不等式求最值即可.【解答过程】(1)由题可知圆C的圆心为C(0,0),半径r=3.所以圆C的方程为x2+y2=9.(2)当直线l的斜率存在且不为0时,设直线l的方程为y=kx+2,圆心到直线l的距离为d,则d=2k2+1,|MN|=232-d2=29-4k2+1,同理可得|PQ|=29-41k2+1=29-4k2k2+1,则S PMQN=12|MN|⋅|PQ|=12×29-4k2+1×29-4k2k2+1=29-4k2+19-4k2k2+1≤9-4 k2+1+9-4k2k2+1=14,当且仅当9-4k2+1=9-4k2k2+1,即k2=1时等号成立.当直线l的斜率不存在时,|MN|=6,|PQ|=232-22=25,此时S PMQN=12|MN|⋅|PQ|=12×6×25=65.当直线l的斜率为0时,根据对称性可得S PMQN=65.综上所述,四边形PMQN面积的最大值为14.2(2023上·江苏盐城·高一校考阶段练习)已知在定义域内单调的函数f x 满足f f x +12x+1-ln x=23恒成立.(1)设f x +12x+1-ln x=k,求实数k的值;(2)解不等式f7+2x>-2x2x+1+ln-ex;(3)设g x =f x -ln x,若g x ≥mg2x对于任意的x∈1,2恒成立,求实数m的取值范围.【解题思路】(1)由题意列方程求解;(2)由函数的单调性转化后求解;(3)参变分离后转化为最值问题,由换元法结合基本不等式求解.【解答过程】(1)由题意得f x =ln x-12x+1+k,f k =ln k-12k+1+k,由于y=ln k-12k+1+k在k∈0,+∞上单调递增,观察ln k-12k+1+k=23,可得k=1;(2)由于f x 在定义域内单调,所以f x +12x+1-ln x为常数,由(1)得f x =ln x-12x+1+1,f x 在x∈0,+∞上单调递增,f-x=ln-x-12-x+1+1=ln-ex-2x2x+1,故原不等式可化为f7+2x>-2x2x+1+ln-ex=f-x,由2x+7>0-x>07+2x>-x,解得-73<x<0,故原不等式的解集为-7 3 ,0;(3)g x =f x -ln x=-12x+1+1=2x2x+1>0,g x ≥mg2x可化为m≤2x2x+1⋅4x+14x=4x+14x+2x=1+-2x+14x+2x对于任意的x∈1,2恒成立,设t=-2x+1∈-3,-1,则-2x+14x+2x=t1-t2+1-t=1t+2t-3,t∈-3,-1,由基本不等式得t+2t=--t+2-t≤-22,当且仅当-t=2-t即t=-2时等号成立,故当t=-2时1t+2t-3min=22-3,故m≤22-2,当且仅当x=log22+1等号成立.实数m的取值范围为-∞,22-2.3(2023下·湖南长沙·高三长沙一中校考阶段练习)如图,在长方体ABCD-A1B1C1D1中,点P是长方形A1B1C1D1内一点,∠APC是二面角A-PD1-C的平面角.(1)证明:点P 在A 1C 1上;(2)若AB =BC ,求直线PA 与平面PCD 所成角的正弦的最大值.【解题思路】(1)由二面角定义知AP ⊥PD 1,CP ⊥PD 1,利用线面垂直的判定及性质可证PD 1⊥面APC 、PD 1⊥面ACC 1A 1,结合面APC 与面ACC 1A 1有交线,确定它们同平面,进而证结论;(2)构建空间直角坐标系,令P 12,12,k且k >0,C (1,1,0),D (0,1,0),求直线方向向量、平面法向量,应用空间向量夹角坐标表示、基本不等式求线面角正弦值的最大值,注意取值条件.【解答过程】(1)由∠APC 是二面角A -PD 1-C 的平面角,则AP ⊥PD 1,CP ⊥PD 1,又AP ∩CP =P ,AP ,CP ⊂面APC ,则PD 1⊥面APC ,又AC ⊂面APC ,即PD 1⊥AC ,由长方体性质知A 1C 1⎳AC ,故PD 1⊥A 1C 1,由长方体性质:AA 1⊥面A 1B 1C 1D 1,又PD 1⊂面A 1B 1C 1D 1,则PD 1⊥AA 1,又A 1C 1∩AA 1=A 1,A 1C 1,AA 1⊂面ACC 1A 1,故PD 1⊥面ACC 1A 1,而面APC ∩面ACC 1A 1=AC ,且PD 1⊥面APC 、PD 1⊥面ACC 1A 1,根据过AC 作与PD 1垂直的平面有且仅有一个,所以面APC 与面ACC 1A 1为同一平面,又P ∈面A 1B 1C 1D 1,面ACC 1A 1∩面A 1B 1C 1D 1=A 1C 1,所以点P 在A 1C 1上;(2)构建如下图示的空间直角坐标系A -xyz ,令AB =BC =1,AA 1=k ,由题设,长方体上下底面都为正方形,由(1)知PD 1⊥A 1C 1,则P 为A 1C 1中点,所以P 12,12,k且k >0,C (1,1,0),D (0,1,0),则AP =12,12,k ,PC =12,12,-k ,PD =-12,12,-k ,若m =(x ,y ,z )是面PCD 的一个法向量,则m ⋅PC =12x +12y -kz =0m ⋅PD =-12x +12y -kz =0,令y =2,则m =0,2,1k,所以|cos ‹AP ,m ›|=|AP ⋅m||AP ||m |=212+k 2⋅4+1k 2=23+4k 2+12k 2≤23+22=2(2-1),仅当k =422时等号成立,故直线PA 与平面PCD 所成角的正弦的最大值为2(2-1).直击真题1(2022·全国·统考高考真题)若x ,y 满足x 2+y 2-xy =1,则()A.x +y ≤1B.x +y ≥-2C.x 2+y 2≤2D.x 2+y 2≥1【解题思路】根据基本不等式或者取特值即可判断各选项的真假.【解答过程】因为ab ≤a +b 2 2≤a 2+b 22(a ,b ∈R ),由x 2+y 2-xy =1可变形为,x +y 2-1=3xy ≤3x +y 2 2,解得-2≤x +y ≤2,当且仅当x =y =-1时,x +y =-2,当且仅当x =y =1时,x +y =2,所以A 错误,B 正确;由x 2+y 2-xy =1可变形为x 2+y 2-1=xy ≤x 2+y 22,解得x 2+y 2≤2,当且仅当x =y =±1时取等号,所以C 正确;因为x 2+y 2-xy =1变形可得x -y 2 2+34y 2=1,设x -y 2=cos θ,32y =sin θ,所以x =cos θ+1 3sinθ,y=23sinθ,因此x2+y2=cos2θ+53sin2θ+23sinθcosθ=1+13sin2θ-13cos2θ+13=43+23sin2θ-π6∈23,2,所以当x=33,y=-33时满足等式,但是x2+y2≥1不成立,所以D错误.故选:BC.2(2020·山东·统考高考真题)已知a>0,b>0,且a+b=1,则()A.a2+b2≥12B.2a-b>12C.log2a+log2b≥-2D.a+b≤2【解题思路】根据a+b=1,结合基本不等式及二次函数知识进行求解.【解答过程】对于A,a2+b2=a2+1-a2=2a2-2a+1=2a-1 22+12≥12,当且仅当a=b=12时,等号成立,故A正确;对于B,a-b=2a-1>-1,所以2a-b>2-1=12,故B正确;对于C,log2a+log2b=log2ab≤log2a+b22=log214=-2,当且仅当a=b=12时,等号成立,故C不正确;对于D,因为a+b2=1+2ab≤1+a+b=2,所以a+b≤2,当且仅当a=b=12时,等号成立,故D正确;故选:ABD.3(2020·全国·统考高考真题)设O为坐标原点,直线x=a与双曲线C:x2a2-y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点,若△ODE的面积为8,则C的焦距的最小值为() A.4 B.8 C.16 D.32【解题思路】因为C:x2a2-y2b2=1(a>0,b>0),可得双曲线的渐近线方程是y=±bax,与直线x=a联立方程求得D,E两点坐标,即可求得|ED|,根据△ODE的面积为8,可得ab值,根据2c=2a2+b2,结合均值不等式,即可求得答案.【解答过程】∵C:x2a2-y2b2=1(a>0,b>0)∴双曲线的渐近线方程是y=±bax∵直线x=a与双曲线C:x2a2-y2b2=1(a>0,b>0)的两条渐近线分别交于D,E两点不妨设D为在第一象限,E在第四象限联立{x=ay=bax,解得{x=ay=b故D(a,b)联立{x=ay=-bax,解得{x=ay=-b故E(a,-b)∴|ED|=2b∴△ODE面积为:S△ODE=12a×2b=ab=8∵双曲线C:x2a2-y2b2=1(a>0,b>0)∴其焦距为2c=2a2+b2≥22ab=216=8当且仅当a=b=22取等号∴C的焦距的最小值:8故选:B.4(2021·天津·统考高考真题)若a>0,b>0,则1a+ab2+b的最小值为22.【解题思路】两次利用基本不等式即可求出.【解答过程】∵a>0,b>0,∴1 a +ab2+b≥21a⋅ab2+b=2b+b≥22b⋅b=22,当且仅当1a=ab2且2b=b,即a=b=2时等号成立,所以1a+ab2+b的最小值为2 2.故答案为:2 2.5(2020·天津·统考高考真题)已知a>0, b>0,且ab=1,则12a+12b+8a+b的最小值为4【解题思路】根据已知条件,将所求的式子化为a+b2+8a+b,利用基本不等式即可求解.【解答过程】∵a>0,b>0,∴a+b>0,ab=1,∴12a+12b+8a+b=ab2a+ab2b+8a+b=a+b2+8a+b≥2a+b2×8a+b=4,当且仅当a+b=4时取等号,结合ab=1,解得a=2-3,b=2+3,或a=2+3,b=2-3时,等号成立.故答案为:4.6(2020·江苏·统考高考真题)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是45.【解题思路】根据题设条件可得x 2=1-y 45y 2,可得x 2+y 2=1-y 45y 2+y 2=15y 2+4y 25,利用基本不等式即可求解.【解答过程】∵5x 2y 2+y 4=1∴y ≠0且x 2=1-y 45y 2∴x 2+y 2=1-y 45y 2+y 2=15y2+4y 25≥215y 2⋅4y 25=45,当且仅当15y2=4y 25,即x 2=310,y 2=12时取等号.∴x 2+y 2的最小值为45.故答案为:45.7(2019·天津·高考真题)设x >0, y >0, x +2y =5,则(x +1)(2y +1)xy的最小值为43【解题思路】把分子展开化为2xy +6,再利用基本不等式求最值.【解答过程】∵(x +1)(2y +1)xy =2xy +x +2y +1xy,∵x >0, y >0, x +2y =5,xy >0,∴2xy +6xy ≥2⋅23xyxy =43,当且仅当xy =3,即x =3,y =1时成立,故所求的最小值为43.8(2017·江苏·高考真题)某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是30.【解题思路】得到总费用为4x +600x ×6=4x +900x,再利用基本不等式求最值.【解答过程】总费用为4x +600x ×6=4x +900x≥4×2900=240,当且仅当x =900x,即x =30时等号成立.故答案为30.。

