路基稳定性验算
第四章路基稳定性分析计算(路基工程)

第四章路基稳定性分析计算(路基工程)路基工程第四章路基稳定性分析计算4.1边坡稳定性分析原理4.2直线滑动面的边坡稳定性分析4.3曲线滑动面的边坡稳定性分析4.4软土地基的路基稳定性分析4.5浸水路堤的稳定性分析4.6路基边坡抗震稳定性分析一、边坡稳定原理:力学计算基本方法是分析失稳滑动体沿滑动面上的下滑力T与抗滑力R,按静力平衡原理,取两者之比值为稳定系数K,即K=R T1、假设空间问题—>平面问题(1)通常按平面问题来处理(2)松散的砂性土和砾(石)土在边坡稳定分析时可采用直线破裂法。
(3)粘性土在边坡稳定分析时可采用圆弧破裂面法。
一、边坡稳定原理:一般情况下,对于边坡不高的路基(不超过8.0的土质边坡,不超过12.0m的石质边坡),可按一般路基设计,采用规定的边坡值,不做稳定性分析;地质与水文条件复杂,高填深挖或特殊需要的路基,应进行边坡稳定性分析计算,据此选定合理的边坡及相应的工程技术。
一、边坡稳定原理:边坡稳定分析时,大多采用近似的方法,并假设:(1)不考虑滑动土体本身内应力的分布。
(2)认为平衡状态只在滑动面上达到,滑动土体整体下滑。
(3)极限滑动面位置需要通过试算来确定。
二、边坡稳定性分析的计算参数:(一)土的计算参数:1、对于路堑或天然边坡取:原状土的容重γ,内摩擦角和粘聚力2、对于路堤边坡,应取与现场压实度一致的压实土的试验数据3、边坡由多层土体所构成时(取平均值)c = i=1n c i ?ii=1n ?itanφ= i=1n ?i tgφii=1n ?iγ= i=1n γi ?ii=1n ?i第一节边坡稳定性分析原理二、边坡稳定性分析的计算参数:(二)边坡稳定性分析边坡的取值:对于折线形、阶梯形边坡:取平均值。
(三)汽车荷载当量换算:边坡稳定分析时,需要将车辆按最不利情况排列,并将车辆的设计荷载换算成当量土柱高,以?0表示:0=NQγBL式中:N—横向分布的车辆数(为车道数);Q—每辆重车的重力,kN (标准车辆荷载为550kN);L—汽车前后轴的总距;B—横向分布车辆轮胎最外缘之间的距离;B=Nb+(N-1)m+d式中:b—后轮轮距,取1.8m;m—相邻两辆车后轮的中心间距,取1.3m;d—轮胎着地宽度,取0.6m;三、边坡稳定性分析方法:一般情况,土质边坡的设计,先按力学分析法进行验算,再以工程地质法予以校核,岩石或碎石土类边坡则主要采用工程地质法,有条件时可以力学分析进行校核。
《路基工程》路基稳定性验算概念课件 (一)

《路基工程》路基稳定性验算概念课件 (一)《路基工程》路基稳定性验算概念课件是一份非常有用的资料,其内容涉及到路基工程中一项非常重要的部分——路基稳定性验算。
在这份课件中,我们可以学到路基稳定性验算的相关概念、验算原理和方法,以及一些实际案例的应用和分析。
下面从以下几个方面对该课件进行详细介绍和分析。
一、概念解析该课件首先对路基和路基稳定性验算的相关概念进行了解析和说明。
路基是公路工程中最基本的构造部分之一,它是公路水平线、纵断面和横断面上的地基部分。
路基稳定性验算是指对路基工程进行力学计算和工程设计所必需的稳定性验算。
二、验算原理与方法在课件的第二部分,我们可以学到路基稳定性验算的原理和方法。
课件详细讲述了路基设计中的负荷计算、土体参数的测试方法、土体稳定性分析的理论和方法、路基稳定性分析方法以及影响因素等方面的内容。
这些内容对路基的稳定性验算来说都非常重要,可以帮助我们更好地进行稳定性计算和设计。
三、案例应用分析课件最后一部分,是通过一些实际案例来应用及分析路基稳定性验算的方法和原理。
这些案例中,涉及到不同类型的路基工程,如高速公路、水利工程等,并且分别解析了其稳定性验算的方法和步骤。
这些案例的具体分析更方便我们了解到如何在实际中正确进行路基稳定性验算,也方便我们更好地理解路基稳定性验算的重要性和技术难点。
