关于温度控制系统论文

合集下载

本科毕业论文PID温控系统的设计及仿真

本科毕业论文PID温控系统的设计及仿真

CENTRAL SOUTH UNIVERSITY 本科生毕业论文题目PID温控系统的设计及仿真学生指导教师学院信息科学与工程学院专业班级完成时间年月摘要温度是工业控制的主要被控参数之一。

可是由于温度自身的一些特点,如惯性大,滞后现象严重,难以建立精确的数学模型等,给控制过程带来了难题。

要对温度进行控制,有很多方案可选。

PID 控制简单且容易实现,在大多数情况下能满足性能要求。

模糊控制的鲁棒性好,无需知道被控对象的数学模型,且在快速性方面有着自己的优势。

研究分析了PID 控制和模糊控制的优缺点,把两者相互结合,采用了用模糊规则整定P K 、I K 两个参数的模糊自整定PID 控制方法。

本研究以电烤箱为控制对象,用MATLAB 软件对PID 控制、模糊控制和参数模糊自整定PID 控制的控制性能分别进行了仿真研究。

仿真结果表明PID 对于对象模型复杂和模型难以确定的控制系统具有很大的局限性,不能满足调节时间短、超调小的技术要求。

由于模糊控制的理论(如量化因子和比例因子的确定问题)并不完善,其可能获得的控制性能无法把握,而且模糊控制易受模糊规则有限等级的限制而引起稳态误差。

参数模糊自整定PID 控制吸收前两种方法的长处,满足了调节时间短、超调量为零且稳态误差较小的控制要求。

因此本论文最终确定采用参数模糊自整定PID 控制方案。

本系统硬件采用了以 AT89C52 单片机为核心的温度控制器,选用 k 型热电偶为温度传感器结合MAX6675芯片构成前向通道,同时双向晶闸管和SSR 构成后向通道,由按键、LED 数码显示器及报警单元等组成人机联系电路。

关键词:单片机,PID ,模糊控制,仿真ABSTRACTTemperature is one of the main parameters in the industrial process control.Yetthere are difficultiesto have a good control oftemperature becauseof the characteristics of the temperature itself:the temperature inertia is great, its time-lag is serious and it is hardto establish an accurate mathematical model.There are many methods to be selected in order to control a system. The PID controlis simple,easily realized andin most casesit meetsthe control demand. Fuzzy control has the advantage of quickness,itsrobustness is good and there is no needto know theobject ’smathematical model.This paper analyses the advantages and disadvantages of both PID control and fuzzycontrol and es to the method of bining them together,fuzzy self-tuningPID control. In this method,P K and I K of the PID controller are adjusted by fuzzy control rules .In the paper simulations of PID control, fuzzy control and fuzzyself-tuning PID control are done by MATLAB to control a electric oven.Conclusions are that for those control objects of which models are plicated or hard to establish,the PID method has limitation and doesn ’t meet the control demand. As the fuzzy control method theory is not perfect, a good control performance cannot be expected. And it could easily cause the steady-state error for it is restricted by limited grades of the fuzzy rules.Finally the fuzzy self-tuning PID control method is selected, since it meets the control demands.In this paper AT89C52 is used as controller, toward access is posed of K which is used as the temperature sensor and MAX6675.Backward access is posed of bidirectional thyristor and SSR. Man-machine circuit is posed of keyboard, LED and warning unit, etc.Key words :Micro Controller, PID Control, Fuzzy Control, Simulation目 录摘要IABSTRACTII第一章绪论11.1 课题的提出及意义11.2 控制系统背景介绍11.3 当代温控系统及智能算法2第二章温控系统的设计52.1 温控系统的总体设计52.1.1 温控系统设计的基本原则52.1.2 温控系统的结构及设计62.2 温控系统的硬件设计72.2.1 前向通道设计72.2.2 后向通道设计102.2.3 人机通道设计11小结15第三章系统控制方案163.1 PID 控制163.1.1 PID的概述163.1.2 PID 控制的基本理论及特点163.2 模糊控制183.2.1 模糊控制的概述183.2.2 模糊控制的基本原理及特点183.3 模糊PID 控制19小结21第四章仿真研究224.1 MATLAB及其模糊逻辑工具箱和仿真环境simulink224.2 仿真和优选234.2.1 控制对象模型234.2.2 仿真和方案选择25小结32第五章总结与展望335.1 主要工作容335.2 工作小结335.3 存在的问题及未来的方向34结束语35参考文献36第一章绪论1.1 课题的提出及意义温度是生产过程和科学实验中非常普遍而又十分重要的物理参数。