高考数学压轴专题(易错题)备战高考《不等式》技巧及练习题附答案

高考数学压轴专题(易错题)备战高考《不等式》技巧及练习题附答案

新高中数学《不等式》专题解析一、选择题1.已知函数()2f x ax bx =+,满足()()241f f -≥≥,()12f -≤,则()2f 的最大值为( ) A .12 B .13C .14D .15【答案】C 【解析】 【分析】根据已知条件可得,a b 满足的不等式2242a b a b a b -≥⎧⎪+≤⎨⎪-≤⎩,作出不等式组所表示的平面区域,又()242f a b =+,利用线性规划即可求出()2f 的最大值.【详解】由已知得2242a b a b a b -≥⎧⎪+≤⎨⎪-≤⎩,可得(),P a b 的表示的平面区域如图:可求出()3,1A ,()2,2B ,()0,2C -, 目标函数()242z f a b ==+,可化为122b a z =-+,当直线过点A 时,max 14z =. 故选:C. 【点睛】本题主要考查求线性约束条件下的最值计算,关键是根据,a b 满足的不等式作出可行域,并将目标函数()242z f a b ==+变形为122b a z =-+进行平移,找到截距的最大值.2.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,若32z x y =-+的最大值为n ,则2n x x ⎛- ⎪⎝⎭的展开式中2x 项的系数为( ) A .60 B .80C .90D .120【答案】B 【解析】 【分析】画出可行域和目标函数,根据平移得到5n =,再利用二项式定理计算得到答案. 【详解】如图所示:画出可行域和目标函数,32z x y =-+,即322zy x =+,故z 表示直线与y 截距的2倍, 根据图像知:当1,1x y =-=时,32z x y =-+的最大值为5,故5n =.52x x ⎛- ⎪⎝⎭展开式的通项为:()()35552155221rr r r r r r r T C x C xx ---+⎛=⋅-=⋅⋅-⋅ ⎪⎝⎭, 取2r =得到2x 项的系数为:()225252180C -⋅⋅-=.故选:B .【点睛】本题考查了线性规划求最值,二项式定理,意在考查学生的计算能力和综合应用能力.3.关于x 的不等式0ax b ->的解集是(1,)+∞,则关于x 的不等式()(3)0ax b x +->的解集是( ) A .(,1)(3,)-∞-+∞U B .(1,3)- C .(1,3) D .(,1)(3,)-∞+∞U【答案】A 【解析】 【分析】由0ax b ->的解集,可知0a >及1ba=,进而可求出方程()()30ax b x +-=的解,从而可求出()()30ax b x +->的解集. 【详解】由0ax b ->的解集为()1,+?,可知0a >且1ba=, 令()()30ax b x +-=,解得11x =-,23x =,因为0a >,所以()()30ax b x +->的解集为()(),13,-∞-+∞U , 故选:A. 【点睛】本题考查一元一次不等式、一元二次不等式的解集,考查学生的计算求解能力与推理能力,属于基础题.4.给出下列五个命题,其中正确命题的个数为( )①命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++<”;②若正整数m 和n 满足m n ≤2n ; ③在ABC ∆中 ,A B >是sin sin A B >的充要条件;④一条光线经过点()1,3P ,射在直线:10l x y ++=上,反射后穿过点()1,1Q ,则入射光线所在直线的方程为5340x y -+=;⑤已知32()f x x mx nx k =+++的三个零点分别为一椭圆、一双曲线、一抛物线的离心率,则m n k ++为定值. A .2 B .3 C .4 D .5【答案】C 【解析】 【分析】①根据特称命题的否定的知识来判断;②根据基本不等式的知识来判断;③根据充要条件的知识来判断;④求得入射光线来判断;⑤利用抛物线的离心率判断. 【详解】①,命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++≥”,故①错误.②,由于正整数m 和n 满足m n ≤,0n m -≥,由基本不等式得()22m n m nm n m +--≤=,当m n m =-即2n m =时等号成立,故②正确. ③,在ABC ∆中,由正弦定理得sin sin A B a b A B >⇔>⇔>,即sin sin A B A B >⇔>,所以A B >是sin sin A B >的充要条件,故③正确.④,设()1,1Q 关于直线10x y ++=的对称点为(),A a b ,则线段AQ 中点为11,22a b ++⎛⎫ ⎪⎝⎭,则1110221121112AQ a b b k a ++⎧++=⎪⎪⎪+⎨-⎪==+⎪-⎪⎩,解得2a b ==-,所以()2,2A --.所以入射光线为直线AP ,即312321y x --=----,化简得5340x y -+=.故④正确. ⑤,由于抛物线的离心率是1,所以(1)0f =,即10m n k +++=,所以1m n k ++=-为定值,所以⑤正确. 故选:C 【点睛】本小题主要考查特称命题的否定,考查基本不等式,考查充要条件,考查直线方程,考查椭圆、双曲线、抛物线的离心率,属于中档题.5.设实数满足条件则的最大值为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】画出可行域和目标函数,根据目标函数的几何意义平移得到答案. 【详解】如图所示:画出可行域和目标函数,,即,表示直线在轴的截距加上1,根据图像知,当时,且时,有最大值为.故选:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.6.已知点()4,3A ,点B 为不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示平面区域上的任意一点,则AB 的最小值为( )A .5B 45C 5D 25【答案】C 【解析】 【分析】作出不等式组所表示的平面区域,标出点A 的位置,利用图形可观察出使得AB 最小时点B 的位置,利用两点间的距离公式可求得AB 的最小值.【详解】作出不等式组00260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域如下图所示:联立0260x y x y -=⎧⎨+-=⎩,解得22x y =⎧⎨=⎩,由图知AB 的最小值即为()4,3A 、()2,2B 两点间的距离, 所以AB ()()2242325-+-=故选:C . 【点睛】本题考查目标函数为两点之间的距离的线性规划问题,考查数形结合思想的应用,属中等题.7.已知变量,x y 满足2402400x y x y x +-≥⎧⎪+-≤⎨⎪≥⎩,则24x y --的最小值为( )A 85B .8C 165D .163【答案】D 【解析】 【分析】222424512x y x y ----=+222412x y --+表示点(,)x y 到直线240x y --=的距离,作出可行域,数形结合即可得到答案. 【详解】因为222424512x y x y ----=+,所以24x y --可看作为可行域内的动点到直线240x y --=5点44(,)33A 到直线240x y --=的距离d 最小,此时224424333512d -⨯-==+, 所以24x y --1653d =. 故选:D. 【点睛】本题考查目标函数的含绝对值的线性规划问题,考查学生数形结合与转化与化归的思想,是一道中档题.8.若实数x ,y 满足40,30,0,x y x y y --≤⎧⎪-≥⎨⎪≥⎩,则2x y y +=的最大值为( )A .512B .8C .256D .64【答案】C 【解析】 【分析】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可,根据图像平移得到答案. 【详解】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可, 观察图像可知,当直线x y m +=过点()6,2A 时m 取到最大值8, 故2x yy +=的最大值为256.故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.9.已知不等式组y x y x x a ≤⎧⎪≥-⎨⎪≤⎩表示的平面区域的面积为9,若点, 则的最大值为( )A .3B .6C .9D .12【答案】C 【解析】 【分析】 【详解】分析:先画出满足约束条件对应的平面区域,利用平面区域的面积为9求出3a =,然后分析平面区域多边形的各个顶点,即求出边界线的交点坐标,代入目标函数求得最大值. 详解:作出不等式组对应的平面区域如图所示:则(,),(,)A a a B a a -,所以平面区域的面积1292S a a =⋅⋅=, 解得3a =,此时(3,3),(3,3)A B -,由图可得当2z x y =+过点(3,3)A 时,2z x y =+取得最大值9,故选C.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.10.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A B 、两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时. A B 、两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( ) A .320千元 B .360千元C .400千元D .440千元【答案】B 【解析】设生产甲、乙两种产品x 件,y 件时该企业每月利润的最大值,由题意可得约束条件:2348069600,0,x y x y x y x N y N+≤⎧⎪+≤⎪⎨≥≥⎪⎪∈∈⎩, 原问题等价于在上述约束条件下求解目标函数2z x y =+的最大值. 绘制目标函数表示的平面区域如图所示,结合目标函数的几何意义可知: 目标函数在点()150,60B 处取得最大值:max 2215060360z x y =+=⨯+=千元. 本题选择B 选项.点睛:含有实际背景的线性规划问题其解题关键是找到制约求解目标的两个变量,用这两个变量建立可行域和目标函数,在解题时要注意题目中的各种相互制约关系,列出全面的制约条件和正确的目标函数.11.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n+的最小值为( ) A .92B .9C . 6D .3【答案】D 【解析】 【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=,又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=.Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225331212121n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭ ()122152522333n m m n ⎛⎫≥+⨯=+⨯= ⎪ ⎪⎝⎭. 当且仅当2322m n n m mn +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立.12m n ∴+的最小值为3. 故选:D . 【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.12.抛物线的焦点为F ,准线为l ,A ,B 是抛物线上的两个动点,且满足23AFB π∠=,设线段AB 的中点M 在l 上的投影为N ,则MN AB 的最大值是( )A .4B .3C .2D 【答案】B 【解析】 【分析】 【详解】试题分析:设,A B 在直线l 上的投影分别是11,A B ,则1AF AA =,1BF BB =,又M是AB 中点,所以111()2MN AA BB =+,则1112MN AA BB AB AB +=⋅2AF BF AB +=,在ABF ∆中222AB AF BF =+22cos3AF BF π-22AF BF AF BF =++2()AF BF AF BF =+-2()AF BF ≥+2()2AF BF +-23()4AF BF =+,所以22()43AF BF AB+≤,即AF BF AB +≤,所以MN AB ≤,故选B .考点:抛物线的性质. 【名师点晴】在直线与抛物线的位置关系问题中,涉及到抛物线上的点到焦点的距离,焦点弦长,抛物线上的点到准线(或与准线平行的直线)的距离时,常常考虑用抛物线的定义进行问题的转化.象本题弦AB 的中点M 到准线的距离首先等于,A B 两点到准线距离之和的一半,然后转化为,A B 两点到焦点F 的距离,从而与弦长AB 之间可通过余弦定理建立关系.13.已知ABC V 外接圆的半径2R =,且2sin 2AA =.则ABC V 周长的取值范围为( )A .B .(4,C .4+D .(4+【答案】C 【解析】 【分析】由2sin 2A A =及倍角公式可得23A π=,2sin a R A ==得2212b c bc =++,再利用基本不等式及三角形两边之和大于第三边求出b c +的取值范围即可得到答案. 【详解】由题意,22cos 112A A -=-,即cos 1A A =-,可化为33A π⎛⎫-= ⎪⎝⎭,即sin 32A π⎛⎫-= ⎪⎝⎭,因为0A π<<,所以33A ππ-=,即23A π=,2sin a R A ==ABC V 的内角A ,B ,C ,的对边分别为a ,b ,c ,由余弦定理得,2212b c bc =++,因为222b c bc +≥(当且仅当b c =时取“=”),所以22123b c bc bc =++≥,即4bc ≤,又因为22212()b c bc b c bc =++=+-,所以2()124bc b c =+-≤,故4b c +≤,则4a b c ++≤+b c a +>,所以2a b c a ++>=4a b c +++≤.故ABC V 周长的取值范围为4+.故选:C 【点睛】本题考查利用余弦定理求三角形周长的取值范围,涉及到辅助角公式、基本不等式求最值,考查学生的运算求解能力,是一道中档题.14.定义在R 上的函数()f x 对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,且函数(1)=-y f x 的图象关于(1,0)成中心对称,若s 满足不等式()()222323f s s f s s -+--+„,则s 的取值范围是( )A .13,2⎡⎫--⎪⎢⎣⎭B .[3,2]--C .[2,3)-D .[3,2]-【答案】D 【解析】 【分析】由已知可分析出()f x 在R 上为减函数且()y f x =关于原点对称,所以不等式等价于()()222323f s s f s s -+-+-„,结合单调性可得222323s s s s -+≥-+-,从而可求出s 的取值范围. 【详解】解:因为对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,所以()f x 在R 上为减函数;又(1)=-y f x 的图象关于(1,0)成中心对称,所以()y f x =关于原点对称, 则()()()222232323f s s f s s f s s -+--+=-+-„,所以222323s s s s -+≥-+-,整理得260s s +-≤,解得32s -≤≤. 故选:D. 【点睛】本题考查了函数的单调性,考查了函数的对称性,考查了一元二次不等式的求解.本题的关键是由已知得到函数的单调性和对称性,从而将不等式化简.15.已知函数1()cos 2(2)sin 2f x m x m x =+-,其中12m ≤≤,若函数()f x 的最大值记为()g m ,则()g m 的最小值为( ) A .14-B .1 C.D1【答案】D 【解析】 【分析】2()sin (2)sin 2mf x m x m x =-+-+,令sin [1,1]x t =∈-,则2(2)2my mt m t =-+-+,结合12m ≤≤可得()221122(2)31144t m m m g m y m m m=-+-===+-,再利用基本不等式即可得到答案.【详解】 由已知,221()(12sin )(2)sin sin (2)sin 22m f x m x m x m x m x =-+-=-+-+, 令sin [1,1]x t =∈-,则2(2)2my mt m t =-+-+,因为12m ≤≤, 所以对称轴为2111[0,]222m t m m -==-∈,所以 ()221122(2)3111144t m m m g m y m m m =-+-===+-≥=,当且仅当m =. 故选:D 【点睛】本题考查换元法求正弦型函数的最值问题,涉及到二次函数的最值、基本不等式的应用,考查学生的数学运算能力,是一道中档题.16.过抛物线24x y =的焦点F 作倾斜角为锐角的直线l ,与抛物线相交于A ,B 两点,M 为线段AB 的中点,O 为坐标原点,则直线OM 的斜率的取值范围是( )A.2⎫+∞⎪⎪⎣⎭B .[)1,+∞ C.)+∞D .[)2,+∞【答案】C 【解析】 【分析】假设直线l 方程,代入抛物线方程,利用韦达定理和直线方程求得M 点坐标,利用两点连线斜率公式和基本不等式可求得结果. 【详解】由抛物线方程知:()0,1F ,设直线l 的方程为()10y kx k =+>,代入抛物线方程得:2440x kx --=, 设点()11,A x y ,()22,B x y ,()00,M x y ,则124x x k +=,M Q 为线段AB 的中点,12022x x x k +∴==, M Q 在直线l 上,200121y kx k ∴=+=+,20021122OMy k k k x k k +∴===+≥=k =时取等号), 即直线OM斜率的取值范围为)+∞. 故选:C . 【点睛】本题考查直线与抛物线综合应用问题,涉及到利用基本不等式求解最值的问题;关键是能够结合韦达定理,利用一个变量表示出所求的斜率,进而利用基本不等式求得最值.17.已知点()2,1A ,O 是坐标原点,点(), P x y 的坐标满足:202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩,设z OP OA =⋅u u u r u u u r,则z 的最大值是( )A .2B .3C .4D .5【答案】C 【解析】 【分析】画出约束条件的可行域,转化目标函数的解析式,利用目标函数的最大值,判断最优解,代入约束条件求解即可. 【详解】解:由不等式组202300x y x y y -≤⎧⎪-+≥⎨⎪≥⎩可知它的可行域如下图:Q ()2,1A ,(), P x y∴2z OP OA x y =⋅=+u u u r u u u r,可图知当目标函数图象经过点()1,2B 时,z 取最大值,即24z x y =+=.故选:C. 【点睛】本题考查线性规划的应用,考查转化思想以及数形结合思想的应用,属于中档题.18.若均不为1的实数a 、b 满足0a b >>,且1ab >,则( ) A .log 3log 3a b > B .336a b +> C .133ab a b ++> D .b a a b >【答案】B 【解析】 【分析】举反例说明A,C,D 不成立,根据基本不等式证明B 成立. 【详解】当9,3a b ==时log 3log 3a b <; 当2,1a b ==时133ab a b ++=; 当4,2a b ==时b a a b =; 因为0a b >>,1ab >,所以23323323236a b a b a b ab++>=>>,综上选B. 【点睛】本题考查比较大小,考查基本分析论证能力,属基本题.19.若集合()(){}130M x x x =+-<,集合{}1N x x =<,则M N ⋂等于( ) A .()1,3 B .(),1-∞-C .()1,1-D .()3,1-【答案】C【解析】 【分析】解一元二次不等式求得M ,然后求两个集合的交集. 【详解】由()()130x x +-<解得13x -<<,故()1,1M N ⋂=-,故选C. 【点睛】本小题主要考查集合交集的概念以及运算,考查一元二次不等式的解法,属于基础题.20.已知不等式240x ax -+≥对于任意的[1,3]x ∈恒成立,则实数a 的取值范围是( ) A .(,5]-∞ B .[5,)+∞C .(,4]-∞D .[4,)+∞【答案】C 【解析】若不等式240x ax -+≥对于任意的[1,3]x ∈恒成立,则4a x x≤+对于任意的[1,3]x ∈恒成立,∵当[1,3]x ∈时,4[4,5]x x+∈,∴4a ≤,即实数a 的取值范围是(,4]-∞,故选C .【方法点晴】本题主要考查利用导数求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数. 本题是利用方法 ① 求得a 的取值范围的.。

