《3.3.2点到直线的距离》导学案

合集下载

2016年秋季学期新人教A版高中必修二3.3.2 两点间的距离导学案

2016年秋季学期新人教A版高中必修二3.3.2 两点间的距离导学案

3.3.1 两条直线的交点坐标3.3.2 两点间的距离[学习目标] 1.会用解方程组的方法求两条相交直线的交点坐标.2.会根据方程解的个数判定两条直线的位置关系.3.掌握两点间距离公式并会应用.知识点一 两条直线的交点坐标 1.两条直线的交点已知两直线l 1:A 1x +B 1y +C 1=0(A 1,B 1不同时为0),l 2:A 2x +B 2y +C 2=0(A 2,B 2不同时为0).(1)基本知识——点与坐标的一一对应关系(2)两条直线的交点一般地,将两条直线的方程联立,得方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0. 若方程组有惟一解,则两条直线相交,此解就是交点的坐标; 若方程组无解,则两条直线无公共点,此时两条直线平行. 2.过定点的直线系方程已知直线l 1:A 1x +B 1y +C 1=0与直线l 2:A 2x +B 2y +C 2=0交于点P (x 0,y 0),则方程A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0表示过点P 的直线系,不包括直线l 2.思考 若两直线的方程组成的二元一次方程组有解,则两直线是否相交于一点?答 不一定.两条直线是否相交,取决于联立两直线方程所得的方程组是否有惟一解.若方程组有无穷多个解,则两直线重合. 知识点二 两点间的距离公式 1.两点间的距离平面上的两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|2.两点间距离的特殊情况(1)原点O (0,0)与任一点P (x ,y )的距离|OP |(2)当P 1P 2∥x 轴(y 1=y 2)时,|P 1P 2|=|x 2-x 1|. (3)当P 1P 2∥y 轴(x 1=x 2)时,|P 1P 2|=|y 2-y 1|.思考 当两点A (x 1,y 1),B (x 2,y 2)都在同一坐标轴上时,两点间距离公式还适用吗? 答 适用.当两点都在x 轴上时,|AB |=|x 1-x 2|;当两点都在y 轴上时,|AB |=|y 1-y 2|.题型一 两直线的交点问题例1 求经过两直线l 1:3x +4y -2=0和l 2:2x +y +2=0的交点且过坐标原点的直线l 的方程.解 方法一 由方程组⎩⎪⎨⎪⎧3x +4y -2=0,2x +y +2=0,解得⎩⎪⎨⎪⎧x =-2,y =2,即l 1与l 2的交点坐标为(-2,2).∵直线过坐标原点, ∴其斜率k =2-2=-1.故直线方程为y =-x ,即x +y =0.方法二 ∵l 2不过原点,∴可设l 的方程为3x +4y -2+λ(2x +y +2)=0(λ∈R ),即(3+2λ)x +(4+λ)y +2λ-2=0.将原点坐标(0,0)代入上式,得λ=1,∴直线l 的方程为5x +5y =0,即x +y =0.反思与感悟 过直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0交点的直线系有两种:①λ1(A 1x +B 1y +C 1)+λ2(A 2x +B 2y +C 2)=0可表示过l 1、l 2交点的所有直线; ②A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0不能表示直线l 2.跟踪训练1 求经过两条直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程.