磁场中的多解问题
带电粒子在磁场中运动的多解问题课件

期与磁感应强度变化的周期都为T0,不考虑由于磁场变化而产生的电 场的影响,不计离子所受重力.求:
(1)磁感应强度B0的大小; (2)要使正离子从O′孔垂直于N板射出磁场, 正离子射入磁场时的速度v0的可能值.
正离子在MN之间可 能会有怎样的运动 情况如何?
多解问题
(1)明确带电粒子ห้องสมุดไป่ตู้电性和磁场方向; (2)正确找出带电粒子运动的临界状态; (3)结合带电粒子的运动轨迹利用圆周运动的周期性进行分 析计算。
的偏转角;若已知弧长,则可由 t=vl求时间. (4)粒子轨迹圆与边界相切时,是粒子能否射出边界的临界状态, 求出此圆的半径可得到能否射出边界的速度大小.
如图所示,在NOQ范围内有垂直于纸面向里的匀强磁场Ⅰ,在MOQ 范围内有垂直于纸面向外的匀强磁场Ⅱ,M、O、N在一条直线上 ,∠MOQ=60°,这两个区域磁场的磁感应强度大小均为B。离子源 中的离子带电荷量为+q,质量为m,通过小孔O1进入两板间电压为 U的加速电场区域(可认为初速度为零),离子经电场加速后由小孔 O2射出,再从O点进入磁场区域Ⅰ,此时速度方向沿纸面垂直于磁场 边界MN,不计离子的重力。 (1)若加速电场两极板间电压U=U0, 求离子进入磁场后做圆周运动的半径R0; (2)在OQ上有一点P,P点到O点的 距离为L,若离子能通过P点,求加 速电压U和从O点到P点的运动时间。
如图示,在x轴上方有一匀强磁场,磁感应强度为B;x轴下方 有一匀强电场,电场强度为E。屏MN与y轴平行且相距L。一质 量m,电荷量为e的电子,在y轴上某点A自静止释放,如果要使 电子垂直打在屏MN上,那么: (1)电子释放位置与原点O的距离s需满足什么条件? (2)电子从出发点到垂直打在屏上需要多长时间?
3. 临界状态不唯一形成多解:带电粒子 在洛伦兹力作用下飞越有界磁场时,由 于粒子运动轨迹是圆弧状,因此,它可 能穿过去了,也可能转过180°从入射 界面这边反向飞出,如图所示,于是形 成了多解.
2024年高考物理热点磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型(解析版)

磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型1.高考命题中,带电粒子在有界磁场中的运动问题,常常涉及到临界问题或多解问题,粒子运动轨迹和磁场边界相切经常是临界条件。
带电粒子的入射速度大小不变,方向变化,轨迹圆相交与一点形成旋转圆。
带电粒子的入射速度方向不变,大小变化,轨迹圆相切与一点形成放缩圆。
2.圆形边界的磁场,如果带电粒子做圆周运动的半径如果等于磁场圆的半径,经常创设磁聚焦和磁发散模型。
一、分析临界极值问题常用的四个结论(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速率v 一定时,弧长越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长,(3)当速率v 变化时,圆心角大的,运动时间长,解题时一般要根据受力情况和运动情况画出运动轨迹的草图,找出圆心,再根据几何关系求出半径及圆心角等(4)在圆形匀强磁场中,当运动轨远圆半径大于区域圆半径时,入射点和出射点为磁场直径的两个端点时轨迹对应的偏转角最大(所有的弦长中直径最长)。
二、“放缩圆”模型的应用适用条件速度方向一定,大小不同粒子源发射速度方向一定,大小不同的带电粒子进入匀强磁场时,这些带电粒子在磁场中做匀速圆周运动的轨迹半径随速度的变化而变化轨迹圆圆心共线如图所示(图中只画出粒子带正电的情景),速度v 越大,运动半径也越大。