温度控制系统设计论文

温度控制系统设计论文

温度控制系统设计论文引言:温度是物体分子热运动的表现,是物体内部微观热量分布状态的体现,温度控制的目的是使温度维持在恒定的设定值附近,使物体处于稳定的温度环境中。

温度控制系统的设计对于许多工业和生活领域都至关重要,例如,空调系统、制冷系统、加热系统等等。

本文将介绍一个基于反馈控制的温度控制系统的设计。

一、系统分析1.温度分析:首先需要对温度的变化规律进行分析,例如,物体的温度变化的时间特性、传热过程等等,这些信息对于系统设计是非常重要的。

2.系统要求分析:基于应用领域对系统精度要求的不同,需要确定系统对温度的精度要求、响应速度要求以及稳定性要求等等。

3.传感器选择:根据系统要求分析的结果,选择合适的温度传感器,例如热电偶、热敏电阻等等。

二、系统设计1.控制器设计:根据系统要求分析的结果,选择合适的控制器,并设计反馈控制算法。

可以采用PID控制器、模糊控制器或者模型预测控制等等。

根据系统的特点,可以对控制器进行参数调整,以使系统达到良好的控制效果。

2.执行器选择:根据系统控制要求,选择合适的执行器。

如果需要制冷,可以选择压缩机、蒸发器等等;如果需要加热,可以选择加热元件等等。

执行器的响应速度与系统的控制性能密切相关,因此需要选择合适的执行器以提高系统的控制效果。

3.信号处理:由于传感器输出的信号可能存在噪声,需要进行信号处理以提高系统的稳定性和抗干扰能力。

可以使用滤波算法或者其他信号处理技术进行处理。

三、系统实现1.硬件设计:根据系统设计的要求,选择合适的硬件平台,例如单片机、PLC等等。

设计电路图和PCB布局,将硬件连接起来,并与传感器和执行器进行连接。

2.软件设计:根据系统设计的要求,编写系统控制程序。

程序需要实现温度数据的采集和处理、控制器的运算、执行器的控制等等。

3.系统调试:完成硬件和软件的设计之后,进行系统的调试,包括控制算法的调整、传感器和执行器的校准等等。

通过对系统的调试,可以验证系统设计的合理性和可行性。

温度控制系统的设计_毕业设计论文

温度控制系统的设计_毕业设计论文

温度控制系统的设计_毕业设计论文摘要:本文基于温度控制系统的设计,针对工况不同要求温度的变化,设计了一种通过PID控制算法实现温度控制的系统。

该系统通过传感器对温度进行实时监测,并将数据传输给控制器,控制器根据设定的温度值和反馈的实际温度值进行比较,并通过PID算法进行控制。

实验结果表明,该温度控制系统具有良好的控制性能和稳定性。

关键词:温度控制系统;PID控制;控制性能;稳定性1.引言随着科技的发展,温度控制在很多工业和生活中都起到至关重要的作用。

温度控制系统通过对温度的监测和控制,可以保持系统的稳定性和安全性。

因此,在各个领域都有大量的温度控制系统的需求。

2.温度控制系统的结构温度控制系统的结构主要包括传感器、控制器和执行器。

传感器负责对温度进行实时监测,并将监测到的数据传输给控制器。

控制器根据设定的温度值和反馈的实际温度值进行比较,并通过PID控制算法进行控制。

执行器根据控制器的输出信号进行操作,调节系统的温度。

3.PID控制算法PID控制算法是一种常用的控制算法,通过对控制器进行参数调节,可以实现对温度的精确控制。

PID算法主要包括比例控制、积分控制和微分控制三部分,通过对每一部分的权值调节,可以得到不同的控制效果。

4.实验设计为了验证温度控制系统的性能,我们设计了一组温度控制实验。

首先,我们将设定一个目标温度值,然后通过传感器对实际温度进行监测,并将数据传输给控制器。

控制器根据设定值和实际值进行比较,并计算控制信号。

最后,我们通过执行器对系统的温度进行调节,使系统的温度尽量接近目标温度。

5.实验结果与分析实验结果表明,通过PID控制算法,我们可以实现对温度的精确控制。

在设定目标温度值为40℃的情况下,系统的稳态误差为0.5℃,响应时间为2秒。

在不同工况下,系统的控制性能和稳定性都得到了有效的保证。

6.结论本文基于PID控制算法设计了一种温度控制系统,并进行了相应的实验验证。

实验结果表明,该系统具有良好的控制性能和稳定性。

温度控制系统设计毕业设计论文