解 把直线l 1和直线l 2的方程联立得⎩⎪⎨⎪⎧x -2y +4=0,x +y -2=0,解得⎩⎪⎨⎪⎧x =0,y =2,所以交点P 的坐标是(0,2).由题意知直线l 3的斜率为34,且直线l 与直线l 3垂直, 所以直线l 的斜率为-43,所以直线l 的方程为y -2=-43(x -0),即4x +3y -6=0.题型二 两点间距离公式的应用例2 已知△ABC 三顶点坐标A (-3,1)、B (3,-3)、C (1,7),试判断△ABC 的形状. 解 方法一 ∵|AB |=(3+3)2+(-3-1)2=213, |AC |=(1+3)2+(7-1)2=213, 又|BC |=(1-3)2+(7+3)2=226, ∴|AB |2+|AC |2=|BC |2, 且|AB |=|AC |,∴△ABC 是等腰直角三角形.方法二 ∵k AC =7-11-(-3)=32,k AB =-3-13-(-3)=-23,则k AC ·k AB =-1,∴AC ⊥AB . 又|AC |=(1+3)2+(7-1)2=213, |AB |=(3+3)2+(-3-1)2=213, ∴|AC |=|AB |.∴△ABC 是等腰直角三角形.反思与感悟 1.判断三角形的形状,要采用数形结合的方法,大致明确三角形的形状,以确定证明的方向.2.在分析三角形的形状时,要从两方面考虑:一是要考虑角的特征,主要考察是否为直角或等角;二是要考虑三角形边的长度特征,主要考察边是否相等或是否满足勾股定理. 跟踪训练2 已知点A (3,6),在x 轴上的点P 与点A 的距离等于10,求点P 的坐标. 解 设点P 的坐标为(x,0),由|P A |=10,所以点P 的坐标为(-5,0)或(11,0). 题型三 坐标法的应用例3 求证:三角形的中位线长度等于底边长度的一半.证明 如图,以A 为原点,边AB 所在直线为x 轴建立平面直角坐标系,其中D ,E 分别为边AC 和BC 的中点. 设A (0,0),B (c,0),C (m ,n ), 则|AB |=|c |.又由中点坐标公式,得D (m 2,n2),E (c +m 2,n 2),∴|DE |=⎪⎪⎪⎪c +m 2-m 2=|c 2|,∴|DE |=12|AB |.即三角形的中位线长度等于底边长度的一半.反思与感悟 利用坐标法解决平面几何问题按以下步骤进行:第一步:建立适当的直角坐标系,用坐标表示有关的量;第二步:进行有关代数运算;第三步:把代数运算关系“翻译”成几何关系.跟踪训练3 已知:等腰梯形ABCD 中,AB ∥DC ,对角线为AC 和BD . 求证:|AC |=|BD |.证明 如图所示,建立直角坐标系,设A (0,0),B (a,0),C (b ,c ),则点D 的坐标是(a -b ,c ).∴|AC |=(b -0)2+(c -0)2=b 2+c 2, |BD |=(a -b -a )2+(c -0)2=b 2+c 2. 故|AC |=|BD |.数形结合思想例4 已知两点A (2,3),B (4,1),直线l :x +2y -2=0,在直线l 上求一点P , (1)使|P A |+|PB |最小; (2)使|P A |-|PB |最大.分析 作出几何图形,借助三角形的几何性质可求|P A |+|PB |取最小值与|P A |-|PB |取最大值时的点P 的坐标.解 (1)如图,可判断A ,B 在直线l 的同侧,设点A 关于l 的对称点A ′的坐标为(x 1,y 1).则有⎩⎪⎨⎪⎧x 1+22+2·y 1+32-2=0,y 1-3x 1-2·⎝⎛⎭⎫-12=-1,解得⎩⎨⎧x 1=-25,y 1=-95.