高中数学不等式高考题

高中数学不等式高考题

高中数学不等式高考题一、基础知识梳理在高中数学中,不等式是一个重要的概念,通过不等式的运算可以得出很多有趣的结论。

为了更好地准备高考,我们需要对不等式的相关知识进行梳理和复习。

1.不等式的符号表示在数学中,常见的不等式符号包括大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等。

这些符号在不等式的比较中起着重要的作用。

2.不等式的性质不等式和等式一样,具有传递性、反身性、对称性等基本性质。

掌握这些不等式的性质可以帮助我们更好地理解和运用不等式。

二、高考题分析下面我们通过几道典型的高考题来深入理解不等式的运用和解题技巧。

1.已知不等式2x - 1 < 5,求x的取值范围。

解析:首先将不等式转化为等式,得到2x - 1 = 5,解得x = 3。

将x = 3代入原不等式中,可得2*3 - 1 < 5,即6 - 1 < 5,不等式成立。

因此,不等式2x - 1 < 5的解集为x < 3。

2.已知不等式x^2 - 4x - 5 > 0,求x的取值范围。

解析:首先将不等式化为x^2 - 4x - 5 = 0的解集,利用一元二次不等式的判别式Δ = b^2 - 4ac,其中a = 1,b = -4,c = -5。

计算得Δ = (-4)^2 - 4*1*(-5) = 16 + 20 = 36。

由于Δ > 0,表明原不等式有两个不相等的实数根。

因此,不等式x^2 - 4x - 5 > 0的解集为x < -1或x > 5。

三、高考经典题目1.【2019年北京卷】已知不等式(x - 2)(x - 3) < 0的解集为A = (2, 3),则实数x满足的条件是()。

A. x > 2B. 2 < x < 3C. x < 2或x > 3D. x < 2或2 < x < 3解析:首先根据不等式(x - 2)(x - 3) < 0的解集为A = (2, 3)可得出x的取值范围为2 < x < 3。

不等式的性质及应用(高中数学)

不等式的性质及应用(高中数学)