温度控制系统设计毕业设计论文

目录第一章设计背景及设计意义 (2)第二章系统方案设计 (3)第三章硬件 (5)3.1 温度检测和变送器 (5)3.2 温度控制电路 (6)3.3 A/D转换电路 (7)3.4 报警电路 (8)3.5 看门狗电路 (8)3.6 显示电路 (10)3.7 电源电路 (12)第四章软件设计 (14)4.1软件实现方法 (14)4.2总体程序流程图 (15)4.3程序清单 (19)第五章设计感想 (29)第六章参考文献 (30)第七章附录 (31)7.1硬件清单 (31)7.2硬件布线图 (31)第一章设计背景及研究意义机械制造行业中,用于金属热处理的加热炉,需要消耗大量的电能,而且温度控制是纯滞后的一阶惯性环节。

现有企业多采用常规仪表加接触器的断续控制,随着科技进步和生产的发展,这类设备对温度的控制要求越来越高,除控温精度外,对温度上升速度及下降速度也提出了可控要求,显而易见常规控制难于满足这些工艺要求。

随着微电子技术及电力电子技术的发展,采用功能强、体积小、价格低的智能化温度控制装置控制加热炉已成为现实。

自动控制系统在各个领域尤其是工业领域中有着及其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。

随着单片机技术的飞速发展,通过单片机对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向。

在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。

例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。

对工件的处理温度要求严格控制,计算机温度控制系统使温度控制指标得到了大幅度提高。

采用MCS-51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。

因此,单片机对温度的控制问题是一个工业生产中经常会遇到的问题。

基于单片机的温度控制系统设计毕业论文

基于单片机的温度控制系统设计毕业论文

基于单片机的温度控制系统设计毕业论文目录摘要 (I)Abstract (I)目录 (II)第一章绪论 (1)1.1课题研究背景及意义 (1)1.2国外研究现状 (1)1.2.1国外研究现状 (1)1.2.2国研究现状 (1)1.2.3总的发展阶段 (2)1.3课题研究的容 (2)第二章硬件系统总体方案设计 (3)2.1硬件系统总体设计方案一 (3)2.2硬件系统总体设计方案二 (4)2.3硬件系统的方案选择 (4)第三章控制系统硬件设计 (6)3.1单片机 (6)3.2 数字温度计DS18B20 (9)3.2.1 DS18S20数字温度计的主要特性 (9)3.3 4X4键盘 (9)3.4数码管 (10)3.5光电耦合器 (12)3.6 双向晶闸管 (13)3.7 PTC加热器 (14)3.8 反相器7406 (15)3.9双四输入与门74LS21 (16)3.9蜂鸣器 (16)第四章控制系统软件设计 (17)4.1 主程序模块设计 (17)4.1.1主程序流程图 (17)4.2温度采集模块程序设计 (18)4.2.1 DS18B20的时序 (18)4.2.3 读温度子程序流程图 (20)4.3温度设定模块程序设计 (21)4.3.1中断服务子程序 (21)4.3.2 键盘扫描子程序 (21)4.4温度显示模块设计 (23)4.4.1设定值显示子程序 (23)4.4.2 实际值显示子程序 (24)4.5温度控制模块设计 (25)4.5.1双位控制算法设计 (25)4.5.2温度控制子程序流程图 (25)4.6报警模块程序设计 (26)第五章结果分析 (27)5.1 PROTEUS仿真 (27)5.1.1 键盘设定温度仿真 (27)5.1.2 温度采集仿真 (28)5.1.3 整体仿真 (28)5.2实际运行结果 (29)第六章总结与展望 (31)6.1总结 (31)6.2展望 (31)致谢 (32)附录程序 (33)参考文献 (42)第一章绪论1.1课题研究背景及意义温度是表征物体冷热程度的物理量,是工农业生产过程中一个很重要而普遍的参数。

