归一归总问题【讲义】
小升初培优讲义11 归一、归总--六年级一轮复习(知识点精讲+达标检测)(学生版)

专题11 归一、归总知识梳理1.归一问题。
此类问题中暗含着单一量不变,文字叙述中多带有类似“照这样计算”的字样,其解题的关键是从已知的一种对应量中求出单一量(即归一),再以它为标准,根据题目要求解决问题。
(1)正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。
总量 ÷ 数量 = 单一量单一量 × 新的数量 = 新的总量综合式:总量 ÷ 数量 × 新的数量 = 新的总量(2)反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。
总量 ÷ 数量 = 单一量新的总量 ÷ 单一量 = 新的数量综合式:新的总量 ÷ (总量 ÷ 数量) = 新的数量2.归总问题。
此类问题中暗含着总量不变,即乘积不变。
其解题的关键是先求出总量(即归总),再根据总量求出所求量。
单一量 × 单一量个数 ÷ 另一组单一量 = 另一组单一量个数单一量 × 单一量个数 ÷ 另一组单一量个数 = 另一组单一量例题精讲【例1】一辆汽车从甲地开往乙地,前3小时行了168千米,照这样的速度,又行了5小时,正好到达乙地。
甲、乙两地相距多少千米?【点拨分析】这是一道归一问题,汽车的速度不变,可先算出汽车的速度,再用速度乘上总时间即可得所行路程。
也可先求出汽车的速度,再用前3小时行的路程加上后5小时行的路程即得甲、乙两地的距离。
【答案】解法一:汽车的速度:168÷3=56(千米/时)甲、乙两地相距:56×(3+5)=448(千米)解法二:汽车的速度:168÷3=56(千米/时)甲、乙两地相距:168+56×5=448(千米)答:甲、乙两地相距448千米。
举一反三1.同学们步行从学校去动物园,开始1.5小时行驶了6千米,照这样的速度,又行驶了2小时到达动物园。
三年级下册春季奥数培优讲义——3-03-归一归总3-讲义-学生

第3讲归一归总【学习目标】1、熟悉归一归总问题的相关题型;2、深入理解除法和乘法在实际生活中的应用。
【知识梳理】1、归一问题:已知相互关联的两个量,其中一种量改变,另一种最也随之而改变,其变化的规律是相同的,这种问题称为归一问题。
2、归总问题:已知单位数量和计量单位数量的个数,以及不同的单位数量(或单位数量的个数),通过求总数量求得单位数量的个数(或单位数量)。
3、基本关系:(1)总工作量=每份的工作量(单一量)×份数(2)份数=总工作量÷每份的工作量(单一量)(3)每份的工作量(单一量)=总工作量÷份数【典例精析】【例1】一只小蜗牛6分钟爬行132分米,照这样速度1小时爬行多少米?【趁热打铁-1】乌龟9分钟可以爬306米,照这样的速度1小时可以爬多少米?【例2】工人叔叔用了6分钟把一根木头锯成了3段,那么他把这根木头锯成10段要多少分钟?【趁热打铁-2】一位伐木工人用20分钟把一根树干锯成了5段,如果他保持工作速度不变,还要把每一段再锯成3段,还需要多少分钟?【例3】植树队12天植树108棵,照这样的速度,再植树612棵,还需要多少天?【趁热打铁-3】植树队26天植树300棵,照这样的速度,再植树600棵,还需要多少天?【例4】如果3台数控机床4小时可以加工960个同样的零件,那么6台数控机床9小时可以加工多少个零件?【趁热打铁-4】8个工人3小时制作机器零件360个,如果人数少2人,时间增加了5小时,可制作机器零件多少个?【例5】3名工人5小时加工195个零件,要在8小时完成1040个零件,需要多少工人?【趁热打铁-5】若6台收割机9天可以收割小麦432亩,则用8台收割机收割960亩小麦需要____天.【例6】加工一批零件,计划15个工人每人每天加工20个零件,5天可以完成任务.实际用了5个工人每人加工20个零件,几天完成?【趁热打铁-6】汽车厂8名工人6天生产汽车零件288个.按照这样的速度,11名工人12天能生产多少个零件?如果要用9天的时间生产出378个零件,需要多少名工人?【例7】某食堂存有16个人可吃30天的大米,16人吃了5天后,走了6人,余下的大米还可以吃多少天?【趁热打铁-7】修一条公路,原计划60人工作80天完成。
归一和归总应用题ppt课件

想: 每次搬的块数
一共搬的次数 = 一共搬的块数
20块 .. 4次
4次 + 3次
20 .. 4 (4 + 3)
想一想:还有别的解法吗?