在整份课件中,课件内容条理清晰、系统完整,且都配有图表和实例数据加以说明,让学生能够更好地理解路基稳定性验算的理论、方法和实际应用,掌握相应的技能和知识,更好地为公路工程服务。
总之,学习该课件的学生可以对路基工程进行更为准确、全面的稳定性验算,从而更好地保障公路工程的安全和可靠性。
4.5H法验算路基稳定性

注:本文档为手算计算书文档,包含公式、计算过程在内,可供老师教学,可供学生学习。
下载本文档后请在作者个人中心中下载对应Excel计算过程。
(若还需要相关cad 图纸或者有相关意见及建议,请私信作者!)团队成果,侵权必究!路基稳定性验算对于地质与水文条件复杂、高填深挖、地面坡度陡于1:2.5的边坡,应进行边坡稳定验算。
本路基设计中出现了较高路堤和深路堑,需要进行边坡稳定性验算;同时结合实际情况,选定合理的工程技术措施提高路基稳定性。
高路堤边坡稳定性计算本路线中桩号K2+060处边坡填土高度最大为8.46m,填土高度较大,须进行路堤稳定性验算,验算采用圆弧滑动面条分法进行计算。
基本资料:土质路堤边坡高H=8.46m,设置边坡坡率为:边坡1:1.5;现拟定填土的粘聚力C=32kpa,内摩擦角φ=35°,容重γ=20kN/m³,地基土的粘聚力C=0,内摩擦角φ=35°,容重γ=20kN/m³。
计算荷载为公路一I级汽车荷载。
计算过程如下:(1)行车荷载换算高度h0按下式计算换算土柱高h0为:0NQhBLγ=式中:L—前后轮最大轴距,按《公路工程技术标准》(JTG B01-2014)规定对于标准车辆荷载为为12.8m;B—横向分布宽度:=(1)B Nb N m d+-+=2×1.8+(2-1)×1.3+0.6=5.5m因此ℎ0=NQBLγ=4×5505.5×12.8×20=0.78125m由于行车荷载对较高路堤边坡稳定性影响较小,为简化计算,将换算高度分布于路基全宽上。
(2)确定圆弧辅助线位置本例按4.5H法确定滑动圆心辅助线。
由上图可知,边坡坡比为1:1.5时,β=33.69°,查规范得1β=26°,2β=35°。
根据4.5H 法确定圆心位置,如下图。
图5-1 4.5H 法确定圆心(3)计算位置选取:①通过路基中线;②通过路基右边缘;③通过距路基右边缘1/4路基宽度处。
路基稳定性分析

S i + E i − E i -1) cos α i = W i sin α i + Q i cos α i ( ∆ E i = E i − E i - 1 = W i tg α i + Q i − S i sec α
∑(
yi
c iℓ i + N if i )R = Ks
∑W X
i
i
+ ∑ Qi Z i
i i
αi Wi Qi Si Ni αi
Ks =
∵ N i = Wi cos α i − Qi sin α i
∑(C ℓ + N f ) z (W Sinα + Q ) ∑ R
i i i i i i
+ (W i cos α i − Q i sin α i ) f i ] Ks zi y ∑ (W i Sin α i + Q i R ) 一般情况下, 相比很小, 相差不大, 一般情况下,Qi与Wi相比很小,或Zi与Yi相差不大,则Qi ·Zi/R近似用 近似用 Qicosαi代替。 α 代替。 ∑[Ciℓi + (Wi cosαi −Qi sin αi ) fi ] Ks = ∑(Wi Sinαi +Qi cosαi )
∑ [C ℓ =
i
i
此法因为未考虑条间力,故算出的 偏小 偏低可达10%~20% 偏小。 10%~20%, 此法因为未考虑条间力,故算出的Ks偏小。偏低可达10%~20%,过 于保守,但计算简单,故广泛采用,不过仅适用于园弧滑动面情况。 于保守,但计算简单,故广泛采用,不过仅适用于园弧滑动面情况。
路基路面工程问答题及答案

路基路面工程问答题
1. 重力式挡土墙通常可能出现哪些破坏?稳定性验算主要有哪些项目?