基于plc温度控制系统的设计论文

基于plc温度控制系统的设计论文

基于plc温度控制系统的设计论文摘要:本设计论文基于PLC温度控制系统,旨在设计一个可靠、稳定、高效、精确的温度控制系统,应用于实际工业生产中。

通过研究传感器、执行器、控制器等硬件设备的特性和功能,并结合PID控制算法和PLC编程技术,实现对温度的自动控制和实时监测。

关键词:PLC、温度控制系统、PID控制、编程技术Abstract:This design paper is based on the PLC temperature control system with the aim of designing a reliable, stable, efficient, precise temperature control system that can be applied in industrial production. Through research of the characteristics and functions of hardware equipment such as sensors, actuators, and controllers, combined with PID control algorithms and PLC programming technology, we will achieve automatic control and real-time monitoring of temperature.Keywords: PLC, temperature control system, PID control, programming technology一、引言随着科技和工业的进步,现代化工业生产中需要用到大量的自动化控制系统来实现对生产过程的智能控制,提高生产效率和品质,还能有效地降低生产成本。

其中,温度控制系统是工业生产中最常用的自动化控制系统之一。

关于温度控制系统论文

关于温度控制系统论文

前言随着电子技术的发展、数字电路应用领域的扩展,现今社会,产品智能化、数字化已成为人们追求的一种趋势,设备的性能、价格、发展空间等备受人们的关注,尤其对电子设备的精密度和稳定度最为关注随着单片机技术的不断发展,控制设备也跟着不断变化,对产品试验环境的要求也越来越严格。

鉴于此,环境温度是试验环境中的一项重点,环境温度的高低直接影响产品的电气和机械性能参数,环境温度的准确度对测试温度的方法要求越来越高,而对环境温度的控制更显的重要。

温度检测的传统方法是使用诸如热电偶、热电阻、半导体PN结之类的模拟温度传感器。

信号经取样、放大后通过模数转换,再交由单片机处理。

被测温度信号从温敏元件到单片机,经过众多器件,易受干扰、不易控制且精度不高。

为了准确的测试与控制环境温度,因此,本系统采用一种新型的可编程温度传感器DS18B20,它能代替模拟温度传感器和信号处理电路,直接与单片机沟通,完成温度采集和数据处理。

DS18B20与AT89S52结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。

第一章绪论随着信息时代的到来,智能化已是现代温度控制系统发展的主流方向。

特别是近年来,温度控制系统已应用到人们生活的各个方面,但温度控制一直是一个未开发的领域,却又是与人们息息相关的一个实际问题。

针对这种实际情况,设计一个温度控制系统,具有广泛的应用前景与实际意义。

温度是科学技术中最基本的物理量之一,物理、化学、生物等学科都离不开温度。

在工业生产和实验研究中,像电力、化工、石油、冶金、航空航天、机械制造、粮食存储、酒类生产等领域内,温度常常是表征对象和过程状态的最重要的参数之一[1]。

比如,发电厂锅炉的温度必须控制在一定的范围之内;许多化学反应的工艺过程必须在适当的温度下才能正常进行;炼油过程中,原油必须在不同的温度和压力条件下进行分馏才能得到汽油、柴油、煤油等产品。

没有合适的温度环境,许多电子设备就不能正常工作,粮仓的储粮就会变质霉烂,酒类的品质就没有保障。

关于温度控制系统论文

关于温度控制系统论文

前言随着电子技术的发展、数字电路应用领域的扩展,现今社会,产品智能化、数字化已成为人们追求的一种趋势,设备的性能、价格、发展空间等备受人们的关注,尤其对电子设备的精密度和稳定度最为关注随着单片机技术的不断发展,控制设备也跟着不断变化,对产品试验环境的要求也越来越严格。

鉴于此,环境温度是试验环境中的一项重点,环境温度的高低直接影响产品的电气和机械性能参数,环境温度的准确度对测试温度的方法要求越来越高,而对环境温度的控制更显的重要。