=5 7 = 35(块)
答:一共搬砖35块。
把例2的问题改成“提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
练 2: 根据题意和要求补充条件并解答。
小红和小芳同住一个院子。小芳从家里出发,每分钟
走70米,6分钟走到学校。
(1)小红和小芳同时从家出发, 走了7分钟
。
她每分钟走多少米?(两步计算归总应用题)
(2)小红和小芳同时从家出发, 比小芳多走1分钟 。 她每分钟走多少米?(三步计算归总应用题)
(3)小红从家走到学校用了7分钟,她平均每分钟比小芳 少走多少米?
3 + 45 8 45
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
准备题2 四年级同学排队做广播操,每行排12人,正好排4行。
如果每行排8人,可以排多少行?
例3:四年级同学排队做广播操,每行排12人,正好排4行。 如果每行少排4人,可以排多少行?
70 6 .. 7
70 6 .. (6 + 1)
70 70 6 .. 7
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
练3: 同学们参加收集废旧电池活动,第一小组5人收集150节。
小升初数学《归一问题和归总问题》PPT重点知识课件

正
=30 ÷2 ×20 × 5 =15 ×20 × 5
解
=1500(个)
答:可以生产机器
零件1500个。
易错2
四年级同学排队做广播操,每行排15人,正 好排8行。如果每行少排5人,可以排多少行?
错解
15 ×8 ÷5 =120 ÷5 =24(行) 答:可以排24行。
分析
正确理解题意, “每行少排5人”, 而不是“每排5人”。
重点3
归总问题
解题时先找出 “总数量”,然后 再根据其他条件得 出所求的问题,叫 做归总问题。
所谓“总数量” 是指总路程、总 产量、工作总量、 物品的总价等。
重点4
归总问题的数量关系
每份的量×份数=总量 总量÷每份的量=份数 总量÷份数=每份的量
源题解析
题1
甲、乙两城相距490千米,一辆汽车4小时行了280 千米。照这样计算,从甲城到乙城一共行了几小时?
12×10÷8 =120 ÷8 =15(米) 答:每天修15米.
易错点拨
易错1 18台车床2小时生产机器零件540件,照这样计算,
20台这样的车床5小时可以生产机器零件多少件?
错解:
540 ÷ 18 ×20=600(个)
解析:
先求1台车 床1小时生 产的零件个 数。
540 ÷ 18 ÷2 ×20 × 5
正解
15 ×8 ÷(15-5) = 15 ×8 ÷10 =120 ÷10 =12(行) 答:可以排12行。
归纳总结
准,求出所要 求的量。
归总问题
先求出总数量,再根 据题题,求出所要求 的量。
本课结束
4小时280千米
甲
乙
490千米?小时
先求每小时行了多少千 米,再求一共行了几小时。
小学初级奥数第7讲-归一归总问题

例四
王奶奶家养了5头奶牛,7天产牛奶630千克,照这样计算, 8头奶牛15天可生产牛奶多少千克?
练一练
3名工人5小时加工零件90个,要在10小时完成540个零件的加工, 需要工人多少名?
例五
小红生病住院了,为了祝她早日康复,一班和二班一起为她叠千纸 鹤,计划两个班的同学3天一共叠2400只千纸鹤。现在两个班级的 同学同时开始叠,在相同的时间内,一班叠了2430只千纸鹤,二班 叠了2370只千纸鹤。那么一班和二班每天各叠多少只千纸鹤?
课后作业
<作业6>
妈妈买了2斤苹果,4斤菠萝,花去14元; 爸爸买了3斤苹果,2斤菠萝,花去13元; 那么1斤苹果,1斤菠萝各多少钱?