可以发现这些带电粒子射入磁场后,它们运动轨迹的圆心在垂直初速度方向的直线PP ′上界定方法以入射点P 为定点,圆心位于PP ′直线上,将半径放缩作轨迹圆,从而探索出临界条件,这种方法称为“放缩圆”法三、“旋转圆”模型的应用适用条件速度大小一定,方向不同粒子源发射速度大小一定、方向不同的带电粒子进入匀强磁场时,它们在磁场中做匀速圆周运动的半径相同,若射入初速度为v 0,则圆周运动半径为R =mv 0qB。
如图所示轨迹圆圆心共圆带电粒子在磁场中做匀速圆周运动的圆心在以入射点P 为圆心、半径R =mv 0qB的圆上界定方法将一半径为R =mv 0qB的圆以入射点为圆心进行旋转,从而探索粒子的临界条件,这种方法称为“旋转圆”法四、“平移圆”模型的应用适用条件速度大小一定,方向一定,但入射点在同一直线上粒子源发射速度大小、方向一定,入射点不同,但在同一直线的带电粒子进入匀强磁场时,它们做匀速圆周运动的半径相同,若入射速度大小为v 0,则半径R =mv 0qB,如图所示轨迹圆圆心共线带电粒子在磁场中做匀速圆周运动的圆心在同一直线上,该直线与入射点的连线平行界定方法将半径为R =mv 0qB的圆进行平移,从而探索粒子的临界条件,这种方法叫“平移圆”法五、“磁聚焦”模型1.带电粒子的会聚如图甲所示,大量的同种带正电的粒子,速度大小相同,平行入射到圆形磁场区域,如果轨迹圆半径与磁场圆半径相等(R =r ),则所有的带电粒子将从磁场圆的最低点B 点射出.(会聚)证明:四边形OAO ′B 为菱形,必是平行四边形,对边平行,OB 必平行于AO ′(即竖直方向),可知从A 点发出的带电粒子必然经过B 点.2.带电粒子的发散如图乙所示,有界圆形磁场的磁感应强度为B ,圆心为O ,从P 点有大量质量为m 、电荷量为q 的正粒子,以大小相等的速度v 沿不同方向射入有界磁场,不计粒子的重力,如果正粒子轨迹圆半径与有界圆形磁场半径相等,则所有粒子射出磁场的方向平行.(发散)证明:所有粒子运动轨迹的圆心与有界圆圆心O 、入射点、出射点的连线为菱形,也是平行四边形,O 1A (O 2B 、O 3C )均平行于PO ,即出射速度方向相同(即水平方向).(建议用时:60分钟)一、单选题1地磁场能抵御宇宙射线的侵入,赤道剖面外地磁场可简化为包围地球一定厚度的匀强磁场,方向垂直该部面,如图所示,O为地球球心、R为地球半径,假设地磁场只分布在半径为R和2R的两边界之间的圆环区域内(边界上有磁场),磷的应强度大小均为B,方向垂直纸面向外。
带电粒子在磁场中运动的多解问题

带电粒子在磁场中运动的多解问题带电粒子在只受洛仑兹作用下的圆周运动考查的重点都集中在粒子在有边界的磁场中做不完整的圆周运动的情况,由于题设中隐含条件的存在,就会出现多解问题,下面通过实例对此类问题进行分析。
一、粒子的带电性质不明的情况【例1】如图1所示,匀强磁场的磁感应强度为B,方向垂直纸面向里,MN是它的下边界。
现有质量为m,电荷量大小为q的带电粒子与MN成30°角垂直射入磁场,求粒子在磁场中运动的时间.二、磁场方向的不确定带电粒子在磁场方向不同的磁场中,所受洛伦兹力的方向是不同的,在磁场中运动的轨迹就不同,若题目中只告诉磁感应强度的大小,而未具体指出磁感应强度的方向,此时必须要考虑磁感应强度方向不确定而形成的双解。
【例2】(2007年全国卷Ⅱ)如图2所示,一带负电的质点在固定的正的点电荷作用下绕该正电荷做匀速圆周运动,周期为T0,轨道平面位于纸面内,质点速度方向如图2中箭头所示,现加一垂直于轨道平面的匀强磁场,已知轨道半径并不因此而改变,则()A.若磁场方向指向纸里,质点运动的周期将大于T0B.若磁场方向指向纸里,质点运动的周期将小于T0C.若磁场方向指向纸外,质点运动的周期将大于T0D.若磁场方向指向纸外,质点运动的周期将小于T0三、临界条件不唯一的情况【例3】如图3所示,M、N是两块水平放置的平行金属板,板长为L,板间距离为d,两板间存在磁感应强度为B,方向垂直于纸面向里的匀强磁场。