温度检测的传统方法是使用诸如热电偶、热电阻、半导体PN结之类的模拟温度传感器。

信号经取样、放大后通过模数转换,再交由单片机处理。

被测温度信号从温敏元件到单片机,经过众多器件,易受干扰、不易控制且精度不高。

为了准确的测试与控制环境温度,因此,本系统采用一种新型的可编程温度传感器DS18B20,它能代替模拟温度传感器和信号处理电路,直接与单片机沟通,完成温度采集和数据处理。

DS18B20与AT89S52结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。

第一章绪论随着信息时代的到来,智能化已是现代温度控制系统发展的主流方向。

特别是近年来,温度控制系统已应用到人们生活的各个方面,但温度控制一直是一个未开发的领域,却又是与人们息息相关的一个实际问题。

针对这种实际情况,设计一个温度控制系统,具有广泛的应用前景与实际意义。

温度是科学技术中最基本的物理量之一,物理、化学、生物等学科都离不开温度。

在工业生产和实验研究中,像电力、化工、石油、冶金、航空航天、机械制造、粮食存储、酒类生产等领域内,温度常常是表征对象和过程状态的最重要的参数之一[1]。

比如,发电厂锅炉的温度必须控制在一定的范围之内;许多化学反应的工艺过程必须在适当的温度下才能正常进行;炼油过程中,原油必须在不同的温度和压力条件下进行分馏才能得到汽油、柴油、煤油等产品。

没有合适的温度环境,许多电子设备就不能正常工作,粮仓的储粮就会变质霉烂,酒类的品质就没有保障。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前言随着电子技术的发展、数字电路应用领域的扩展,现今社会,产品智能化、数字化已成为人们追求的一种趋势,设备的性能、价格、发展空间等备受人们的关注,尤其对电子设备的精密度和稳定度最为关注随着单片机技术的不断发展,控制设备也跟着不断变化,对产品试验环境的要求也越来越严格。

鉴于此,环境温度是试验环境中的一项重点,环境温度的高低直接影响产品的电气和机械性能参数,环境温度的准确度对测试温度的方法要求越来越高,而对环境温度的控制更显的重要。

温度检测的传统方法是使用诸如热电偶、热电阻、半导体PN结之类的模拟温度传感器。

信号经取样、放大后通过模数转换,再交由单片机处理。

被测温度信号从温敏元件到单片机,经过众多器件,易受干扰、不易控制且精度不高。

为了准确的测试与控制环境温度,因此,本系统采用一种新型的可编程温度传感器DS18B20,它能代替模拟温度传感器和信号处理电路,直接与单片机沟通,完成温度采集和数据处理。

DS18B20与AT89S52结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。

第一章绪论随着信息时代的到来,智能化已是现代温度控制系统发展的主流方向。

特别是近年来,温度控制系统已应用到人们生活的各个方面,但温度控制一直是一个未开发的领域,却又是与人们息息相关的一个实际问题。

针对这种实际情况,设计一个温度控制系统,具有广泛的应用前景与实际意义。

温度是科学技术中最基本的物理量之一,物理、化学、生物等学科都离不开温度。

在工业生产和实验研究中,像电力、化工、石油、冶金、航空航天、机械制造、粮食存储、酒类生产等领域内,温度常常是表征对象和过程状态的最重要的参数之一[1]。

比如,发电厂锅炉的温度必须控制在一定的范围之内;许多化学反应的工艺过程必须在适当的温度下才能正常进行;炼油过程中,原油必须在不同的温度和压力条件下进行分馏才能得到汽油、柴油、煤油等产品。

没有合适的温度环境,许多电子设备就不能正常工作,粮仓的储粮就会变质霉烂,酒类的品质就没有保障。

因此,各行各业对温度控制的要求都越来越高。

可见,温度的测量和控制是非常重要的。

单片机在电子产品中的应用已经越来越广泛,在很多的电子产品中也用到了温度检测和温度控制。

由于传感器能将各种物理量、化学量和生物量等信号转变为电信号,使得人们可以利用计算机实现自动测量、信息处理和自动控制,但是它们都不同程度地存在温漂和非线性等影响因素[2]。

传感器主要用于测量和控制系统,它的性能好坏直接影响系统的性能。

因此,不仅必须掌握各类传感器的结构、原理及其性能指标,还必须懂得传感器经过适当的接口电路调整才能满足信号的处理、显示和控制的要求,而且只有通过对传感器应用实例的原理和智能传感器实例的分析了解,才能将传感器和信息通信和信息处理结合起来,适应传感器的生产、研制、开发和应用[3]。