课后作业
<作业7> 买三盏台灯和一个插座需付300元;买一盏台灯 和三个插座需付200元。那么买一盏台灯和一个 插座需付_____元。
课后作业
精讲2
归一问 题特点
问题中有一个不变的量,就 是 “单一量”。题目一般用 “照这样计算” “用同样的 速度” 等词语来表示。
精讲3
总量÷份数=每份的量
归一问题 数量关系
每份的量×所占份数=所求几份的量
另一总量÷(总量÷份数)=所求份数
精讲4
归一问 正归一:先求出单一量,再求几个
题分类
单一量是多少。
归一问题特点精讲3归一问题数量关系每仹的量所占仹数所求几仹的量总量仹数每仹的量另一总量总量仹数所求仹数精讲4反归一
精讲1
解法精讲
归一问题
先求单一量是多 少,然后以单一 量为标准,求出 所要求的数量, 叫做归一问题。
“单一量”是指单 位时间的工作量、 物品的单价、单位 面积的产Байду номын сангаас、单位 时间所走的路程等。
归一问题之归一和归总

1本讲主线
1.2. 1.归一问题
(1)单位量:每天生产多少个(1) 单位量:每天生产多少个,每小时生产多少个。
(2) 求解“单位量”、利用“单位量”进行分析问题的应用题称为
“归一问题”。
归2. 归一问题关键:寻找单位量。
【课前小练习】(★)
1.小图图每分钟吃3块西瓜,5分钟可以吃____块.
2.老师给3个同学分了18个苹果,那么每个人分___个苹果.
只猴子,6天吃多少个桃个桃,按照这样的速度,9只猴子,9天吃多少个桃
11.
先求单一量,如:每分钟、每小时、每天
;
时间是2倍,结果是2倍;人数是2倍,结果是2倍;
时间、人数都是2倍,结果就是原来的4倍.。
归一归总问题【讲义】

归一归总问题一、归一问题归一问题是一类典型应用题,这类问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题,解答归一问题的方法叫做归一法。
归一问题可以分为两种:一种是求总量的,求出一个单位量之后,然后利用乘法求出结果,这种问题叫做正归一问题(也称正归一);如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米?解决此类问题的关键是先求出单位数量,再求几个单位数量是多少;另一种是求份数的,求出一个单位量后,再用包含除法求出所求的结果,这类问题叫做反归一问题(也称反归一)。
如:修路队6小时修路180千米,照这样,修路240千米需几小时?解决此类问题的关键是先求出单位数量,再求一共包含多少个单位数量?正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步,正归一问题是求几个单一量是多少,【总量】,反归一是求包含多少个单一量.【求份数】解答归一问题的关键是求出单位量的数值,再根据题中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。
有的问题一次归一不能解决,需要两次归一或与倍比相结合才能解决。
归一问题的基本关系式:总工作量每份的工作量(单一量)份数 (正归一)份数总工作量每份的工作量(单一量) (反归一)每份的工作量(单一量) 总工作量份数[小结]总工作量每份的工作量(单一量)份数 (正归一)例如⑴题份数总工作量每份的工作量(单一量) (反归一)例如⑵题每份的工作量(单一量) 总工作量份数二、归总问题与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果.所谓“总量”是指总路程、总产量、工作总量、物品的总价等.一、归一问题【例 1】某人步行,3小时行15千米,7小时行多少千米?【正】【例 2】小红骑车3分钟行600米,照这样的速度她从家到学校行了10分钟,小红家到学校有多少米?【正】【例 3】一个打字员15分钟打了1800个字,照这样的速度,1小时能打多少个字?【正】【例 4】一艘轮船4小时航行108千米,照这样的速度,继续航行270千米,共需多少小时?【反】【例 5】绿化队3天种树210棵,还要种420棵,照这样的工作效率,完成任务共需多少天?【反】【同例1】【例 6】一个工人要磨面粉200千克,3小时磨了60千克.照这样计算,磨完剩下的面粉还要几小时?【反】【例 7】王奶奶家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可生产牛奶多少千克?【★★★★★】同例2【例 8】某车间用4台车床5小时生产零件600个,照这样算,增加3台同样的车床后,(1)8小时可以生产多少个零件?(2)如果要生产6300个零件几小时可完成?