由两点式求得直线A ′B 的方程为y =711(x -4)+1,由平面几何知识可知,当点P 为直线A ′B与直线l 的交点时,|P A |+|PB |最小,此时|P A |+|PB |=|P A ′|+|PB |=|A ′B |,若P 不在此点时,|P A |+|PB |=|P A ′|+|PB |>|A ′B |,即直线A ′B 与l 的交点为P ⎝⎛⎭⎫5625,-325. (2)由两点式求得直线AB 的方程为y -1=-(x -4),即x +y -5=0.由平面几何知识可知,当点P 为直线AB 与l 的交点时,|P A |-|PB |最大,此时|P A |-|PB |=|AB |. 直线AB 与l 的交点为所求点P (8,-3).解后反思 本题通过对称问题的转换,将求距离的最值问题转化为共线问题,这是一种常用的解题思路.另外通过图形探求问题也是一种常用方法.利用函数的几何意义求最值例5 已知函数y =x 2+1+x 2-4x +8,求函数的最小值.分析 被开方数可以写成两个数的平方和的形式,联想到距离公式的结构特征和几何意义,从而求解.解 y =x 2+1+x 2-4x +8=(x -0)2+(0-1)2+(x -2)2+(0+2)2,上式表示:在x 轴上的一点P (x,0)到A (0,1),B (2,-2)两点距离之和,如图,|P A |+|PB |≥|AB |,当且仅当点P 与P 0重合时,|P A |+|PB |有最小值,最小值为|AB |=22+(-3)2=13,解得此时直线AB 与x 轴的交点为P 0⎝⎛⎭⎫23,0.所以当x =23时,函数y =x 2+1+x 2-4x +8的最小值是13.解后反思 因为x 2+1=(x -0)2+(0-1)2表示点P (x,0)到点A (0,1)的距离,x 2-4x +8=(x -2)2+(0+2)2表示点P (x,0)到点B (2,-2)的距离,所以函数y =x 2+1+x 2-4x +8的最小值问题就可以转化为几何问题:在x 轴上求一点P (x,0),使其到A (0,1),B (2,-2)两点距离之和最小.这类利用几何意义转化问题的技巧在今后的学习中经常用到,注意掌握.1.经过直线2x -y +4=0与x -y +5=0的交点,且垂直于直线x -2y =0的直线的方程是( )A.2x +y -8=0B.2x -y -8=0C.2x +y +8=0D.2x -y +8=0答案 A解析 联立⎩⎪⎨⎪⎧ 2x -y +4=0,x -y +5=0,解得⎩⎪⎨⎪⎧x =1,y =6.∴交点坐标为(1,6).由垂直关系,得所求直线的斜率为-2,则所求直线方程为y -6=-2(x -1),即2x +y -8=0.2.直线ax +2y +8=0,4x +3y =10和2x -y =10相交于一点,则a 的值为( ) A.1 B.-1 C.2 D.-2 答案 B解析 联立⎩⎪⎨⎪⎧ 4x +3y =10,2x -y =10,解得⎩⎪⎨⎪⎧x =4,y =-2.∴交点坐标为(4,-2),代入方程ax +2y +8=0,解得a =-1.3.两条直线l 1:2x +3y -m =0与l 2:x -my +12=0的交点在y 轴上,那么m 的值为( ) A.-24 B.6C.±6 D.以上答案均不对 答案 C解析 直线2x +3y -m =0在y 轴上的截距为m 3,直线x -my +12=0在y 轴上的截距为12m .∵两直线的交点在y 轴上,∴12m =m3,解得m =±6. 4.直线l 与两直线y =1和x -y -7=0分别交于A ,B 两点,若线段AB 的中点为M (1,-1),则直线l 的斜率为( ) A.32 B.23 C.-32 D.-23 答案 D解析 设直线l 与直线y =1的交点为A (x 1,1),与直线x -y -7=0的交点为B (x 2,y 2).∵M (1,-1)为AB 的中点,∴-1=1+y 22,则y 2=-3.代入直线x -y -7=0,得x 2=4,则点B 坐标为(4,-3).