有一质量为m,电荷量为q 的带正电粒子从磁场左侧靠近N板处水平射入,欲使粒子不能打到金属板上,则粒子的入射速度v应满足什么条件?四、运动的反复性带电粒子在复合场中运动时,或与挡板等边界发生碰撞,将不断地反复在磁场中运动,也会形成一些多解问题。
【例4】如图4所示,半径为r的圆筒中有沿圆筒轴线方向、大小为B的匀强磁场,质量为m、带电荷量为+q的粒子以速度v从筒壁小孔A处沿半径方向垂直磁场射入筒中,若它在筒中仅受洛伦兹力作用,且与筒的碰撞无能量损失,并保持原有电荷量,粒子在筒中与壁相撞并绕壁一周仍从A孔射出,则B的大小必须满足什么条件?五、粒子运动的周期性引起的多解问题【例5】如图5所示,垂直纸面向里的匀强磁场以MN为边界,左侧磁感应强度为B1,右侧磁感应强度为B2,B1=2B2=2T,荷质比为2×106C/kg的带正电粒子从O点以v0=4×104m/s 的速度垂直MN进入右侧的磁场区域,求粒子通过距离O点4cm的磁场边界上的P点所需的时间。
带电粒子在磁场中运动多解问题归类分析

带电粒子在磁场中运动多解问题归类分析作者:刘德华来源:《中学教学参考·理科版》2014年第05期新课程改革要求着力培养学生的创新能力,近年高考中经常出现多解问题。
要解答好多解问题,要求学生具有相应的发散性思维能力。
带电粒子在磁场中运动类问题是高考中常出现的问题,分析研究带电粒子在磁场中运动的多解问题,提高考生对这类题的解题能力,提高考生的高考得分能力,对广大高三师生而言,具有重要的意义。
造成带电粒子在磁场中运动时多解的原因主要有以下几种:1.带电粒子所带电荷电性不确定造成多解;2.带电粒子运动方向不确定造成多解;3.带电粒子速度大小不确定造成多解;4.磁场方向不确定造成多解;5.临界状态不确定造成多解;6.粒子运动的周期性造成多解。
下面结合例题进行分类分析。
一、带电粒子带电性的不确定造成多解图1电荷有正有负,有不少试题,没有明确题中所说的带电粒子是带正电荷,还是带负电荷,这时解题者应当分别讨论粒子带正电荷和带负电荷两种情况,从而保证试题解答的完整性。
分析:由于运动电荷在磁场中所受洛伦兹力的方向与其带电性质有关,所以带电小球第一次经过最低点时,所受洛伦兹力的方向就有可能不同,在分析时通过画出第一次经过最低点时的受力示意图,让学生深刻理解多解的情况,拓宽学生思维的广度和深度。
二、速度方向的不确定造成多解速度具有方向性,有不少试题,没有明确题中所说的研究对象的运动方向,这时解题者应当考虑带电粒子速度方向的不确定所造成的洛伦兹力方向的多样性,以防漏解。
变式:上题中,若小球带正电,则小球通过最低点时,悬线对小球的拉力多大?分析:由于运动电荷在磁场中所受洛伦兹力方向与其运动方向有关,所以小球经过最低点时,所受洛伦兹力的方向就有两种,通过发散性思维,在分析时画出从A点摆到C点时以及从B点回到C点时小球的受力情况(如图2甲、乙所示),从而得出小球在最低点时,拉力的两种情况。
三、速度大小的不确定造成多解运动电荷在磁场中所受洛伦兹力的大小与其速度大小有关,有不少试题,没有明确题中所说的带电粒子在磁场中初速度的大小,这时解题者应当考虑初速度大小的不确定性造成的初始时刻洛伦兹力的大小存在多种情况。
带电粒子在强磁场中运动的多解和临界问题

带电粒子在强磁场中运动的多解和临界问
题
引言
带电粒子在强磁场中的运动问题一直是物理学中的重要研究方
向之一。
在强磁场中,带电粒子在受到洛伦兹力的作用下呈现出多
解和临界现象,这在某些情况下对粒子的运动轨迹和性质产生重要
影响。
多解现象
在强磁场中,由于洛伦兹力的作用,带电粒子的运动方程出现
多解的情况。
这是由于洛伦兹力与粒子运动速度与磁场方向夹角的