答:(1)常见的破坏形式:
1)沿基底滑动; 2)绕墙趾倾覆; 3)墙身被剪断;
4)基底应力过大,引起不均匀沉降而使墙身倾斜;
(2)稳定性验算的主要项目是抗滑和抗倾覆。
2.简述沥青路面的损坏类型及产生的原因。
答:沥青路面的损坏类型及产生的原因:
(1)沉陷:主要原因是路基土的压缩;
(2)车辙:主要与荷载应力大小、重复作用次数、结构层材料侧向位移和土基的补充压实有关;
(3)疲劳开裂:与复应力的大小及路面环境有关;
(4)推移:是由于车轮荷载引起的垂直、水平力的综合作用,使结构层内产生的剪应力超过材料抗剪强度造成的;
(5)低温缩裂:由于材料的收缩限制而产生较大的拉应力,当它超过材料相应条件下的抗拉强度时产生开裂。
路基边坡稳定性验算

路基边坡稳定性验算计算书
一、计算说明
本设计路线中,以K0+080断面路堑边坡高度(H=30m)最高,故本计算算例取K0+080断面边坡进行计算。
具体边坡稳定性分析参数:路基填土为低液限粘土,粘聚力c=10Kpa,内摩擦角27度。
容重r=17KN/m3,荷载为公路Ⅰ级。
计算方法采用4.5H法确定圆心辅助线。
此边坡坡率不一致,故采用平均坡度进行计算,经计算可知此边坡的平均坡度为1:1.如下图示:
二、计算过程分析
计算原理采用瑞典条分法,将圆弧滑动面上的土体按照6m的宽度进行划分。
下图所示为o1圆弧滑动面的计算实例
采用计算表格可得计算结果:
L=
=R θπ
180
88.02m 则边坡稳定系数为: =
+=
∑∑i
hi b i
hi b cL Ks θγθϕγsin cos tan =⨯⨯⨯⨯⨯+⨯505
.9661701
.23927tan 61702.8810 1.35>1.25
按照上述方法一一计算出o2、o3、o4、o5处的稳定系数分别为1.32、1.29、1.33、1.37.故取Ks=1.29为最小的稳定系数,此时由于Ks>1.25,所以边坡稳定性满足要求。
路基边坡稳定性设计

滑动面 T N θ α A G
G
2 H
sin( ) 2 sin sin
当土体处于极限平衡状态 时,挖方边坡的允许最大高 度可按下式计算:
式中,γ----土的容重(kN/m3) θ----边坡的坡度角(°) Φ----土的内摩擦角(°) 不考虑稳定系数K。 即K=1.0 c----土的粘聚(kN/m2) 由上式,如知土的γ、φ、c值,假定开挖边坡的坡度 角θ值,即可得挖方边坡的允许最大高度H值。 由上式还可知以下情况: 1、当θ=φ时,H=∞,即边坡的极限高度不受限制,土坡 处于平衡状态,此时土的粘聚力未被利用。
挖方安全边坡的计算
土方开挖,一般应根据土的类别按施工及验收规范规定放坡, 以保证边坡稳定和施工安全。以下简介通过计算确定边坡的方 法,只要知道土的容重、内摩擦角和粘聚力值(无地质资料时, 可查有关手册),便可由计算确定安全边坡。
如图,假定边坡滑动面通过 坡脚一平面,滑动面上部土 体为ABC,其重力为:
由于砂类土粘聚力很小,一般可忽略不计,即取,则可表达为
K R tan T tan
当K=1时, tan tan ,抗滑力等于下滑力,滑动面土体处于极 限平衡状态,此时路堤的极限坡度等于砂类土的内摩擦角,该角相当 于自然休止角。当K>1时,路堤边坡处于稳定状态,且与边坡高度无 关;当K<1时,则不论边坡高度多少,都不能保持稳定。
参数A、B查P79表4-2。