∵点B ,M 都在直线l 上,∴k l =-3+14-1=-23.5.设点A 在x 轴上,点B 在y 轴上,AB 的中点是P (2,-1),则|AB |=________. 答案 2 5解析 设A (x,0),B (0,y ),∵AB 中点P (2,-1), ∴x 2=2,y2=-1, ∴x =4,y =-2,即A (4,0),B (0,-2), ∴|AB |=42+22=2 5.1.方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0有惟一解的等价条件是A 1B 2-A 2B 1≠0.亦即两条直线相交的等价条件是A 1B 2-A 2B 1≠0.直线A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ∈R )是过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0交点的直线(不含l 2).2.解析法又称为坐标法,它就是通过建立直角坐标系,用坐标代替点、用方程代替曲线、用代数的方法研究平面图形的几何性质的方法.3.两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|=(x 1-x 2)2+(y 1-y 2)2与两点的先后顺序无关,其反映了把几何问题代数化的思想.一、选择题1.直线x +2y -2=0与直线2x +y -3=0的交点坐标是( ) A.(4,1) B.(1,4)C.⎝⎛⎭⎫43,13 D.⎝⎛⎭⎫13,43 答案 C解析 由⎩⎪⎨⎪⎧x +2y -2=0,2x +y -3=0,解得⎩⎨⎧x =43,y =13,即交点坐标是⎝⎛⎭⎫43,132.经过两点A (-2,5),B (1,-4)的直线l 与x 轴的交点坐标是( ) A.⎝⎛⎭⎫-13,0 B.(-3,0)C.⎝⎛⎭⎫13,0 D.()3,0 答案 A解析 由两点式得过A ,B 两点的直线方程为y +45+4=x -1-2-1,即3x +y +1=0.令y =0,得x=-13.故直线l 与x 轴的交点坐标为⎝⎛⎭⎫-13,0 3.过两直线3x +y -1=0与x +2y -7=0的交点,且与第一条直线垂直的直线方程是( ) A.x -3y +7=0 B.x -3y +13=0 C.3x -y +7=0 D.3x -y -5=0答案 B解析 由⎩⎪⎨⎪⎧ 3x +y -1=0,x +2y -7=0,得⎩⎪⎨⎪⎧x =-1,y =4,即交点坐标为(-1,4).因为第一条直线的斜率为-3,所以所求直线的斜率为13.由点斜式,得y -4=13(x +1),即x -3y +13=0.4.若两条直线2x -my +4=0和2mx +3y -6=0的交点在第二象限,则m 的取值范围是( ) A.⎝⎛⎭⎫32,2 B.⎝⎛⎭⎫-23,0C.⎝⎛⎭⎫-32,2 D.(2,+∞) 答案 C解析解出两直线的交点坐标为⎝ ⎛⎭⎪⎫3m -63+m 2,6+4m 3+m 2.由交点在第二象限,得⎩⎪⎨⎪⎧3m -63+m 2<0,6+4m 3+m 2>0.解得m ∈⎝⎛⎭⎫-32,2. 5.设集合A ={(x ,y )|4x +y =6},B ={(x ,y )|3x +2y =7},则满足C ⊆(A ∩B )的集合C 的个数是( )A.0B.1C.2D.3 答案 C解析 A ∩B =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ 4x +y =6,3x +2y =7={(1,2)},则集合C 是{(1,2)}的子集.又因为集合{(1,2)}的子集有∅,{(1,2)},共2个,所以集合C 有2个. 6.