正弦函数关系所导致的。
当速度与磁场方向夹角为不同值时,洛伦
兹力的大小和方向也会有所变化,从而使得粒子的运动轨迹不唯一。
临界现象
在某些情况下,带电粒子在强磁场中的运动可能会出现临界现象。
临界现象是指当带电粒子的运动速度与磁场强度达到一定比例
关系时,粒子的运动状态出现急剧变化,其轨迹和动力学性质发生
显著变化。
临界现象在物理学中具有重要的理论和实际意义,在磁共振成像、粒子加速器等领域的研究中得到了广泛应用。
结论
带电粒子在强磁场中运动的多解和临界问题是一个复杂而有趣的研究领域。
多解现象使得粒子的运动轨迹不唯一,而临界现象则带来了粒子运动状态的突变。
对这些问题的深入研究和理解将有助于推动物理学和应用科学的发展,为实际应用提供更多的可能性。
18.4带电粒子在磁场中运动的临界及多解问题(原卷版)

18.4.带电粒子在磁场中运动的临界、多解问题要点一. 带电粒子在磁场中运动的临界问题1.临界问题的特点带电粒子在磁场中运动,由于速度或大小的变化,往往会存在临界问题,如下所示为常见的三种临界草图。
临界特点:(1)粒子刚好穿出磁场的条件:在磁场中运动的轨迹与边界相切.(2)根据半径判断速度的极值:轨迹圆的半径越大,对应的速度越大.(3)根据圆心角判断时间的极值:粒子运动转过的圆心角越大,时间越长.(4)根据弧长(或弦长)判断时间的极值:当速率一定时,粒子运动弧长(或弦长)越长,时间越长.2.解题思路分析思路:以临界问题的关键词“恰好”“最大”“至少”“要使......”等为突破口,寻找临界点,确定临界状态,画出临界状态下的运动轨迹,建立几何关系求解.往往采用数学方法和物理方法的结合:1.利用“矢量图”“边界条件”结合“临界特点”画出“临界轨迹”。
2.利用“三角函数”“不等式的性质”“二次方程的判别式”等求临界极值。
一般解题流程:3.探究“临界轨迹”的方法1. “伸缩圆”动态放缩法定点粒子源发射速度大小不同、方向相同的同种带电粒子时,其轨迹半径不同,相当于定点圆在“伸缩”。
特点:1.速度越大,轨迹半径越大。
2.各轨迹圆心都在垂直于初速度方向的直线上。
应用:结合具体情境根据伸缩法,可以分析出射的临界点,求解临界半径。
2. “旋转圆”旋转平移法定点粒子源发射速度大小相同、方向不同的同种带电粒子时,其轨迹半径相同,相当于定点圆在“旋转”特点:1.半径相同,方向不同。
2.各轨迹圆心在半径为R的同心圆轨迹上。
旋转圆的应用:结合具体情境,可以分析圆心角、速度偏向角、弦切角、弧长、弦长的大小;求解带电粒子的运动时间.应用情景1.(所有的弦长中直径最长)速度大小相同、方向不同的同种带电粒子,从直线磁场边界上P点入射。
M点是粒子打到直线边界上的最远点(所有的弦长中直径最长).应用情景2.(所有的弦长中直径最长)速度大小相同方向不同的同种带电粒子,从圆形磁场边界上的P射入磁场;①若轨迹半径>磁场半径当PM距离为磁场直径时,粒子出射点与入射点之间的距离最远、共有弦最长、时间最长。
透析带电粒子在匀强电场中的多解问题及成因

浅谈带电粒子在匀强磁场中运动的多解问题及成因太和中学物理组 潘正海摘要:带电粒子在匀强磁场中的运动是高中物理电磁学的重点内容之一,它所涉及的内容较多,难度较大,特别是多解问题,尤其复杂,对学生来说是个难点,本文就阐述了带电粒子在匀强磁场中运动的多解问题及成因,并就例题分析提出了自己的一点感想,以便更好的掌握和解决该问题提供一个参考。
关键词:带电粒子,多解性,周期性,临界状态。
引言:在匀强磁场,带电粒子受到洛伦兹力作用而做匀速圆周运动,由于带电粒子电性的不确定、电荷量多少的不确定、磁场方向的不确定、临界状态的不唯一、以及运动的周期性都会导致多解、下面通过例题加以分析。