01 不等式的性质及应用【知识分析】不等式的性质及应用是不等式的一个基础内容,高考中主要以客观题形式呈现,难度不大,分值5分,复习时注意不等式的等价变形,特别是不等式两边同乘以或同除以一个数时,不等式的方向变化. 【经典例题】(1)已知a ,b ,c ,d 均为实数,有下列命题: ①若ab >0,bc -ad >0,则c a -db >0;②若ab >0,c a -db >0,则bc -ad >0;③若bc -ad >0,c a -db >0,则ab >0.其中正确命题的个数是( ) A .0 B .1 C .2 D .3(2)不等式组⎩⎪⎨⎪⎧x +y≥1,x -2y≤4的解集记为D.有下面四个命题:p 1:∀(x ,y)∈D ,x +2y≥-2, p 2:∃(x ,y)∈D ,x +2y≥2, p 3:∀(x ,y)∈D ,x +2y≤3, p 4:∃(x ,y)∈D ,x +2y≤-1. 其中的真命题是( )A .p 2,p 3B .p 1,p 2C .p 1,p 4D .p 1,p 3【解析】 (1)对于①,∵ab >0,bc -ad >0,∴c a -d b =bc -ad ab >0,∴①正确;对于②,∵ab >0,又c a -db >0,即bc -ad ab >0,∴bc -ad >0,∴②正确;对于③,∵bc -ad >0,又c a -db >0,即bc -ad ab>0,∴ab >0,∴③正确.(2)设x +2y =m(x +y)+n(x -2y),则⎩⎪⎨⎪⎧1=m +n ,2=m -2n ,解得⎩⎨⎧m =43,n =-13.∵⎩⎪⎨⎪⎧x +y≥1,x -2y≤4,∴43(x +y)≥43,-13(x -2y)≥-43,∴x +2y =43(x +y)-13(x -2y)≥0.故命题p 1,p 2正确,p 3,p 4错误. 【答案】 (1)D (2)B题(1)实质为ab >0,bc -ad >0,c a -db >0三个结论之间的轮换,知二推一,利用不等式的性质判断.(2)利用不等式组求x +2y 的范围,注意性质应用的条件,以免扩大取值范围.判断关于不等式的命题真假的三种方法(1)直接运用不等式的性质:把要判断的命题和不等式的性质联系起来考虑,找到与命题相近的性质,然后进行推理判断.(2)利用函数的单调性:当直接利用不等式性质不能比较大小时,可以利用指数函数、对数函数、幂函数的单调性等进行判断.(3)特殊值验证法:给要判断的几个式子中涉及的变量取一些特殊值,然后进行比较、判断.利用不等式的性质求取值范围的方法由a <f(x ,y)<b ,c <g(x ,y)<d 求F(x ,y)的取值范围,可利用待定系数法解决,即设F(x ,y)=mf(x ,y)+ng(x ,y),用恒等变形求得m ,n ,再利用不等式的性质求得F(x ,y)的取值范围. 【针对训练】1.若a >b >0,c <d <0,则一定有( ) A.a c >b a B.a c <b d C.a d >b c D.a d <b c1.D 方法一:c<d<0⇒cd>0⇒c cd <d cd <0⇒1d <1c<0⇒⎭⎪⎬⎪⎫-1d >-1c >0a>b>0⇒-a d >-b c ⇒a d <b c .方法二:依题意取a =2,b =1时,c =-2,d =-1,代入验证得A ,B ,C 均错,只有D 正确. 2.设x ,y 为实数,满足3≤xy 2≤8,4≤x 2y ≤9,则x 3y4的最大值是________. 2.【解析】 方法一:由题意知,实数x ,y 均为正数,则条件可化为lg 3≤lg x +2lg y≤lg 8,lg 4≤2lg x -lg y≤lg 9.令lg x =a ,lg y =b ,则有⎩⎪⎨⎪⎧lg 3≤a +2b≤3lg 2,2lg 2≤2a -b≤2lg 3.设t =x 3y 4,则lg t =3lg x -4lg y =3a -4b.令3a -4b =m(a +2b)+n(2a -b),解得m =-1,n =2,故lg t =-(a +2b)+2(2a -b)≤-lg 3+4lg 3=lg 27.所以x 3y 4的最大值为27.方法二:将4≤x 2y ≤9两边平方,得16≤x 4y2≤81.①由3≤xy 2≤8,得18≤1xy 2≤13.②由①②,得2≤x 3y 4≤27,即x 3y 4的最大值是27.【答案】 27, 【测试】1.设a ,b 为实数,命题甲:ab >b 2,命题乙:1b <1a <0,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.已知a <0,-1<b <0,那么下列不等式成立的是( ) A .a >ab >ab 2 B .ab 2>ab >a C .ab >a >ab 2 D .ab >ab 2>a2.D 由-1<b <0,得b <b 2<1.又∵a <0,∴ab >ab 2>a. 3.已知0<a<b<1,则( ) A.1b >1aB.⎝⎛⎭⎫12a <⎝⎛⎭⎫12bC .(lg a)2<(lg b)2 D.1lg a >1lg b3.D 因为0<a<b<1,所以1b -1a =a -b ab<0.可得1b <1a ,⎝⎛⎭⎫12a >⎝⎛⎭⎫12b,(lg a)2>(lg b)2,lg a<lg b<0.由lg a<lg b<0得1lg a >1lg b,因此只有D 项正确.思路点拨:利用不等式的性质和指数函数、对数函数的单调性求解.4.已知△ABC 的三边长分别为a ,b ,c ,且满足b +c≤3a ,则ca 的取值范围为( )A .(1,+∞)B .(0,2)C .(1,3)D .(0,3)4.B 由已知及三角形三边关系得⎩⎪⎨⎪⎧a <b +c≤3a ,a +b >c ,a +c >b ,∴⎩⎪⎨⎪⎧1<b a +ca≤3,1+b a >ca ,1+c a >ba ,∴⎩⎨⎧1<b a +ca≤3,-1<c a -ba <1,两式相加得,0<2×ca<4,∴ca 的取值范围为(0,2),故选B. 5.对于0<a <1,给出下列四个不等式:①log a (1+a)<log a ⎝⎛⎭⎫1+1a ; ②log a (1+a)>log a ⎝⎛⎭⎫1+1a ; ③a 1+a <a1+1a ; ④a 1+a >a1+1a .其中成立的是( )A .①③B .①④C .②③D .②④6.已知实数x ,y 满足⎩⎪⎨⎪⎧1≤x +y≤3,-1≤x -y≤1,则4x +2y 的取值范围是________.6.【解析】 方法一:∵1≤x +y≤3,① -1≤x -y≤1,②由①+②,得0≤2x≤4,③ ③×2得0≤4x≤8,④ 由①-②,得2≤2y≤2,⑤ 由④+⑤得2≤4x +2y≤10.方法二:令4x +2y =m(x +y)+n(x -y),则⎩⎪⎨⎪⎧m +n =4,m -n =2,解得⎩⎪⎨⎪⎧m =3,n =1. 即4x +2y =3(x +y)+(x -y), ∵1≤x +y≤3, ∴3≤3(x +y)≤9, 又∵-1≤x -y≤1, ∴2≤3(x +y)+(x -y)≤10. ∴2≤4x +2y≤10. 【答案】 [2,10] 【点击高考】1.已知x ,y ∈R ,且x>y>0,则( ) A.1x -1y>0 B .sin x -sin y>0 C.⎝⎛⎭⎫12x-⎝⎛⎭⎫12y<0 D .ln x +ln y>02.已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A.1x 2+1>1y 2+1B .ln(x 2+1)>ln(y 2+1)C .sin x >sin yD .x 3>y 32.D 因为0<a <1,a x <a y ,所以x >y.对于选项A ,取x =2,y =1,则1x 2+1<1y 2+1,显然A 错误;对于选项B ,取x =-1,y =-2,则ln(x 2+1)<ln(y 2+1),显然B 错误;对于选项C ,取x =π,y =π2,则sinπ2>sin π,显然C 错误;对于选项D ,若x >y ,则x 3>y 3一定成立,故选D. 3.设[x]表示不大于x 的最大整数,则对任意实数x ,y ,有( ) A .[-x]=-[x] B .[2x]=2[x] C .[x +y]≤[x]+[y] D .[x -y]≤[x]-[y]4.如果a<b<0,那么下列不等式成立的是( ) A.1a <1bB .ab<b 2C .-ab<-a 2D .-1a <-1b4.D 方法一(利用不等式性质求解):A 项,由a<b<0,得b -a>0,ab>0,故1a -1b =b -a ab >0,1a >1b ,故A 项错误;B 项,由a<b<0,得b(a -b)>0,ab>b 2,故B 项错误;C 项,由a<b<0,得a(a -b)>0,a 2>ab ,即-ab>-a 2,故C 项错误;D 项,由a<b<0,得a -b<0,ab>0,故-1a -⎝⎛⎭⎫-1b =a -b ab <0,-1a <-1b 成立.故D 项正确.方法二(特殊值法):令a =-2,b =-1,则1a =-12>-1=1b ,ab =2>1=b 2,-ab =-2>-4=-a 2,-1a =12<1=-1b.故A ,B ,C 项错误,D 项正确.5.若a ,b ∈R ,且ab>0,则下列不等式中,恒成立的是( ) A .a 2+b 2>2ab B .a +b≥2ab C.1a +1b >2ab D.b a +a b≥2 5.D A 项,当a =b =1时,满足ab>0,但a 2+b 2=2ab ,所以A 错误;B ,C 项,当a =b =-1时,满足ab>0,但a +b<0,1a +1b <0,而2ab>0,2ab >0,显然B ,C 错误;D 项,当ab>0时,由基本不等式得b a +a b ≥2b a ·ab=2,所以D 正确. 6.若a ,b 为实数,则“0<ab<1”是“a<1b 或 b>1a ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.A 当0<ab<1时,若b>0,则有a<1b ;若b<0,则a<0,从而有b>1a ,故“0<ab<1”是“a<1b 或b>1a ”的充分条件.反之,取b =1,a =-2,则有a<1b 或b>1a ,但ab<0,故选A.02 一元二次不等式的应用【知识分析】解一元二次不等式及分式不等式一般为容易题,主要以选择题、填空题出现.常与集合的交、并、补结合,难度不大.在平时复习中应熟练掌握图象法解一元二次不等式的方法,注重分式不等式、绝对值不等式转化为一元二次不等式(组)的等价过程,书写时注意解集写成集合或区间的形式. 【典型例题】1(1)不等式x -12x +1≤0的解集为( )A.⎝⎛⎦⎤-12,1 B.⎣⎡⎦⎤-12,1 C.⎝⎛⎭⎫-∞,-12∪[1,+∞) D.⎝⎛⎦⎤-∞,-12∪[1,+∞) (2)不等式-x 2-3x +4>0的解集为________.(用区间表示)(3)已知f(x)是定义在R 上的奇函数.当x >0时,f(x)=x 2-4x ,则不等式f(x)>x 的解集用区间表示为________.【解析】 (1)不等式x -12x +1≤0⇔⎩⎪⎨⎪⎧(x -1)(2x +1)≤0,2x +1≠0,解得-12<x≤1,∴不等式的解集为⎝⎛⎦⎤-12,1. (2)由-x 2-3x +4>0得x 2+3x -4<0, 即(x +4)(x -1)<0,解得-4<x <1. (3)当x >0时,f(x)=x 2-4x , 令x <0,则-x >0, ∴f(-x)=x 2+4x.∵f(x)是定义在R 上的奇函数,∴f(-x)=-f(x), ∴-f(x)=x 2+4x ,即x <0时,f(x)=-x 2-4x.f(x)>x ,即⎩⎪⎨⎪⎧x >0,x 2-4x >x 或⎩⎪⎨⎪⎧x <0,-x 2-4x >x 或⎩⎪⎨⎪⎧x =0,0>x. 解得-5<x <0或x >5,∴不等式f(x)>x 的解集为(-5,0)∪(5,+∞). 【答案】 (1)A (2)(-4,1) (3)(-5,0)∪(5,+∞),解一元二次不等式的步骤(1)对不等式变形,使不等号一端二次项系数大于0,另一端为0,即化为ax 2+bx +c>0(a>0)或ax 2+bx +c<0(a>0)的形式; (2)计算相应的判别式;(3)当Δ≥0时,求出相应的一元二次方程的根; (4)根据对应的二次函数的图象,写出不等式的解集.分式不等式的解法(1)f (x )g (x )>0(<0) ⇔f(x)·g(x)>0(<0); (2)f (x )g (x )≥0(≤0) ⇔⎩⎪⎨⎪⎧f (x )·g (x )≥0(≤0),g (x )≠0. 注意:求解分式不等式,关键是对原不等式进行恒等变形,转化为整式不等式(组)求解.解题时要注意含有等号的分式不等式在变形为整式不等式后,及时去掉分母等于0的情形.含参数的一元二次不等式问题是高考的热点,主要出现在综合题中,常与函数、导数联系在一起,难度较大,复习时要加强此知识点的强化训练. 【典型例题】2(1)关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1,x 2),且x 2-x 1=15,则a =( ) A.52 B.72 C.154 D.152(2)已知函数f(x)=2x 2+bx +c(b ,c ∈R )的值域为[0,+∞),若关于x 的不等式f(x)<m 的解集为(n ,n +10),则实数m 的值为( )A .25B .-25C .50D .-50【解析】 (1)方法一:由条件知,x 1和x 2是方程x 2-2ax -8a 2=0的两根,则x 1+x 2=2a ,x 1x 2=-8a 2,所以(x 2-x 1)2=(x 2+x 1)2-4x 1x 2=4a 2+32a 2=36a 2=152.又a >0,所以a =52.方法二:由x 2-2ax -8a 2<0,得(x +2a)(x -4a)<0.因为a >0,所以不等式的解集为(-2a ,4a).又不等式的解集为(x 1,x 2),所以x 1=-2a ,x 2=4a ,从而x 2-x 1=6a =15,解得a =52.(2)由函数f(x)=2x 2+bx +c(b ,c ∈R )的值域为[0,+∞)知,Δ=b 2-8c =0,所以c =b 28.不等式f(x)<m 即2x 2+bx +b 28<m ,即2x 2+bx +b 28-m <0的解集为(n ,n +10).设方程2x 2+bx +b 28-m =0的两根为x 1,x 2,则x 1+x 2=-b 2,x 1x 2=b 216-m2,所以|x 1-x 2|=(x 1+x 2)2-4x 1x 2=⎝⎛⎭⎫-b 22-4⎝⎛⎭⎫b 216-m 2=2m.由题意知|x 1-x 2|=|n +10-n|=10,所以m =50. 【答案】 (1)A (2)C,(1)方法一利用不等式的解集以及根与系数的关系得到两根关系式,然后与已知条件化简求解a 的值;方法二注意因式分解的恰当应用会给解题带来意想不到的效果.(2)二次函数f(x)=2x 2+bx +c(b ,c ∈R )的值域为[0,+∞)等价于Δ=0;f(x)<m 的解集为(n ,n +10)转化为两交点间的距离|x 1-x 2|=10.解含参数的一元二次不等式的步骤(1)二次项系数若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程的根的个数,讨论判别式Δ与0的关系.(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式. 一元二次不等式恒成立问题也是高考的一个考点,主要考查根据一元二次不等式的恒成立求参数的范围、求最值等,一般以选择题或填空题的形式出现,试题难度不大. 【典型例题】3(1)已知函数f(x)=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f(x)<0成立,则实数m 的取值范围是________.(2)已知函数y =f(x)(x ∈R ).对函数y =g(x)(x ∈I),定义g(x)关于f(x)的“对称函数”为函数y =h(x)(x ∈I),y =h(x)满足:对任意x ∈I ,两个点(x ,h(x)),(x ,g(x))关于点(x ,f(x))对称.若h(x)是g(x)=4-x 2关于f(x)=3x +b 的“对称函数”,且h(x)>g(x)恒成立,则实数b 的取值范围为________.(2)由已知得h (x )+4-x 22=3x +b ,所以h(x)=6x +2b -4-x 2.因为h(x)>g(x)恒成立,所以6x +2b -4-x 2>4-x 2, 即3x +b>4-x 2恒成立.在同一坐标系中画出y =3x +b 及半圆y =4-x 2的图象,如图所示.当直线3x -y +b =0与半圆相切时,d =b10=2,此时,b =210. 结合图象可知,b 的取值范围为(210,+∞). 【答案】 (1)⎝⎛⎭⎫-22,0 (2)(210,+∞) 【名师点拨】(1)结合二次函数的图象及性质只需满足f(m)<0且f(m +1)<0即可;(2)先根据“对称函数”的定义,求出h(x),然后在同一坐标系下,画出整理后的两个函数的图象,利用数形结合的思想求解.一元二次不等式恒成立问题的解题方法(1)图象法:对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方;恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.(2)更换主元法:如果不等式中含有多个变量,这时选准“主元”往往是解题的关键,即需要确定合适的变量或参数,能使函数关系更加清晰明朗.一般思路为:将已知范围的量视为变量,而待求范围的量看作是参数,然后借助函数的单调性或其他方法进行求解.(3)分离参数法:如果欲求范围的参数能够分离到不等式的一边,那么这时可以通过求出不等式另一边式子的最值(或范围)来得到不等式恒成立时参数的取值范围.