【★★★★★】同例4【例 9】3名工人5小时加工零件90个,要在10小时完成540个零件的加工,需要工人多少名?【★★★★★】同例6【例 10】孙悟空组织小猴子摘桃子.开始时,16只小猴子2小时摘桃子640个,照这样计算,孙悟空要求它们在3小时内继续摘桃子1200个,那么需要增加多少只小猴子一起来摘桃子呢?【★★★★★】同例6】【例 11】某玩具厂30天要生产玩具12000件,由于技术革新,每天比原计划多制造了200件,实际多少天就完成了生产任务?同例 5【例 12】某车间需要加工3960个零件,3个工人10小时加工了1320个,其余的要求在15小时内完成,需要增加多少个工人?【★★★★★】同例6【例 13】3个工人10小时加工了3300个零件,如果人数增加2人,时间缩小5个小时,可以制造多少零件?【★★★★★】同例6二、归总问题【例 14】修一条公路,原计划60人工作,80天完成.现在工作20天后,又增加了30人,这样剩下的工作再用多少天可以完成?【归总】【例 15】学校买来一批粉笔,原计划18个班可用60天,实际用45天后,有3个班外出了,剩下的粉笔够用多少天?【归总】【例 16】某厂运来一批煤,计划每天用5吨,40天用完,如果改进锅炉,每天节约1吨,这批煤可以用多少天?【归总】【例 17】某工程队预计30天修完一条水渠,先由18人修了12天后完成工程的一半,如果要提前9天完成,还要增加多少人?【归总】【例 18】甲、乙、丙三人在外出时买了8个面包,平均分给三个人吃.甲没有带钱,乙付了5个面包的钱,丙付了3个面包的钱.后来,甲带来了他应付的四元八角钱,请问,应还给乙、丙各多少钱?【★★★★★】【同例8】归一问题与归总问题在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其它条件求出结果。
(模块化思维提升)专题1-归一归总问题-小升初数学思维拓展典型应用题专项讲义

专题1-归一归总问题小升初数学思维拓展典型应用题专项训练(知识梳理+典题精讲+专项训练)1、归一应用题分为两类。
(1)直进归一:求出一个单位量后,再用乘法求出结果。
(2)逆转归一:求出一个单位量后,再用包含除法求出结果。
从应用题的结构上看,给了单一量和数量,根据前两个条件就可以求出总数(工作总量),总数量是固定不变的,然后根据总数量求出每份数,份数。
总数量÷份数=每份数,总数量÷每份数=份数。
归一问题应用题中必有一种不变的量。
如汽车的速度不变,拖拉机每小时耕地的公顷数不变。
在归一问题应用题中,常常用“照这样计算”、“用同样的…”等词句来表达不变的量,我们要抓准题中数量的对应关系。
归一应用题分为正归一应用题、反归一应用题两类。
正、反归一问题的相同点是:一般情况下,第一步先求出单一量;不同点在第二步,正归一问题是求几个单一量是多少,反归一是求包含多少个单一量。
2、归总问题。
(1)定义:在解答某一类应用题时,先求出总数是多少(归总),然后再用这个总数和题中的有关条件求出问题。
这类应用题叫做归总应用题。
(2)解决方法:归总应用题的特点是先总数,再根据应用题的要求,求出每份是多少,或有这样的几份。
【典例一】例1:如果把一根木料锯成3段要用9分,那么用同样的速度把这根木料锯成4段,要用()分.【分析】这是一个和生活相关的问题,存在这样一个关系:锯的次数=锯成的段数-1;锯成3段,要锯2次,锯成4段要锯3次,那么本题就可以改成,锯2次要9分钟,那么锯3次要几分钟?先求锯1次要几分钟,用除法即9÷2=4.5(分),再求锯3次要几分钟,用乘法,即4.5×3=13.5(分)【解答】解:3-1=2(次)9÷2=4.5(分)4-1=3(次)4.5×3=13.5(分)故答案为:13.5【点评】这是生活实际问题,锯1次就可以锯成2段,存在这个关系:锯的次数=锯成的段数-1.【典例二】一种油菜籽每100g可榨35g菜籽油,照这样计算,620kg油菜籽可榨多少kg菜籽油?【分析】根据题意知道,油菜籽的出油率一定,也就是油的质量÷油菜籽的质量=出油率(一定),所以油的质量与油菜籽的质量成正比例,由此列出方程解答即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
归一归总问题一、归一问题归一问题是一类典型应用题,这类问题是用等分除法求出一个单位的数值(单一量)之后,再求出题目所要求解的问题,解答归一问题的方法叫做归一法。