一、带电粒子电性不确定形成的多解众所周知,自然界中的带电粒子只有两种,一种带正电,另一种带负电,由于很多题目没有告诉带电粒子的电性,那么在解题时就要考虑带电粒子的正负不同情况,从而带来了问题的多解性。
【例1】如图1所示,第一象限范围内有垂直于xoy 平面的匀强磁场,磁感应强度为B ,质量为m ,电荷量为q 的带电粒子在xoy 平面里经原点O 射入磁场中,初速度为v 0与x 轴夹角为θ=60º,试分析计算:(1)带电粒子从何处离开磁场?穿越磁场时运动方向发生的偏转角多大? (2)带电粒子在磁场中运动时间多长?× × × × × × × × × × × × × × × ×yx图1图2θ1Oy xO 1AO 2BR Rθ2θ1 v 0解析 若带电粒子带负电,进入磁场后做顺时针方向的匀速圆周运动,圆心为O 1,粒子向x 轴偏转,并从A 点离开磁场。
若带电粒子带正电,进入磁场后做逆时针方向的匀速圆周运动,圆心为O 2,粒子向y 轴偏转,并从B 点离开电场。
不论粒子带何种电荷,其运动轨道半径均为qBmv R 0=。
带电粒子在磁场中的多解问题

应旳圆心角为 或 3
B
22
设圆弧旳半径为R,则有2R2=x2,可得:
R L 2n
v2 qvB m
R
v qBL 2m n
n=1、2、3、……(
n取奇数
⑶当n取奇数时,微粒从P到Q过程中圆心角旳总和为
1
n
2
n 3
2
2n
t1
2n
m qB
2 m
qB
n
其中n=1、3、5、……
当n取偶数时,微粒从P到Q过程中圆心角旳总和为
mv0 a 2mv0 L<b。试求磁场旳左边界距坐标原点 旳e可B能距离.(eB成果可用反三角函数表达)
解: 设电子在磁场中作圆周运动旳轨道半径为r, 则
解得
eBv0 r
m mv 0
v02 r
①
②
eB
y P v0
x
0
Q
⑴当r>L时,磁场区域及电子运动轨迹如图1所示,
由几何关系有 sin L eBL③
v0
c
(2)当v0最大时:
R1
R1
cos 60
L 2
得R1 = L
则
vmax
qBR1 m
qBL m
当v0最小时: R2 R2 sin 30
L 2
得R2 = L/3
则
vmin
qBR2 m
qBL 3m
a
600
O
qBL
qBL
b B
3m v0 m
300
d
v0
c
带电粒子从ab边射出磁场,当速度为 vmax 时,
运动时间最短,
150 5m
t min
T 360
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在部分是电场、部分是磁场的空 间运动时,往往运动具有周期性,因而形成多 解.
问题一. 带电粒子电性不确定形成多解
如图所示,宽度为d的有界匀强磁场,磁感 应强度为B,MM′和NN′是它的两条边界。 现有质量为m、电荷量为q的带电粒子沿图
示方向垂直磁场射入。要Βιβλιοθήκη 粒子不能从边磁场专题深化:
带电粒子在磁场中的运动 多解问题
抚州一中 韩博伟
带电粒子在洛伦兹力的作用下做匀速圆周 运动,由于多种因素的影响,使问题形成多 解.
1.带电粒子电性不确定形成多解
受洛伦兹力作用的带电粒子,可能是带正 电粒子,也可能是带负电粒子,在相同的初速 度的条件下,正、负粒子在磁场中运动轨迹不 同,形成多解.
界NN′射出,则粒子入射速率v的最大值可
能是多少?
问题二.磁场方向不确定形成多解
问题三.临界状态不唯一形成多解
问题四.运动的往复性(周期性)形成多解
2.磁场方向不确定形成多解
有些题目只告诉了磁感应强度的大小,而 未具体指出磁感应强度的方向,此时必须要考 虑磁感应强度方向不确定而形成的多解.
3.临界状态不唯一形成多解
带电粒子在洛伦兹力作用下穿过有界磁场 时,由于粒子运动轨迹是圆弧状,因此,它可 能直接穿过去,也可能转过180°,从入射界面 这边反向飞出,如图所示,于是形成了多解.