一般地,a≥f(x)恒成立时,应有a≥f(x)max ,a≤f(x)恒成立时,应有a≤f(x)min .对任意的k ∈[-1,1],函数f(x)=x 2+(k -4)x +4-2k 的值恒大于零,则x 的取值范围是________.【针对训练】1.对于任意实数x ,不等式(a -2)x 2-2(a -2)x -4<0恒成立,则实数a 的取值范围是( ) A .(-∞,2) B .(-∞,2] C .(-2,2) D .(-2,2]1.D 当a -2=0,即a =2时,-4<0,恒成立;当a -2≠0时,则⎩⎪⎨⎪⎧a -2<0,4(a -2)2+16(a -2)<0,解得-2<a <2, ∴-2<a≤2. 故选D.2.在R 上定义运算⊗:x ⊗y =x(1-y),若对任意x >2,不等式(x -a)⊗x≤a +2都成立,则实数a 的取值范围是( )A .[-1,7]B .(-∞,3]C .(-∞,7]D .(-∞,-1]∪[7,+∞)2.C 由题意可知,不等式(x -a)⊗x≤a +2可化为(x -a)(1-x)≤a +2,即x -x 2-a +ax≤a +2,则a≤x 2-x +2x -2对x >2都成立,即a≤⎝ ⎛⎭⎪⎫x 2-x +2x -2min (x ∈(2,+∞)), 由于x 2-x +2x -2=(x -2)+4x -2+3≥2(x -2)·4x -2+3=7(x >2),当且仅当x -2=4x -2,即x =4时,等号成立,∴a≤7,故选C.3.“已知关于x 的不等式ax 2+bx +c >0的解集为(1,2),解关于x 的不等式cx 2+bx +a >0.”给出如下的一种解法: 解:由ax 2+bx +c >0的解集为(1,2),得a ⎝⎛⎭⎫1x 2+b ⎝⎛⎭⎫1x +c >0的解集为⎝⎛⎭⎫12,1,即关于x 的不等式cx 2+bx +a >0的解集为⎝⎛⎭⎫12,1.参考上述解法:若关于x 的不等式b x +a +x +b x +c <0的解集为⎝⎛⎭⎫-1,-13∪⎝⎛⎭⎫12,1,则关于x 的不等式bx -a-x -bx -c >0的解集为( ) A .(-1,1)B.⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫13,1 C.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫13,1 D.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫13,+∞ 3.B 根据题意, 由bx +a +x +b x +c<0的解集为 ⎝⎛⎭⎫-1,-13∪⎝⎛⎭⎫12,1,得b-x +a +-x +b -x +c<0的解集为 ⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫13,1,即b x -a -x -b x -c>0的解集为 ⎝⎛⎭⎫-1,-12∪⎝⎛⎭⎫13,1.故选B.4.已知函数f(x)=⎩⎪⎨⎪⎧x 2+1,x≥0,1,x <0则满足不等式f(1-x 2)>f(2x)的x 的取值范围是________.4.【解析】 当x =-1时,无解.当-1<x <0时,1-x 2>0,f(1-x 2)>f(2x)化为(1-x 2)2+1>1,恒成立.当0≤x≤1时,1-x 2≥0,2x≥0,f(1-x 2)>f(2x)化为(1-x 2)2+1>(2x)2+1,即1-x 2>2x ,(x +1)2<2,∴0≤x <2-1.当1-x 2<0时,无解. 综上可知-1<x <2-1. 【答案】 (-1,2-1)5.设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则α的取值范围为________. 5.【解析】 因为不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立, 所以Δ=64sin 2α-32cos 2α≤0, 即64sin 2α-32+64sin 2α≤0, 解得-12≤sin α≤12.因为0≤α≤π.所以α∈⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π. 【答案】 ⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π 6.已知a 为正的常数,若不等式1+x ≥1+x 2-x 2a 对一切非负实数x 恒成立,则a 的最大值为________.6.【解析】 原不等式可化为x 2a ≥1+x 2-1+x ,令1+x =t ,t≥1,则x =t 2-1.所以(t 2-1)2a ≥1+t 2-12-t=t 2-2t +12=(t -1)22对t≥1恒成立,所以(t +1)2a ≥12对t≥1恒成立.又a 为正的常数,所以a≤[2(t +1)2]min=8,故a 的最大值是8. 【答案】 8 【点击高考】1.设集合A ={x|x 2-4x +3<0},B ={x|2x -3>0},则A∩B =( ) A.⎝⎛⎭⎫-3,-32 B.⎝⎛⎭⎫-3,32 C.⎝⎛⎭⎫1,32 D.⎝⎛⎭⎫32,32.设集合S ={x|(x -2)(x -3)≥0},T ={x|x>0},则S∩T =( ) A .[2,3] B .(-∞,2]∪[3,+∞) C .[3,+∞) D .(0,2]∪[3,+∞)2.D S ={x|x≤2或x≥3},T ={x|x>0},∴S∩T =(0,2]∪[3,+∞). 3.设x ∈R ,则“|x -2|<1”是“x 2+x -2>0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 3.A 由|x -2|<1⇔-1<x -2<1⇔1<x <3. 由x 2+x -2>0⇔x <-2或x >1. 而(1,3)(-∞,-2)∪(1,+∞),所以“|x -2|<1”是“x 2+x -2>0”的充分而不必要条件,故选A.4.已知一元二次不等式f(x)<0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x<-1或x>12,则f(10x )>0的解集为( ) A.{}x |x<-1或x>-lg 2 B.{}x |-1<x<-lg 2 C.{}x |x>-lg 2 D.{}x |x<-lg 24.D ∵f(x)<0的解集为 ⎩⎨⎧⎭⎬⎫x ⎪⎪x<-1或x>12,∴f(x)>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-1<x<12. ∴由f(10x )>0得,-1<10x <12,解得x<-lg 2.5.在如图所示的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影部分),则其边长x(单位:m)的取值范围是( )A .[15,20]B .[12,25]C .[10,30]D .[20,30]6.已知函数f(x)=x(1+a|x|),设关于x 的不等式f(x +a)<f(x)的解集为A.若⎣⎡⎦⎤-12,12⊆A ,则实数a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫1-52,0B.⎝ ⎛⎭⎪⎫1-32,0C.⎝⎛⎭⎪⎫1-52,0∪⎝⎛⎭⎪⎫0,1+32D.⎝⎛⎭⎪⎫-∞,1-52 6.A 由题意可得0∈A ,即f(a)<f(0)=0,所以a(1+a|a|)<0,当a>0时无解,所以a<0,此时1-a 2>0,所以-1<a<0.抛物线的对称轴x =12a ,x =-12a 之间的距离大于1,而[x +a ,x]的区间长度小于1,所以不等式f(x +a)<f(x)的解集是⎝⎛⎭⎫12a -a 2,-12a -a2,所以 ⎣⎡⎦⎤-12,12⊆⎝⎛⎭⎫12a -a 2,-12a -a 2, 所以⎩⎨⎧12a -a 2<-12,-12a -a 2>12,即⎩⎪⎨⎪⎧a 2-a -1<0,a 2+a +1>0, 解得1-52<a<1+52,又-1<a<0,所以实数a 的取值范围是⎝⎛⎭⎪⎫1-52,0.7.设a ∈R ,若x >0,均有[(a -1)x -1]·(x 2-ax -1)≥0,则a =________.7.【解析】 (1)当a =1时,不等式可化为对∀x ,x>0时均有x 2-x -1≤0,由二次函数的图象知,显然不成立, ∴a≠1.(2)当a<1时,∵x>0,∴(a -1)x -1<0,则不等式可化为x>0时均有x 2-ax -1≤0.∵二次函数y =x 2-ax -1的图象开口向上,∴不等式x 2-ax -1≤0在x ∈(0,+∞)上不能恒成立,∴a<1不成立.(3)当a>1时,令f(x)=(a -1)x -1,g(x)=x 2-ax -1,两函数的图象均过定点(0,-1).∵a>1,∴f(x)在x ∈(0,+∞)上单调递增,且与x 轴交点为⎝⎛⎭⎫1a -1,0,即当x ∈⎝⎛⎭⎫0,1a -1时,f(x)<0,当x ∈⎝⎛⎭⎫1a -1,+∞时,f(x)>0.又∵二次函数g(x)=x 2-ax -1的对称轴为x =a2>0,则只需g(x)=x 2-ax -1与x 轴的右交点与点⎝⎛⎭⎫1a -1,0重合, 如图所示,则命题成立,即⎝⎛⎭⎫1a -1,0在g(x)图象上,所以有⎝⎛⎭⎫1a -12-a a -1-1=0,整理得2a 2-3a =0,解得a =32,a=0(舍去). 综上可知a =32.【答案】 3203 基本不等式利用基本不等式求最值利用基本不等式求最值是基本不等式的考点,高考主要求最值、判断不等式、解决不等式有关的问题,试题难度不大,主要是以选择题、填空题形式出现,有时解答题中也会利用基本不等式求最值.在复习时,注意利用基本不等式判断不等式是否成立(比较大小),一般将所给不等式变形,使一侧为常数,另一侧利用基本不等式求解后判断. 【典例】1(1)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2z 的最大值为( )A .0B .1 C.94D .3(2)设f(x)=ln x ,0<a<b ,若p =f(ab),q =f ⎝⎛⎭⎫a +b 2,r =12(f(a)+f(b)),则下列关系式中正确的是( )A .q =r<pB .p =r<qC .q =r>pD .p =r>q【解析】 (1)由x 2-3xy +4y 2-z =0,得z =x 2-3xy +4y 2. 所以xy z =xy x 2-3xy +4y 2=1x y +4yx-3≤12x y ·4y x-3=1,当且仅当x y =4yx ,即x =2y 时取等号,此时z =2y 2,⎝⎛⎭⎫xy z max =1, 则2x +1y -2z =22y +1y -2xy =2y ⎝⎛⎭⎫1-1x =2y⎝⎛⎭⎫1-12y ≤4⎝ ⎛⎭⎪⎫12y +1-12y 22=1. (2)方法一:由题意知,p =f(ab)=ln ab ,q =f ⎝⎛⎭⎫a +b 2=ln ⎝⎛⎭⎫a +b 2,r =12(f(a)+f(b))=12(ln a +ln b)=12ln ab =ln ab.又∵b >a >0,∴a +b2>ab >0.∵函数f(x)=ln x 为增函数,∴p =r <q ,故选B. 方法二(特值法):令a =1,b =2,∴p =f(2)=ln 2, q =f ⎝⎛⎭⎫a +b 2=f ⎝⎛⎭⎫32=ln 32,r =12(ln 1+ln 2)=ln 2.∵2<32,∴ln 2<ln 32,∴p =r<q.【答案】 (1)B (2)B 【名师点睛】(1)含有三个变量,可以把其中一个变量用另两个变量来代替,借助基本不等式求最值; 解(2)时注意利用不等式与对数函数相结合,方法二是不等式常用的方法,特殊值法应灵活应用.利用基本不等式求最值的类型及方法(1)若已经满足基本不等式的条件,则直接应用基本不等式求解.(2)若不直接满足基本不等式的条件,需要通过配凑、进行恒等变形,构造成满足条件的形式,常用的方法有:“1”的代换作用,对不等式进行分拆、组合、添加系数等.(3)多次使用基本不等式求最值,此时要注意只有同时满足等号成立的条件才能取得等号,若等号不成立,一般利用函数单调性求解.若直线x a +yb =1(a >0,b >0)过点(1,1),则a +b 的最小值等于( )A .2B .3C .4D .5C 将(1,1)代入直线x a +y b =1得1a +1b=1,a >0,b >0,故a +b =(a +b)⎝⎛⎭⎫1a +1b =2+b a +ab ≥2+2=4,等号当且仅当a =b 时取到,故选C. 基本不等式的实际应用高考中利用基本不等式解决实际问题,关键是把实际问题转化为代数问题,列出函数关系式,再利用基本不等式求最值. 【典例】2(1)要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________(单位:元).(2)如图,建立平面直角坐标系xOy ,x 轴在地平面上,y 轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程y =kx -120(1+k 2)x 2(k>0)表示的曲线上,其中k 与发射方向有关.炮的射程是指炮弹落地点的横坐标. ①求炮的最大射程;②设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标a 不超过多少时,炮弹可以击中它?请说明理由.【解析】 (1)设池底长为x m ,宽为y m ,则xy =4,所以y =4x ,则总造价为f(x)=20xy +2(x +y)×1×10=80+80x +20x=20⎝⎛⎭⎫x +4x +80,x ∈(0,+∞). 所以f(x)≥20×2x·4x +80=160,当且仅当x =4x,即x =2时,等号成立.所以最低总造价是160元. (2)①令y =0,得kx -120(1+k 2)x 2=0.由实际意义和题设条件知x>0,k>0, 故x =20k 1+k 2=20k +1k ≤202=10,当且仅当k =1时取等号. 所以炮的最大射程为10千米.②因为a>0,所以炮弹可以击中目标等价于存在k>0, 使3.2=ka -120(1+k 2)a 2成立,故关于k 的方程a 2k 2-20ak +a 2+64=0有正根, 所以有判别式Δ=(-20a)2-4a 2(a 2+64)≥0,即a≤6. 所以当a 不超过6千米时,炮弹可以击中目标., 【名师点睛】解(1)关键是列出函数关系式f(x)=20⎝⎛⎭⎫x +4x +80,利用基本不等式求最值; 题(2)①求炮的最大射程即求y =kx -120(1+k 2)x 2(x >0)与x 轴的横坐标,求出后应用基本不等式求解;②求炮弹击中目标时的横坐标的最大值,由一元二次方程根的判别式求解.利用基本不等式解决实际问题的步骤(1)根据题意设出相应变量,一般把要求最值的变量设为函数;(2)建立相应的函数关系式,确定函数的定义域; (3)在定义域内,求函数的最值;(4)回到实际问题中去,写出实际问题的答案. 【针对训练】1.若正数a ,b 满足1a +1b =1,则4a -1+16b -1的最小值为( )A .16B .25C .36D .49 1.A 因为a ,b >0,1a +1b =1,所以a +b =ab ,所以4a -1+16b -1=4(b -1)+16(a -1)(a -1)(b -1)=4b +16a -20ab -(a +b )+1=4b +16a -20.又4b +16a =4(b +4a)=4(b +4a)·⎝⎛⎭⎫1a +1b =20+4⎝⎛⎭⎫b a +4a b ≥20+4×2b a ·4ab=36, 当且仅当b a =4a b 且1a +1b =1,即a =32,b =3时取等号.所以4a -1+16b -1≥36-20=16.2.函数y =log a (x +3)-1(a >0,且a≠1)的图象恒过定点A ,若点A 在直线mx +ny +2=0上,其中m >0,n >0,则2m +1n 的最小值为( )A .2 2B .4 C.52 D.923.已知直线ax +by +c -1=0(b ,c>0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c 的最小值是( )A .9B .8C .4D .23.A 圆x 2+y 2-2y -5=0化成标准方程, 得x 2+(y -1)2=6, 所以圆心为C(0,1).因为直线ax +by +c -1=0经过圆心C , 所以a×0+b×1+c -1=0,即b +c =1.因此4b +1c =(b +c)⎝⎛⎭⎫4b +1c =4c b +b c +5. 因为b ,c>0, 所以4c b +b c≥24c b ·b c=4. 当且仅当4c b =bc时等号成立.由此可得b =2c ,且b +c =1,即b =23,c =13时,4b +1c取得最小值9. 4.已知x >0,y >0,若2y x +8xy>m 2+2m 恒成立,则实数m 的取值范围是________.【答案】 (-4,2)5.若当x>-3时,不等式a≤x +2x +3恒成立,则a 的取值范围是________.5.【解析】 设f(x)=x +2x +3=(x +3)+2x +3-3,因为x>-3,所以x +3>0, 故f(x)≥2(x +3)×2x +3-3=22-3,当且仅当x =2-3时等号成立, 所以a 的取值范围是(-∞,22-3]. 【答案】 (-∞,22-3]6.已知实数x ,y 满足x -x +1=y +3-y ,则x +y 的最大值为________. 6.【解析】 ∵x -x +1=y +3-y. ∴x +y =x +1+y +3≤2x +y +42,则(x +y)2≤2(x +y +4),解得-2≤x +y≤4.