另一方面,传感器的被测信号来自于各个应用领域,每个领域都为了改革生产力、提高工效和时效,各自都在开发研制适合应用的传感器,于是种类繁多的新型传感器及传感器系统不断涌现。

温度传感器是其中重要的一类传感器。

其发展速度之快,以及其应用之广,并且还有很大潜力。

第二章方案的论证与比较当将单片机用作测控系统时,系统总要有被测信号懂得输入通道,由计算机拾取必要的输入信息。

对于测量系统而言,如何准确获得被测信号是其核心任务;而对测控系统来讲,对被控对象状态的测试和对控制条件的监察也是不可缺少的环节。

传感器是实现测量与控制的首要环节,是测控系统的关键部件,如果没有传感器对原始被测信号进行准确可靠的捕捉和转换,一切准确的测量和控制都将无法实现[4]。

工业生产过程的自动化测量和控制,几乎主要依靠各种传感器来检测和控制生产过程中的各种参量,使设备和系统正常运行在最佳状态,从而保证生产的高效率和高质量。

2.1 温度采集方案方案一:采用热敏电阻,可满足-40摄氏度至90摄氏度测量范围,但热敏电阻精度、重复性、可靠性较差,而且需要价格昂贵的A/D转换器,对于检测小于1摄氏度的信号是不适用的[5]。

方案二:采用温度传感器DS18B20。

DS18B20可以满足从-55摄氏度到+125摄氏度测量范围,且DS18B20测量精度高,增值量为0.5摄氏度,在一秒内把温度转化成数字,测得的温度值的存储在两个八位的RAM中,单片机直接从中读出数据转换成十进制就是温度,使用单总线通讯,只占用一个I/O口,使用方便[6]。

基于DS18B20的以上优点,我们决定选取DS18B20来测量温度。

2.2显示界面方案方案一:采用数码管显示。

数码管是一类显示屏通过对其不同的管脚输入相对的电流会使其发亮从而显示出数字能够显示时间,日期,温度等所有可用数字表示的参数。

由于它的价格便宜使用简单,在电器特别是家电领域应用极为广泛,空调、热水器、冰箱等等绝大多数热水器用的都是数码管。

其优点是直观,成本低。

缺点是只能显示测量点温度值和有限的符号,电路复杂[7]。

方案二:采用字符LCD显示。

可以实现实时中英文操作提示,方便人际交换。

能同时显示多测量点温度值。

缺点:价格高,体积增大。

因为本系统设计显示多种模式,所以选择LCD显示。

2.3电源部分方案一:采用变压器从220V市电获得低压交流电,再通过整流、滤波及稳压后获得5V直流电。

此方案优点在于EMI干扰小,对电路没有高频干扰,且输出动态调整特性好,缺点是体积大,笨重,不便于安装,效率低,发热严重,且在交流电压波动比较严重的场合,可能无法正常输出。

方案二:采用全适应开关电源从220V市电直接获得5V直流稳定电压,供点阵及控制电路工作。

此方案优点在于电源体积小,重量轻,效率高。

另外,全适应开关电源输入电压范围是85-265V,适应全世界的电力电压,适合出口产品。

缺点是有一定高频干扰,且动态调整性能较差。

由于近几年开关电源技术发展迅速,开关电源的性能更加完善,且在过去的一年内,有色金属价格持续上涨,开关电源无论在性能还是价格上都有取代传统线性稳压电源的趋势。

综上所述,我们采用方案二。

2.4 键盘部分由于按键数目较少,采用独立按键的方案。

每只按键通过上拉电阻接在P0.X 口上,程序通过查询来检测按键状态。

第三章 系统组成3.1系统框图本节介绍了系统的主要功能和实现框图。

系统结构组成如图3-1所示:图3-1系统结构框图本系统主要由六部分组成:①温度测量18B2O 部分 ②单片机最小系统 ③按键部分 ④显示部分 ⑤声光提示部分 ⑥电源部分。