软土地基的路基稳定性分析
软土——是有由天然含水量大、压缩性高、承载能力低的淤泥沉积物 及少量腐殖质所组成的土。
主要有:淤泥、淤泥质土、泥炭。
处理方法:(1)薄层淤泥(d≤3m):清除换好土。
4.路基稳定性的分析与计算

设作用于分条上的水平 总合力为Qi,则: 取滑面上能提供的抗滑 力矩为Mr,与滑动力矩M0之 比为安全系数k,则有:
其中:
15
瑞典法存在的问题: 滑面为圆弧面及不考虑分条间作用力的2个假设, 使分析计算得到极大的简化,但也因此出现一定误差: 1.滑动面的形状问题 现实的边坡破坏,滑动面并非真正的圆弧面。但大 量试验资料表明,均质土坡的真正临界剪切面与圆弧 面相差无几,按圆弧法进行边坡稳定性验算,所得的 安全系数其偏差约为0.04。但这一假定对非均质边坡, 则会产生较大的误差。 2.分条间的作用力问题 无论何种类型的边坡,坡内土体必然存在一定的应 力状态;边坡失稳时,还将出现一种临界应力状态。 这两种应力状态的存在,必然在分条间产生作用力, 通常包括分条间的水平压力和竖向摩擦阻力。
根据这一假定滑动面上的抗滑阻力t根据图在滑动面上沿着x轴建立平衡式这时滑动面上的下滑力s当边坡达到极限平衡状态时滑动面上的抗滑阻力与下滑力相等可根据上列两式相等的条件求得分条两侧边的土压力增值e21按竖直方向上的平衡条件可以求得滑动面上的法又根据水平方向的平衡条件可求得整个边坡的安全系数为
1
边坡滑坍是工程中常见的病害之一。路基的稳定 性包括:①边坡稳定;②基底稳定;③陡坡上路堤整体 稳定。 这一讲主要介绍边坡稳定性分析方法。此外,还 将介绍浸水路堤以及地震地区路基稳定性问题。
分析时,可按单向固结理论进行计算。当边坡上的地 表不存在附加荷载或附加荷载下地基已达到完全固结, 或者是计算岩质边坡的稳定性时,则不必考虑超水压 力对边坡稳定性的影响。 地下水渗透压力的计算比较麻烦,在工程设计中, 通常有2种作法,即精确解和简化计算法。 1.精确解 通过对流线的数学分析或 根据试验,计算出各点的流速, 可得到比较精确的解。但计算 比较麻烦,工程中通常不采用。 2.简化计算法 基于任一点的渗透压力等于静水压力来进行分析, 简化计算法能满足工程设计要求,常被工程设计 18
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
滑动面圆心辅助线——4.5H法
基本步骤:
(1)通过坡脚任意选定可能发生的圆
弧滑动面AB,其半径为R; (2)计算每个土条的土体重G(
(3)计算每一小段滑动面上的反力;
(4)计算滑动力矩和抗滑力矩; (5)求稳定系数值。
M s R( Ti Ti )
M R R( Ni f cLi )
分析方法可按滑动面形状的不同分为直线和折线两种方法。
一、陡坡路堤边坡稳定性分析方法 1.直线法 基底为单一坡面,土体沿直线滑动面整体下滑时,可用直线滑动面法 。 K=(Q+P)cosα tgφ +cL/ (Q+P)sinα
2.折线滑动面法
二、稳定加固措施
1.改善基底,增加滑动面的抗滑力或减少滑动力
C、确定β1、 β 2
0 0 KK 0 3 K2 1 I 3
2 1
h
β
2
0
β
1
S
D、确定I点 E、连接I点和M点,并延 长,即得辅助线
H H
E F
4. 5H
M
滑动面圆心辅助线
36° 法