归一问题可以分为两种:一种是求总量的,求出一个单位量之后,然后利用乘法求出结果,这种问题叫做正归一问题(也称正归一);如:一辆汽车3小时行150千米,照这样,7小时行驶多少千米解决此类问题的关键是先求出单位数量,再求几个单位数量是多少;另一种是求份数的,求出一个单位量后,再用包含除法求出所求的结果,这类问题叫做反归一问题(也称反归一)。
如:修路队6小时修路180千米,照这样,修路240千米需几小时解决此类问题的关键是先求出单位数量,再求一共包含多少个单位数量正、反归一问题的相同点是:一般情况下第一步先求出单一量;不同点在第二步,正归一问题是求几个单一量是多少,【总量】,反归一是求包含多少个单一量.【求份数】解答归一问题的关键是求出单位量的数值,再根据题中“照这样计算”、“用同样的速度”等句子的含义,抓准题中数量的对应关系,列出算式,求得问题的解决。
有的问题一次归一不能解决,需要两次归一或与倍比相结合才能解决。
归一问题的基本关系式:总工作量=每份的工作量(单一量)⨯份数 (正归一)份数=总工作量÷每份的工作量(单一量) (反归一)每份的工作量(单一量) =总工作量÷份数[小结]总工作量=每份的工作量(单一量)⨯份数 (正归一)例如⑴题份数=总工作量÷每份的工作量(单一量) (反归一)例如⑵题每份的工作量(单一量) =总工作量÷份数二、归总问题与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果.所谓“总量”是指总路程、总产量、工作总量、物品的总价等.一、归一问题【例 1】某人步行,3小时行15千米,7小时行多少千米【正】【例 2】小红骑车3分钟行600米,照这样的速度她从家到学校行了10分钟,小红家到学校有多少米【正】【例 3】一个打字员15分钟打了1800个字,照这样的速度,1小时能打多少个字【正】【例 4】一艘轮船4小时航行108千米,照这样的速度,继续航行270千米,共需多少小时【反】【例 5】绿化队3天种树210棵,还要种420棵,照这样的工作效率,完成任务共需多少天【反】【同例1】【例 6】一个工人要磨面粉200千克,3小时磨了60千克.照这样计算,磨完剩下的面粉还要几小时【反】【例 7】王奶奶家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可生产牛奶多少千克【★★★★★】同例2【例 8】某车间用4台车床5小时生产零件600个,照这样算,增加3台同样的车床后,(1)8小时可以生产多少个零件(2)如果要生产6300个零件几小时可完成【★★★★★】同例4【例 9】3名工人5小时加工零件90个,要在10小时完成540个零件的加工,需要工人多少名【★★★★★】同例6【例 10】孙悟空组织小猴子摘桃子.开始时,16只小猴子2小时摘桃子640个,照这样计算,孙悟空要求它们在3小时内继续摘桃子1200个,那么需要增加多少只小猴子一起来摘桃子呢【★★★★★】同例6】【例 11】某玩具厂30天要生产玩具12000件,由于技术革新,每天比原计划多制造了200件,实际多少天就完成了生产任务同例5【例 12】某车间需要加工3960个零件,3个工人10小时加工了1320个,其余的要求在15小时内完成,需要增加多少个工人【★★★★★】同例6【例 13】3个工人10小时加工了3300个零件,如果人数增加2人,时间缩小5个小时,可以制造多少零件【★★★★★】同例6二、归总问题【例 14】修一条公路,原计划60人工作,80天完成.现在工作20天后,又增加了30人,这样剩下的工作再用多少天可以完成【归总】【例 15】学校买来一批粉笔,原计划18个班可用60天,实际用45天后,有3个班外出了,剩下的粉笔够用多少天【归总】【例 16】某厂运来一批煤,计划每天用5吨,40天用完,如果改进锅炉,每天节约1吨,这批煤可以用多少天【归总】【例 17】某工程队预计30天修完一条水渠,先由18人修了12天后完成工程的一半,如果要提前9天完成,还要增加多少人【归总】【例 18】甲、乙、丙三人在外出时买了8个面包,平均分给三个人吃.甲没有带钱,乙付了5个面包的钱,丙付了3个面包的钱.后来,甲带来了他应付的四元八角钱,请问,应还给乙、丙各多少钱【★★★★★】【同例8】归一问题与归总问题在解答某些应用题时,常常需要先找出“单一量”,然后以这个“单一量”为标准,根据其它条件求出结果。
用这种解题思路解答的应用题,称为归一问题。
所谓“单一量”是指单位时间的工作量、物品的单价、单位面积的产量、单位时间所走的路程等。
解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。
数量关系式:单一量×份数=总份数(正归一)总数量÷单一量=份数(反归一)例1 一种钢轨,4根共重1900千克,现在有95000千克钢,可以制造这种钢轨多少根(损耗忽略不计)分析:以一根钢轨的重量为单一量。