∴x +y 的最大值为4. 【答案】 47.如图,为处理含有某种杂质的污水,要制造一底宽为2米的无盖长方体的沉淀箱.污水从A 孔流入,经沉淀后从B 孔流出.设箱体的长度为a 米,高度为b 米.已知流出的水中该杂质的质量分数与a ,b 的乘积ab 成反比.现有制箱材料60平方米.问当a ,b 各为多少米时,经沉淀后流出的水中该杂质的质量分数最小(A ,B 孔的面积忽略不计)?7.解:方法一:设y 为流出的水中杂质的质量分数, 则y =kab ,其中k 为比例系数,且k>0.根据题意有,4b +2ab +2a =60(a>0,b>0), 所以b =30-a2+a (0<a<30).所以ab =a×30-a 2+a =30a -a 22+a=-a +32-642+a=34-⎝⎛⎭⎫a +2+64a +2≤34-2(a +2)·64a +2=18.当a +2=64a +2时取等号,y 达到最小值.此时解得a =6,b =3.所以当a 为6米,b 为3米时,经沉淀后流出的水中该杂质的质量分数最小. 方法二:设y 为流出的水中杂质的质量分数, 则y =kab ,其中k 为比例系数,且k>0.根据题意有,4b +2ab +2a =60(a>0,b>0), 即2b +ab +a =30.因为a +2b≥22ab , 所以30-ab =a +2b≥22ab. 所以ab +22ab -30≤0. 因为a>0,b>0,所以0<ab≤18, 当a =2b 时取等号,ab 达到最大值18. 此时解得a =6,b =3.所以当a 为6米,b 为3米时,经沉淀后流出的水中该杂质的质量分数最小. 【点击高考】1.(3-a )(a +6)(-6≤a≤3)的最大值为( ) A .9 B.92 C .3 D.3222.已知两条直线l 1:y =m 和l 2:y =82m +1(m>0),l 1与函数y =|log 2x|的图象从左至右相交于点A ,B ,l 2与函数y =|log 2x|的图象从左至右相交于点C ,D.记线段AC 和BD 在x 轴上的投影长度分别为a ,b.当m 变化时,ba的最小值为( )A .16 2B .8 2C .834D .4342.B 在平面直角坐标系中作出函数y =|log 2x|的图象如图所示,不妨设点A(x 1,m),B(x 2,m),C ⎝⎛⎭⎫x 3,82m +1,D ⎝⎛⎭⎫x 4,82m +1,则0<x 1<1<x 2,0<x 3<1<x 4,此时有-log 2x 1=m ,log 2x 2=m ,-log 2x 3=82m +1,log 2x 4=82m +1,解得x 1=⎝⎛⎭⎫12m ,x 2=2m ,x 3=⎝⎛⎭⎫1282m +1,x 4=282m +1,线段AC 与BD 在x 轴上的投影长度分别为a =|x 1-x 3|=,b =|x 2-x 4|=⎪⎪⎪⎪2m -282m +1, 则ba==2m +82m +1,令t =m +82m +1(m >0),则t =m +4m +12=⎝⎛⎭⎫m +12+4m +12-12≥4-12=72,当且仅当⎝⎛⎭⎫m +122=4,即m =32时,t 取最小值为72,此时b a的最小值为8 2.3.若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.3.【解析】 ∵x 2+2y 2≥2x 2·2y 2=22·xy =22,当且仅当x =2y 时等号成立,∴x 2+2y 2的最小值为2 2. 【答案】 2 24.(2013·天津,14,易)设a +b =2,b >0,则当a =________时,12|a|+|a|b取得最小值. 4.【解析】 ∵a +b =2, ∴12|a|+|a|b =24|a|+|a|b =a +b 4|a|+|a|b =a 4|a|+b 4|a|+|a|b ≥a4|a|+2b 4|a|×|a|b =a4|a|+1. 当且仅当b 4|a|=|a|b 且a <0,即b =-2a ,a =-2时,12|a|+|a|b 取得最小值.【答案】 -25.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物需建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=k3x +5(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元.设f(x)为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及f(x)的表达式;(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值. 5.解:(1)由题设,建筑物每年能源消耗费用为C(x)=k3x +5,由C(0)=8,得k =40,∴C(x)=403x +5. 而隔热层建造费用为C 1(x)=6x , ∴f(x)=20C(x)+C 1(x)=20×403x +5+6x =8003x +5+6x(0≤x≤10).(2)方法一:f(x)=8003x +5+6x=1 6006x +10+6x +10-10 ≥21 6006x +10×(6x +10)-10=70,当且仅当1 6006x +10=6x +10,即x =5时取等号.∴当隔热层修建厚度为5 cm 时,总费用最小,最小值为70万元. 方法二:f′(x)=6- 2 400(3x +5)2,令f′(x)=0,即2 400(3x +5)2=6,解得x =5或x =-253(舍去).当0<x<5时,f′(x)<0;当5<x<10时,f′(x)>0.故x =5是f(x)的最小值点,对应的最小值为f(5)=6×5+80015+5=70.当隔热层修建厚度为5 cm 时,总费用达到最小,最小值为70万元.04 函数与方程函数零点的求解与判断 【知识分析】高考中对函数零点个数和所在区间的考查中“函数”往往是由基本初等函数(幂函数、指数函数、对数函数、二次函数等)或三角函数组合而成的,题目常以选择题或填空题的形式出现,体现数形结合思想的运用,难度不大. 【典例】1(1)若a<b<c ,则函数f(x)=(x -a)(x -b)+(x -b)(x -c)+(x -c)(x -a)的两个零点分别位于区间( ) A .(a ,b)和(b ,c)内 B .(-∞,a)和(a ,b)内 C .(b ,c)和(c ,+∞)内 D .(-∞,a)和(c ,+∞)内(2)函数f(x)=4cos 2x2cos ⎝⎛⎭⎫π2-x -2sin x -|ln(x +1)|的零点个数为________. 【解析】(1)易知f(a)=(a -b)(a -c),f(b)=(b -c)(b -a),f(c)=(c -a)(c -b).又a<b<c ,则f(a)>0,f(b)<0,f(c)>0,又该函数是二次函数,且图象开口向上,可知两个零点分别在(a ,b)和(b ,c)内. (2)令4cos 2x2cos ⎝⎛⎭⎫π2-x -2sin x -||ln (x +1)=0. ∴2sin x ⎝⎛⎭⎫2cos 2x2-1=||ln (x +1), 即sin 2x =||ln (x +1). 令y 1=sin 2x ,y 2=||ln (x +1). 如图画出y 1,y 2的图象,结合图象可得y 1与y 2有两个交点, ∴方程有2个根. ∴函数f(x)有2个零点.【答案】 (1)A (2)2【名师点睛】解题(1)的依据是零点存在性定理;解题(2)的关键是将零点个数问题转化为两个函数图象的交点个数问题,数形结合求解.1.函数f(x)=x 3-⎝⎛⎭⎫12x -2的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)2.设函数f(x)(x ∈R )满足f(-x)=f(x),f(x)=f(2-x),且当x ∈[0,1]时,f(x)=x 3.又函数g(x)=|xco s(πx)|,则函数h(x)=g(x)-f(x)在⎣⎡⎦⎤-12,32上的零点个数为( ) A .5 B .6 C .7 D .82.B ∵f(-x)=f(x),f(x)=f(2-x),∴f(-x)=f(2-x),∴f(x)的周期为2.如图画出f(x)与g(x)的图象,它们共有6个交点,故h(x)在⎣⎡⎦⎤-12,32上的零点个数为6.故选B.,判断函数在某个区间上是否存在零点的方法(1)解方程:当函数对应的方程易求解时,可通过解方程判断方程是否有根落在给定区间上; (2)利用零点存在性定理进行判断;(3)画出函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断.判断函数零点个数的方法(1)直接法:解方程f(x)=0,方程有几个解,函数f(x)就有几个零点;(2)图象法:画出函数f(x)的图象,函数f(x)的图象与x 轴的交点个数即为函数f(x)的零点个数;(3)将函数f(x)拆成两个常见函数h(x)和g(x)的差,从而f(x)=0⇔h(x)-g(x)=0⇔h(x)=g(x),则函数f(x)的零点个数即为函数y =h(x)与函数y =g(x)的图象的交点个数; (4)二次函数的零点问题,通过相应的二次方程的判别式Δ来判断. 函数零点的应用高考对函数零点的应用的考查多以选择题或填空题的形式出现,主要考查利用零点的个数或存在情况求参数的取值范围及利用零点的性质求其和、比较大小等问题,难度较大. 【典例】2.已知函数f(x)=⎩⎪⎨⎪⎧2-|x|,x≤2,(x -2)2,x >2,函数g(x)=b -f(2-x),其中b ∈R .若函数y =f(x)-g(x)恰有4个零点,则b 的取值范围是( )A.⎝⎛⎭⎫74,+∞B.⎝⎛⎭⎫-∞,74C.⎝⎛⎭⎫0,74D.⎝⎛⎭⎫74,2 【解析】 由已知条件可得g(x)=⎩⎪⎨⎪⎧b -2+|2-x|,x≥0,b -x 2,x <0.函数y =f(x),y =g(x)的图象如图所示: 要使y =f(x)-g(x)恰有4个零点,只需y =f(x)与y =g(x)的图象恰有4个不同的交点,需满足⎩⎪⎨⎪⎧y =2+x ,y =b -x 2在x <0时有两个不同的解,即x 2+x +2-b =0有两个不同的负根,则⎩⎪⎨⎪⎧Δ=1-4(2-b )>0,2-b >0,解得74<b <2;同时要满足{y =(x -2)2,y =b -2+x -2在x >2时有两个不同的解,即x 2-5x +8-b =0有两个大于2的不同实根,令h(x)=x 2-5x +8-b ,需⎩⎪⎨⎪⎧h (2)>0,h ⎝⎛⎭⎫52<0,即⎩⎪⎨⎪⎧2-b >0,8-254-b <0,解得74<b <2.综上所述,满足条件的b 的取值范围是74<b <2.【答案】 D,已知函数有零点(方程有根)求参数值(取值范围)常用的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 【针对训练】1.函数f(x)=ln x +x -12,则函数的零点所在区间是( )A.⎝⎛⎭⎫14,12B.⎝⎛⎭⎫12,34C.⎝⎛⎭⎫34,1 D .(1,2)1.C 函数f(x)=ln x +x -12的图象在(0,+∞)上连续,且f ⎝⎛⎭⎫34=ln 34+34-12=ln 34+14<0,f(1)=ln 1+1-12=12>0,故f(x)的零点所在区间为⎝⎛⎭⎫34,1. 2.设函数f(x)的零点为x 1,g(x)=4x +2x -2的零点为x 2,若|x 1-x 2|≤0.25,则f(x)可以是( ) A .f(x)=x 2-1 B .f(x)=2x -4 C .f(x)=ln(x +1) D .f(x)=8x -23.偶函数f(x)满足f(x -1)=f(x +1),且当x ∈[0,1]时,f(x)=-x +1,则关于x 的方程f(x)=lg(x +1)在x ∈[0,9]上解的个数是( ) A .7 B .8 C .9 D .103.C 依题意得f(x +2)=f(x),所以函数f(x)是以2为周期的函数.在平面直角坐标系中画出函数y =f(x)的图象与y =lg(x +1)的图象(如图所示),观察图象可知,这两个函数的图象在区间[0,9]上的公共点共有9个,因此,当x ∈[0,9]时,方程f(x)=lg(x +1)的解的个数是9.4.定义在R 上的奇函数f(x),当x≥0时,f(x)=⎩⎪⎨⎪⎧log 12(x +1),x ∈[0,1),1-|x -3|,x ∈[1,+∞),则关于x 的函数F(x)=f(x)-a(0<a <1)的所有零点之和为( )A .2a -1B .2-a -1 C .1-2-a D .1-2a5.已知函数f(x)满足f(x)=f ⎝⎛⎭⎫1x ,当x ∈[1,3]时,f(x)=ln x ,若在区间⎣⎡⎦⎤13,3内,曲线g(x)=f(x)-ax 与x 轴有三个不同的交点,则实数a 的取值范围是( ) A.⎝⎛⎭⎫0,1e B.⎝⎛⎭⎫0,12e C.⎣⎡⎭⎫ln 33,1e D.⎣⎡⎭⎫ln 33,12e5.C 当x ∈⎣⎡⎦⎤13,1时,1x ∈[1,3],f(x)=f ⎝⎛⎭⎫1x =-ln x ,∴f(x)=⎩⎪⎨⎪⎧ln x ,x ∈[1,3],-ln x ,x ∈⎣⎡⎭⎫13,1,作出其图象,如图所示.设直线y =a 0x 与y =ln x(x ∈[1,3])的图象相切,其切点为(x 0,y 0)(x 0∈[1,3],y 0∈[0,ln 3]), 则1x 0=a 0⎝⎛⎭⎫a 0∈⎣⎡⎦⎤13,1, ∴x 0=1a 0,∴y 0=1,∴1=ln1a 0,∴a 0=1e.又点(3,ln 3)与原点连线的斜率为ln 33,故曲线g(x)=f(x)-ax 与x 轴有三个不同的交点,可知实数a 的取值范围是⎣⎡⎭⎫ln 33,1e ,故选C.6.已知函数f(x)=a x +x -b 的零点x 0∈(n ,n +1)(n ∈Z ),其中常数a ,b 满足2a =3,3b =2,则n =________. 6.【解析】 a =log 23>1,b =log 32<1,令f(x)=0,得a x =-x +b.在同一平面直角坐标系中画出函数y =a x 和y =-x +b 的图象,如图所示,由图可知,两函数的图象在区间(-1,0)内有交点,所以函数f(x)在区间(-1,0)内有零点,所以n =-1. 【答案】 -17.若方程x 2+ax +2b =0的一个根在(0,1)内,另一个根在(1,2)内,则b -2a -1的取值范围是________.7.【解析】 令f(x)=x 2+ax +2b ,∵方程x 2+ax +2b =0的一个根在(0,1)内,另一个根在(1,2)内,∴⎩⎪⎨⎪⎧f (0)>0,f (1)<0,f (2)>0,∴⎩⎪⎨⎪⎧b >0,a +2b <-1,a +b >-2.根据该约束条件作出可行域(如图),b -2a -1表示可行域内点与点(1,2)的连线的斜率,可知14<b -2a -1<1.【答案】 ⎝⎛⎭⎫14,1 【点击高考】1.已知函数f(x)=⎩⎪⎨⎪⎧x 2+(4a -3)x +3a ,x<0,log a (x +1)+1, x≥0(a>0,且a≠1)在R 上单调递减,且关于x 的方程|f(x)|=2-x 恰有两个不相等的实数解,则a 的取值范围是( ) A.⎝⎛⎦⎤0,23 B.⎣⎡⎦⎤23,34 C.⎣⎡⎦⎤13,23∪⎩⎨⎧⎭⎬⎫34 D.⎣⎡⎭⎫13,23∪⎩⎨⎧⎭⎬⎫341.C 由y =log a (x +1)+1在[0,+∞)上递减,知0<a<1. 又由f(x)在R 上单调递减,知⎩⎪⎨⎪⎧02+(4a -3)·0+3a≥f (0)=1,3-4a 2≥0⇒13≤a≤34. 由图象可知,在[0,+∞)上,|f(x)|=2-x 有且仅有一个解,故在(-∞,0)上,|f(x)|=2-x 同样有且仅有一个解.当3a>2,即a>23时,令|x 2+(4a -3)x +3a|=2-x , ∴x 2+(4a -3)x +3a =2-x.又Δ=(4a -2)2-4(3a -2)=0,解得a =34或a =1(舍).当1≤3a≤2时,由图象可知,符合条件. 综上,a ∈⎣⎡⎦⎤13,23∪⎩⎨⎧⎭⎬⎫34.选C.2.函数f(x)=2x |log 0.5x|-1的零点个数为( ) A .1 B .2 C .3 D .4 2.B方法一:f(x)=2x |log 0.5x|-1=⎩⎪⎨⎪⎧2x log 0.5x -1,0<x≤1,-2x log 0.5x -1,x>1=⎩⎪⎨⎪⎧-2x log 2x -1,0<x≤1,2x log 2x -1,x>1. ∵f(x)=-2x log 2x -1在(0,1]上递减且x 接近于0时,f(x)接近于正无穷大,f(1)=-1<0,∴f(x)在(0,1]上有1个零点.又∵f(x)=2x log 2x -1在(1,+∞)上递增,且f(2)=22×log 22-1=3>0, ∴f(x)在(1,+∞)上有1个零点, 故f(x)共有2个零点.方法二:易知函数f(x)=2x |log 0.5x|-1的零点个数⇔方程|log 0.5x|=12x =⎝⎛⎭⎫12x 的根的个数⇔函数y 1=|log 0.5x|与y 2=⎝⎛⎭⎫12x 的图象的交点个数.作出两个函数的图象如图所示,由图可知两个函数图象有2个交点.3.函数f(x)=xcos x 2在区间[0,4]上的零点个数为( ) A .4 B .5 C .6 D .74.已知f(x)是定义在R 上且周期为3的函数,当x ∈[0,3)时,f(x)=⎪⎪⎪⎪x 2-2x +12.若函数y =f(x)-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.4.【解析】 当x ∈[0,3)时,f(x)=⎪⎪⎪⎪x 2-2x +12=⎪⎪⎪⎪(x -1)2-12,由f(x)是周期为3的函数,作出f(x)在[-3,4]上的图象,如图.由题意知方程a =f(x)在[-3,4]上有10个不同的根. 由图可知a ∈⎝⎛⎭⎫0,12.。