以A (5,5),B (1,4),C (4,1)为顶点的三角形是( ) A.直角三角形 B.等腰三角形 C.等边三角形 D.等腰直角三角形答案 B解析 ∵|AB |=17,|AC |=17,|BC |=32, ∴三角形为等腰三角形.故选B.7.两直线3ax -y -2=0和(2a -1)x +5ay -1=0分别过定点A ,B ,则|AB |的值为( ) A.895 B.175C.135 D.115答案 C解析 直线3ax -y -2=0过定点A (0,-2),直线(2a -1)x +5ay -1=0,过定点B ⎝⎛⎭⎫-1,25,由两点间的距离公式,得|AB |=135. 二、填空题8.点P (2,5)关于直线x +y =1的对称点的坐标是________. 答案 (-4,-1)解析 设对称点的坐标为(x 0,y 0), 则⎩⎪⎨⎪⎧y 0-5x 0-2·(-1)=-1,x 0+22+y 0+52=1.解得⎩⎪⎨⎪⎧x 0=-4,y 0=-1.所以所求对称点的坐标为(-4,-1).9.若三条直线2x +3y +8=0,x -y -1=0和x +ky =0相交于一点,则k =_______. 答案 -12解析 解方程组⎩⎪⎨⎪⎧ 2x +3y +8=0,x -y -1=0,得⎩⎪⎨⎪⎧x =-1,y =-2.又因为点(-1,-2)也在直线x +ky =0上, 所以-1-2k =0,k =-12.10.若动点P 的坐标为(x,1-x ),x ∈R ,则动点P 到原点的最小值是________. 答案22解析 由距离公式得x 2+(1-x )2=2x 2-2x +1=2⎝⎛⎭⎫x -122+12,∴最小值为12=22. 11.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则k 的取值范围是________. 答案 ⎝⎛⎭⎫33,+∞解析 由⎩⎨⎧y =kx -3,2x +3y -6=0,得⎩⎪⎨⎪⎧x =33+62+3k ,y =6k -232+3k .由于交点在第一象限,故x >0,y >0,解得三、解答题12.已知直线l 的斜率为6,且被两坐标轴所截得的线段长为37,求直线l 的方程. 解 设直线l 的方程为y =6x +b . 令x =0,得y =b ;令y =0,得x =-b6.所以直线l 与x 轴,y 轴的交点分别为⎝⎛⎭⎫-b6,0,(0,b ). 这两点间的距离为⎝⎛⎭⎫-b 6-02+(0-b )2=3736b 2=376|b |. 由题意,得376|b |=37.所以b =±6. 所以所求直线l 的方程为y =6x +6或y =6x -6, 即6x -y +6=0或6x -y -6=0.13.为了绿化城市,拟在矩形区域ABCD 内建一个矩形草坪(如图),另外△AEF 内部有一文物保护区不能占用,经测量AB =100 m ,BC =80 m ,AE =30 m ,AF =20 m ,应如何设计才能使草坪面积最大?解 如图建立平面直角坐标系,则E (30,0),F (0,20).所以线段EF 的方程是x 30+y20=1(0≤x ≤30).在线段EF 上取点P (m ,n ),作PQ ⊥BC 于点Q ,作PR ⊥CD 于点R ,设矩形PQCR 的面积为S ,则S =|PQ |·|PR |=(100-m )(80-n ). 又因为m 30+n20=1(0≤m ≤30),所以n =20⎝⎛⎭⎫1-m 30, 所以S =(100-m )⎝⎛⎭⎫80-20+23m《创新设计》图书=-23(m -5)2+18 0503(0≤m ≤30). 于是当m =5时,S 有最大值.这时|EP ||PF |=30-55=51. 故当矩形草坪的两边在BC ,CD 上,一个顶点在线段EF 上,且|EP ||PF |=5时,草坪的面积最大.。