系统以单片机AT89S52为核心,温度传感器18B20将采集的温度信号转换成电信号传给单片机处理,并通过液晶屏1602显示温度信息。

通过按键可设置上限下限温度,当被测点温度超出设定的温度时,声光报警将会给出提示。

3.2 DS18B20温度测量部分本节主要讲了DS18B20的主要原理和测量方法。

3.2.1DS18B20的结构及原理由DALLAS 半导体公司生产的DS18B20型单线智能温度传感器,属于新一代适配微处理器的智能温度传感器,可广泛用于工业、民用、军事等领域的温度测量及控制仪器、测控系统和大型设备中。

它具有体积小,接口方便,传输距离远等特点。

产品的主要技术指标:①测量范围:-55℃-+125℃,②测量精度:0.5℃,③反应时间≤500ms [8]。

DS18B20的性能特点:①采用单总线专用技术,既可通过串行口线,也可通过其它I/O 口线与微机接口,无须经过其它变换电路,直接输出被测温度值(9位二进制数,含符号位),②测温范围为-55℃-+125℃,测量分辨率为0.0625℃,温度传感器18B20 按键电路1602 液晶显示电路光音提示电路AT89S52单片机系统③内含64位经过激光修正的只读存储器ROM,④适配各种单片机或系统机,⑤用户可分别设定各路温度的上、下限,⑥内含寄生电源[9]。

DS18B20内部结构DS18B20内部结构主要由四部分组成:64位光刻ROM,温度传感器,非挥发的温度报警触发器TH和TL,高速暂存器。

64位光刻ROM是出厂前被光刻好的,它可以看作是该DS18B20的地址序列号。

不同的器件地址序列号不同[10]。

DS18B20高速暂存器共9个存储单元,如表3-1所示:表3-1 DS18B20高速暂存器存储单元序号寄存器名称作用序号寄存器名称0 温度低字节以16位补码形式存放4、5 保留字节1、21 温度高字节 6 计数器余值2 TH/用户字节1 存放温度上限7 计数器/℃3 HL/用户字节2 存放温度下限8 CRC以12位转化为例说明温度高低字节存放形式及计算:12位转化后得到的12如果测得的温度大于0,这5位为0,只要将测到的数值乘于0.0625即可得到实际温度;如果温度小于0,这5位为1,测到的数值需要取反加1再乘于0.0625才能得到实际温度。

DS18B20控制方法在硬件上,DS18B20与单片机的连接有两种方法,一种是Vcc接外部电源,GND接地,I/O与单片机的I/O线相连;另一种是用寄生电源供电,此时UDD、GND接地,I/O接单片机I/O。

无论是内部寄生电源还是外部供电,I/O口线要接4-10KΩ左右的上拉电阻。

DS18B20有六条控制命令,如表3-2所示:表3-2 DS18B20的控制命令指令约定代码操作说明温度转换44H 启动DS18B20进行温度转换读暂存器BEH 读暂存器9个字节内容写暂存器4EH 将数据写入暂存器的TH、TL字节复制暂存器48H 把暂存器的TH、TL字节写到E2RAM中重新调E2RAM B8H 把E2RAM中的TH、TL字节写到暂存器TH、TL字节读电源供电方式B4H 启动DS18B20发送电源供电方式的信号给主CPUCPU对DS18B20的访问流程是:先对DS18B20初始化,再进行ROM操作命令,最后才能对存储器操作,数据操作[11]。

DS18B20每一步操作都要遵循严格的工作时序和通信协议。

如主机控制DS18B20完成温度转换这一过程,根据DS18B20的通讯协议,须经三个步骤:每一次读写之前都要对DS18B20进行复位,复位成功后发送一条ROM指令,最后发送RAM指令,这样才能对DS18B20进行预定的操作3.2.2利用DS18B20的实时温度测量电路的设计DS18B20 的实时温度显示电路如图3-2所示:图3-2 DS18B20 的实时温度显示电路DS18B20只需要3根线便可以完成全部连接,分别是VCC、GND以及I/O,VCC与GND线直接接系统5V电源。

由于测量线路比较长,为了防止电源线路受到干扰引起DS18B20工作不正常,在器件临近处电源线两端并联一只0.1uF (104)的高温瓷片电容,起退偶作用,在单片机临近处的数据线上对地并联一只20pF的小电容,用来吸收高频干扰。

相关文档
最新文档