专题1-1 基本不等式归类(16题型+解题攻略)-2024年高考数学二轮热点题型归纳与变式演练含答案

专题1-1 基本不等式归类(16题型+解题攻略)-2024年高考数学二轮热点题型归纳与变式演练含答案

A .x +1x(x >0)的最小值是2B .2254x x ++的最小值是2C .2222x x ++的最小值是2D .若x >0,则2-3x -4x的最大值是2-43【变式1-2】(2023·全国·高三专题练习)下列不等式证明过程正确的是( )A .若,R a b Î,则22b a b a a b a b+³×=B .若x >0,y >0,则lg lg 2lg lg x y x y +³×C .若x <0,则4x x+424x x³-×=-D .若x <0,则222222x x x x --+>×=【变式1-3】(2022秋·广东·高三深圳市宝安中学(集团)校考)在下列函数中,最小值是22的是( )A .()20y x x x =+¹B .()10y x x x=+>C .22233y x x =+++D .2xxy e e =+题型02 基础模型:倒数型【解题攻略】倒数型:1t t +,或者b at t+容易出问题的地方,在于能否“取等”,如2sin sin ,其中锐角q q q +,22155x x +++【典例1-1】(2022·浙江杭州·杭州高级中学校考模拟预测)已知,,a b c R Î且0,++=>>a b c a b c ,则22a c ac+的取值范围是( )A .[)2,+¥B .(],2-¥-C .5,22æù--çúèûD .52,2æùçúèû【典例1-2】(2020下·浙江衢州·高三统考)已知ABC V 的面积为23,3A p=,则4sin 2sin sin sin 2sin sin C B BC B C+++的最小值为( )A .162-B .162+C .61-D .61+【变式1-1】(2021上·全国·高三校联考阶段练习)已知1,,,12a b c éùÎêúëû,则2222a b c ab bc+++的取值范围是( ).A .[]2,3B .5,32éùêúëûC .52,2éùêúëûD .[]1,3【变式1-2】(2020上·河南·高三校联考阶段练习)函数22621x y x -=-的最小值为( )A .2B .4C .6D .8【变式1-3】(2022上·上海徐汇·高三上海市第二中学校考阶段练习)若()2sin 3sin f x x t x=+++(x,t R Î)最大值记为()g t ,则()g t 的最小值为A .0B .14C .23D .34题型03 常数代换型【解题攻略】利用常数11m m⨯=代换法,可以代通过“分子分母相约和相乘”,相约去或者构造出“倒数”关系。