【反】(1)一根钢轨重多少千克1900÷4=475(千克)。
(2)95000千克能制造多少根钢轨95000÷475=200(根)。
解:95000÷(1900÷4)=200(根)。
答:可以制造200根钢轨。
例2 王家养了5头奶牛,7天产牛奶630千克,照这样计算,8头奶牛15天可产牛奶多少千克【正】分析:以1头奶牛1天产的牛奶为单一量。
(1)1头奶牛1天产奶多少千克630÷5÷7=18(千克)。
(2)8头奶牛15天可产牛奶多少千克18×8×15=2160(千克)。
解:(630÷5÷7)×8×15=2160(千克)。
答:可产牛奶2160千克。
例3 三台同样的磨面机时可以磨面粉2400千克,8台这样的磨面机磨25600千克面粉需要多少时间【反】分析与解:以1台磨面机1时磨的面粉为单一量。
(1)1台磨面机1时磨面粉多少千克2400÷3÷=320(千克)。
(2)8台磨面机磨25600千克面粉需要多少小时25600÷320÷8=10(时)。
综合列式为25600÷(2400÷3÷)÷8=10(时)。
例4 4辆大卡车运沙土,7趟共运走沙土336吨。
现在有沙土420吨,要求5趟运完。
问:需要增加同样的卡车多少辆【反】分析与解:以1辆卡车1趟运的沙土为单一量。
(1)1辆卡车1趟运沙土多少吨336÷4÷7=12(吨)。
(2)5趟运走420吨沙土需卡车多少辆420÷12÷5=7(辆)。
(3)需要增加多少辆卡车7-4=3(辆)。
综合列式为420÷(336÷4÷7)÷5-4=3(辆)。
与归一问题类似的是归总问题,归一问题是找出“单一量”,而归总问题是找出“总量”,再根据其它条件求出结果。
所谓“总量”是指总路程、总产量、工作总量、物品的总价等。
例5 一项工程,8个人工作15时可以完成,如果12个人工作,那么多少小时可以完成分析:(1)工程总量相当于1个人工作多少小时15×8=120(时)。
(2)12个人完成这项工程需要多少小时120÷12=10(时)。
解:15×8÷12=10(时)。
答:12人需10时完成。
例6 一辆汽车从甲地开往乙地,每小时行60千米,5时到达。
若要4时到达,则每小时需要多行多少千米分析:从甲地到乙地的路程是一定的,以路程为总量。
(1)从甲地到乙地的路程是多少千米60×5=300(千米)。
(2)4时到达,每小时需要行多少千米300÷4=75(千米)。
(3)每小时多行多少千米75-60=15(千米)。
解:(60×5)÷4——60=15(千米)。
答:每小时需要多行15千米。
例7 修一条公路,原计划60人工作,80天完成。
现在工作20天后,又增加了30人,这样剩下的部分再用多少天可以完成分析:(1)修这条公路共需要多少个劳动日(总量)60×80=4800(劳动日)。
(2)60人工作20天后,还剩下多少劳动日4800-60×20=3600(劳动日)。
(3)剩下的工程增加30人后还需多少天完成3600÷(60+30)=40(天)。
解:(60×80-60×20)÷(60+30)=40(天)答:再用40天可以完成。
例8 买三盏台灯和一个插座需付300元,买一盏台灯和三个插座需付200元,那么买一盏台灯和一个插座需付多少元(300+200)÷(1+3)=125(元)例9 买三个篮球和2个足球需要380元,买三个篮球和4个足球需要520元,买一个篮球需要多少元(520-380)÷2=70 380-70×2=240 240÷3=80(元)练习1.2台拖拉机4时耕地20公顷,照这样速度,5台拖拉机6时可耕地多少公顷2.4台织布机5时可以织布2600米,24台织布机几小时才能织布24960米3.一种幻灯机,5秒钟可以放映80张片子。
问:48秒钟可以放映多少张片子4.3台抽水机8时灌溉水田48公顷,照这样的速度,5台同样的抽水机6时可以灌溉水田多小公顷5.平整一块土地,原计划8人平整,每天工作时,6天可以完成任务。
由于急需播种,要求5天完成,并且增加1人。
问:每天要工作几小时6.食堂管理员去农贸市场买鸡蛋,原计划按每千克元买35千克。
结果鸡蛋价格下调了,他用这笔钱多买了2.5千克鸡蛋。
问:鸡蛋价格下调后是每千克多少元7.锅炉房按照每天吨的用量储备了120天的供暖煤。
供暖40天后,由于进行了技术改造,每天能节约吨煤。
问:这些煤共可以供暖多少天8.学校买来一些足球和篮球,已知买3个足球和5个篮球共花了281元;买3个足球和7个篮球共花了355元。
现在要买5个足球、4个篮球需要花多少元解答:1.75公顷。
时。
张。
4.60公顷。
时。
元。
天。
元。