边坡斜度 io 1∶0.5 1∶1.0 1∶1.5 1∶2.0 1∶3.0 1∶4.0 边坡倾斜 角θ 63° 26′ 45° 33° 41′ 26° 34′ 18° 26′ 14° 03′ β1 29° 28° 26° 25° 25° 25° β2 40° 37° 35° 35° 35° 36°
(2)内摩擦角φ
(3)黏结力c,KPa。
2.图解或表解法中多层土体验算参数的确定
多层土的参数的确定:
第二节 高路堤和深路堑的边坡稳定性验算
1、力学验算法包括:直线法、圆弧法和不平衡推力法三种。 2、工程地质类比法 根据稳定的自然山坡或已有的人工边坡进行土类及其状态的分析研究 ,通过工程地质条件相对比,拟定出与路基边坡条件相类似的稳定值 的参考数据,作为确定路基边坡值的依据。 一般:
• 开挖台阶,放缓边坡
• 清除坡积层,夯实基底 • 选择较大颗粒填料。
2.加强排水设施 3.设置支挡结构物
• 可在坡脚处设置石砌护脚、干砌或浆砌挡土 墙等END来自二、汽车荷载当量高度计算
目的:计算车辆荷载在路基填士破坏棱体上引起的附加土侧压力
要求:按车辆最不利情况排列,规定作横向布置,车辆外侧车轮中线 距路面边缘0.5m 方法: 1、按图排列: 2、计算:
三、边坡稳定性验算的计算参数
1.边坡稳定性验算所需土的试验资料 (1)土的重度γ,KN/m3。
第四章 路基稳定性验算
主要内容
第一节
概念
第二节 高路堤和深路堑的边坡稳定性验算 第三节 陡坡路堤的稳定性验算
第一节 概述
路基边坡稳定性分析验算,是路基设计的主要内容之一。 边坡稳定性分析和验算方法:
• 力学验算法 • 工程地质法
其中:在力学验算法
• 数解法 • 图解或表解法
路基边坡稳定性分析验算,是路基设计的主要内容之一。 有几种情况须进行设计与验算:
• 1)边坡高度超过20m的路堤 • 2)土质挖方边坡高度超过20m路堑 • 3)岩石挖方边坡高度超过30m路堑 • 4)陡斜坡路堤(讲解)
• 5)浸水的沿河路堤
• 6)特殊地段的路基
边坡破坏形式
路基边坡滑坍,是公路上常见的破坏现象之一,常发生于长期降雨 。 边坡滑坍滑动面的形状与土质有关,一般的形状有: ——平面、曲面,折线直面. ——为简化计算,边坡滑动断面可选用: 直线——砂土及砂性土 圆曲线——黏性土 折线——不同土层 滑动面形状如图所示:
基本假定:
1.滑动面为通过坡脚的圆柱面; 2.不考虑土体的内应力分布及各土条之间相互作用力的影响; 3.安全系数为抗滑力矩比滑动力矩。
需解决问题:
1.滑动面位置; 2.安全系数K; 3.最小安全系数Kmin; 4.判断边坡稳定性。
滑动面圆心辅助线——4.5H法
步骤: A、确定F点
G
B、确定M点
土质边坡——力学验算法(设计),工程地质类比法(校核) 岩石或碎石土类边坡——工程地质类比法
直线滑动面法
K
F G cos tan cL T G sin
当路堤填料为纯净的粗砂、中砂、砾石、碎石时
F K T
tan tan
二、圆弧滑动面法
适用于粘性土边坡。
f Qi cos i cL MR K Ms Qi sin i
第三节 陡坡路堤的稳定性验算
一、陡坡路堤 当路基修筑在陡坡上,且地面横破大于1:2.0或在不稳固的山坡上, 路基不仅要分析路堤边坡稳定性,还要分析路堤沿陡坡或不稳定山
坡下滑的稳定性。
陡坡路堤边坡稳定性分析假定路堤整体沿滑动面下滑,边坡稳定性