2024年新高考版数学专题1_2.2 基本不等式及不等式的应用(分层集训)

2024年新高考版数学专题1_2.2 基本不等式及不等式的应用(分层集训)

b,x,y>0,则 a2 + b2 ≥ (a b)2 ,当且仅当 a = b 时等号成立.根据权方和不等式
x y xy
xy
可以比较容易得出,函数f(x)=
2 x
+
1
9 2x
0
x
1 2
的最小值为
(
)
A.16 B.25 C.36 D.49
答案 B
2.(2022山东平邑一中开学考,6)实数a,b满足a>0,b>0,a+b=4,则 a2 + b2
x
0
x
2
答案 C
2.(2022重庆西南大学附中月考)已知x,y>0,x+9y+xy=7,则3xy的最大值为 () A.1 B.2 C.3 D.4 答案 C
3.(多选)(2023届山东潍坊五县联考,9)设a>0,b>0,a+b=1,则下列不等式中
一定成立的是( )
A.ab≤ 1
4
B. a + b ≥ 2
2.(多选)(2023届重庆南开中学质检,10)已知正数x,y满足x+2y=4,若存在正
数x,y使得 1 +x≤t-2y- 1 成立,则实数t的可能取值是( )
2x
y
A.2 B.4 C.6 D.8
答案 CD
3.(2021广东佛山南海石门中学模拟,5)已知x,y∈(0,+∞),且x+y=1,若不等
.
c
a2
答案 - 5 8
6
13.(2022河北曲阳一中月考,14)已知a,b∈R,且a> b >0,则a2+ 1 的最
2
(2a b)b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点29 基本不等式一、选择题1.(2013·重庆高考理科·T3)63)a -≤≤的最大值为 ( ) A.9 B.29C.3D. 223 【解题指南】直接利用基本不等式求解.【解析】选B. 当6-=a 或3=a 时, 0)6)(3(=+-a a ,当36<<-a 时,29263)6)(3(=++-≤+-a a a a ,当且仅当,63+=-a a 即23=a 时取等号.2. (2013·山东高考理科·T12)设正实数x,y,z 满足x 2-3xy+4y 2-z =0.则当xyz取得最大值时,212x y z +-的最大值为( )A.0B.1C. 94D.3【解题指南】此题可先利用已知条件用x,y 来表示z ,再经过变形,转化为基本不等式的问题,取等号的条件可直接代入212xyz+-,进而再利用基本不等式求出212xyz+-的最值.【解析】选B. 由22340x xy y z -+-=,得2234z x xy y =-+. 所以2214343xy xy x y z x xy y y x ==-++-1≤=,当且仅当4x y y x =,即2x y =时取等号此时22y z =, 1)(max =zxy.xy y y z y x 2122212-+=-+)211(2)11(2y y x y -=-=211122412y y ⎛⎫+- ⎪⎪≤= ⎪⎪⎝⎭. 3. (2013·山东高考文科·T12)设正实数z y x ,,满足04322=-+-z y xy x ,则当zxy取得最大值时,2x y z +-的最大值为( ) A.0 B.98 C.2 D.94【解题指南】此题可先利用已知条件用x,y 来表示z ,再经过变形,转化为基本不等式的问题,取等号的条件可直接代入2x y z +-,进而再利用基本不等式求出2x y z +-的最值.【解析】 选C. 由22340x xy y z -+-=,得2234z x xy y =-+.所以1342344322=-⋅≥-+=+-=xyy x x y y x xy y xy x xy z ,当且仅当4x y y x =, 即2x y =时取等号此时22y z =,所以()222222242222222=⎪⎭⎫⎝⎛-+≤-=-=-+=-+y y y y y y y y y z y x ,当且仅当y=2-y 时取等号.4.(2013·福建高考文科·T7)若2x +2y =1,则x+y 的取值范围是 ( ) A .[]0,2 B .[]2,0- C .[)2,-+∞ D .(],2-∞- 【解题指南】“一正二定三相等”,当题目出现正数,出现两变量,一般而言,这种题就是在考查基本不等式.【解析】选D. ≤2x +2y =1,所以2x+y ≤14,即2x+y ≤2-2,所以x+y ≤-2. 二、填空题5. (2013·四川高考文科·T13)已知函数()4(0,0)a f x x x a x=+>>在3x =时取得最小值,则a =____________。

【解题指南】本题考查的是基本不等式的等号成立的条件,在求解时需要找到等号成立的条件,将3x =代入即可.【解析】由题()4(0,0)af x x x a x=+>>,根据基本不等式4a x x +≥4ax x=时取等号,而由题知当3x =时取得最小值,即36a =. 【答案】366.(2013·天津高考文科·T14)设a + b = 2, b >0, 则1||2||a a b+的最小值为 . 【解题指南】将1||2||a a b+中的1由a + b 代换,再由均值不等式求解.【解析】因为a + b = 2, b >0,所以1||||||2||4||4||4||++=+=++a ab a a b a a b a b a a b14||4||≥+=+a a a a ,当且仅当||4||=b a a b 时等号成立,此时2=-a ,或23=a , 若2=-a ,则314||4+=a a ,若23=a ,则51.4||4+=a a 所以1||2||a a b +的最小值为3.4【答案】347. (2013·天津高考理科·T14)设a + b = 2, b >0, 则当a = 时,1||2||a a b+取得最小值. 【解题指南】将1||2||a a b+中的1由a + b 代换,再由均值不等式求解.【解析】因为a + b = 2, b >0,所以1||||||2||4||4||4||++=+=++a ab a a b a a b a b a a b14||4||≥+=+a a a a ,当且仅当||4||=b a a b 时等号成立,此时2=-a ,或23=a , 若2=-a ,则314||4+=a a ,若23=a ,则51.4||4+=a a 所以1||2||a a b +取最小值时,2=-a . 【答案】-28.(2013·上海高考文科·T13)设常数a >0.若1x 92+≥+a xa 对一切正实数x 成立,则a 的取值范围为 . 【解析】 考查均值不等式的应用,5116929)(,022≥⇒+≥=+≥+=>a a a x a x x a x x f x 时由题意知,当【答案】 ),51[∞9. (2013·陕西高考文科·T14)在如图所示的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(阴影部分), 则其边长x 为 (m ).【解题指南】设出矩形的高y ,由题目已知列出x ,y 的关系式,整理后利用均值不等式解决应用问题.【解析】设矩形高为y , 由三角形相似得:40,40,0,0,404040<<>>-=y x y x y x 且 40020,240取最大值时,矩形的面积仅当xy s y x xy y x ===≥+=⇒.【答案】20.2014年全国高考理科数学试题:不等式选讲一、填空题1.(2014年广州数学(理)试题)不等式521≥++-x x 的解集为 。

2.(2014年高考陕西卷(理))(不等式选做题)设,,,a b mn R ∈,且225,5a b ma nb +=+=,则的最小值为___________________3.(2014年高考江西卷(理))对任意,x y R ∈,111x x y y -++-++的最小值为( ) A.1 B.2 C.3 D.44.(2014年高考安徽卷(理)若函数()12f x x x a =+++的最小值3,则实数a 的值为( ) A.5或8 B.1-或5 C. 1-或4- D.4-或85.(2014年高考湖南卷(理)若关于x 的不等式32<-ax 的解集为⎭⎬⎫⎩⎨⎧<<-3135|x x ,则a=_________________6.(2014年高考重庆卷(理)设函数f(x)=|x -1|,则不等式1)(<x f 的解集为_________________.二、解答题1.(2014年高考新课标2(理))(本小题满分10)选修4-5:不等式选讲 设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.2. (2014年辽宁数学(理)试题)选修4-5:不等式选讲设函数1816)(,112)(2+-=-+-=x x x g x x x f ,记1)(≤x f 的解集为M ,4)(≤x g 的解集为N. (1)求M ; (2)当N M x ⋂∈时,证明:[]41)()(22≤+x f x x f x3 .(2014年福建数学(理)试题(纯WORD 版))选修4 -5:不等式选讲 已知定义在 R 上的函数()|1||2|f x x x =++- 的最小值为 a. (Ⅰ) 求 a 的值;(Ⅱ) 若 p, q, r 是正实数, 且满足 p+q+r = a, 求证:2223p q r ++≥.4.(2014年高考新课标1(理))(本小题满分10分)选修4—5:不等式选讲 若0,0a b >>,且11ab a b+=. (Ⅰ) 求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由.二.只涉及两个绝对值,不再有其它项时,用平方法去绝对值1.(2011年高考广东卷理科9)不等式130x x +--≥的解集是______.2.【2012高考真题湖南理10】不等式|2x+1|-2|x-1|>0的解集为_______.三.涉及两个且另有一常数时,用分段讨论法去绝对值1.【2012高考真题广东理9】不等式|x+2|-|x|≤1的解集为_____.2. (2011年高考山东卷理科4)不等式|5||3|10x x -++≥的解集为(A )[-5.7] (B )[-4,6] (C )(,5][7,)-∞-⋃+∞ (D )(,4][6,)-∞-⋃+∞3.【2012高考真题江西理16】(不等式选做题)在实数范围内,不等式|2x-1|+|2x+1|≤6的解集为___________。

4. (2011年高考天津卷理科13)已知集合{}1|349,|4,(0,)A x R x x B x R x t t t ⎧⎫=∈++-≤=∈=+∈+∞⎨⎬⎩⎭,则集合A B ⋂=________.5【2012高考真题新课标理24】(本小题满分10分)选修45-:不等式选讲已知函数()2f x x a x =++-(1)当3a =-时,求不等式()3f x ≥的解集;(2)若()4f x x ≤-的解集包含[1,2],求a 的取值范围.6.(2011年高考辽宁卷理科24)(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|x-2|-|x-5|. (I )证明:-3≤f (x )≤3;(II )求不等式f (x )≥x 2-8x+15的解集. 四:利用数轴法求解1.【2012高考真题陕西理15】A.(不等式选做题)若存在实数x 使|||1|3x a x -+-≤成立,则实数a 的取值范围是 .2.若不等式24≥++-a x x 对所有的x 都恒成立,则a 的取值范围是 3.(2009辽宁选作24) 设函数.|||1|)(a x x x f -+-= (I )若3)(,1≥-=x f a 解不等式;(II )如果a x f x 求,2)(,≥∈∀R 的取值范围。

相关文档
最新文档