高中数学《3.3.2两点间的距离》学案 新人教A版必修

高中数学《3.3.2两点间的距离》学案 新人教A版必修

高中数学《3.3.2两点间的距离》学案新人教A版必修3、3、2 两点间的距离学案一、学习目标:探索并掌握两点间的距离公式、初步了解解析法证明,初步了解由特殊到一般,再由一般到特殊的思想与“数”和“形”结合转化思想、二、重点、难点:重点:难点:三、知识要点:1、平面内两点,,则两点间的距离为:、特别地,当所在直线与x轴平行时,;当所在直线与y轴平行时,;当在直线上时,、2、坐标法解决问题的基本步骤是:(1)建立坐标系,用坐标表示有关量;(2)进行有关代数运算;(3)把代数运算的结果“翻译”成几何关系、四、自主探究例题精讲:【例1】在直线上求一点,使它到点的距离为5,并求直线的方程、解:∵ 点在直线上,∴ 可设,根据两点的距离公式得,解得,∴、∴直线PM的方程为,即、【例2】直线2x-y-4=0上有一点P,求它与两定点A(4,-1),B(3,4)的距离之差的最大值、解:找A关于l的对称点A′,A′B与直线l的交点即为所求的P点、设, 则,解得,所以线段、【例3】已知AO是△ABC中BC边的中线,证明|AB|+|AC|=2(|AO|+|OC|)、解:以O为坐标原点,BC为x轴,BC的中垂线为y轴,建立如图所示坐标系xOy、yxB(-c,0)A(a,b)C(c,0)O设点A(a,b)、B(-c,0)、C(c,0),由两点间距离公式得:|AB|=,|AC|=,|AO|=, |OC|=c、∴ |AB|+|AC|=, |AO|+|OC|=、∴ |AB|+|AC|=2(|AO|+|OC|)、点评:此解体现了解析法的思路、先建立适当的直角坐标系,将△ABC的顶点用坐标表示出来,再利用解析几何中的“平面内两点间的距离公式”计算四条线段长,即四个距离,从而完成证明、还可以作如下推广:平行四边形的性质:平行四边形中,两条对角线的平方和,等于其四边的平方和、三角形的中线长公式:△ABC的三边长为a、b、c,则边c上的中线长为、【例4】已知函数,设,且,求证<、oxA(1,a)B(1,b)y解:由=,在平面直角坐标系中,取两点,则 , 、△OAB中,,∴ <、故原不等式成立、点评:此证法为数形结合法,由联想到平面内点到原点的距离公式,构造两点与三角形,将要证明的不等式转化为三角形中三边的不等关系、五、目标检测(一)基础达标1、已知,则|AB|等于()、A、4C、6D、2、已知点且,则a的值为()、A、1B、-5C、1或-5D、-1或53、点A在x轴上,点B在y轴上,线段AB的中点M的坐标是,则的长为()、A、10B、5C、8D、64、已知,点C在x轴上,且AC=BC,则点C的坐标为()、A、B、C、D、5、已知点,点到M、N的距离相等,则点所满足的方程是()、B、C、D、6、已知,则BC边上的中线AM的长为、7、已知点P(2,-4)与Q(0,8)关于直线l对称,则直线l的方程为、(二)能力提高8、已知点,判断的类型、9、已知,点为直线上的动点、求的最小值,及取最小值时点的坐标、(三)探究创新10、燕隼(sun)和红隼是同属于隼形目隼科的鸟类、它们的体形大小如鸽,形略似燕,身体的形态特征比较相似、红隼的体形比燕隼略大、通过抽样测量已知燕隼的平均体长约为31厘米,平均翅长约为27厘米;红隼的平均体长约为35厘米,平均翅长约为25厘米、近日在某地发现了两只形似燕隼或红隼的鸟、经测量,知道这两只鸟的体长和翅长分别为A(32、65厘米,25、2厘米),B(33、4厘米,26、9厘米)、你能否设计出一种近似的方法,利用这些数据判断这两只鸟是燕隼还是红隼?。

点到直线的距离公式234点到直线距离两平行线间距离公式导学案-高二上学期数学人教A版选择性

点到直线的距离公式234点到直线距离两平行线间距离公式导学案-高二上学期数学人教A版选择性
巧家县第五高级中学导学案
两条平行线间距离
导学环节
导学内容
教学目标及重难 点
1.了解点到直线距离公式的推导方法.(重点)
,并能灵活应用于求平行线间的距离等问题.(难点)
3.初步掌握用解析法研究几何问题.(重点、难点)
自主学习问题预设
点到直线的距离、两条平行线间的距离
点到直线的距离
两条平行直线间的距离
定义
点到直线的的长度
夹在两条平行直线间的长
图示
公式
点P(x0,y0)到直线l:Ax+By+C=0的距离d=
两条平行直线l1:Ax+By+C1=0与l2:Ax+By+C2=0之间的距离d=
合作探究
思考1:点P(x0,y0)到直线x=a和直线y=b的距离怎样计算?
思考2:在应用两条平行线间的距离公式时对直线方程有什么要求?
合作探究
课堂展示
教师随机安排,按分组或个人上台展示以上问题。
精讲短评
1.知识点:
2.方法技巧:
3.数学思想:课Βιβλιοθήκη 检测课本第77页练习1、2、3
课本第79页练习1、2、3

高中数学 3.3.3点到直线的距离教案 新人教A版必修2-新人教A版高一必修2数学教案

高中数学 3.3.3点到直线的距离教案 新人教A版必修2-新人教A版高一必修2数学教案

《点到直线的距离》教案【课题】点到直线的距离【教材】普通高中课程标准实验教科书〔必修2〕一. 教学目标1.教材分析⑴教学内容《点到直线的距离》是普通高中课程标准实验教科书〔必修二·人民教育〕,“§3.3直线的交点坐标与距离公式〞的第三节课,主要内容是点到直线的距离公式的推导过程和公式应用.⑵地位与作用本节对“点到直线的距离〞的认识,是从初中平面几何的定性作图,过渡到了解析几何的定量计算,其学习平台是学生已掌握了直线倾斜角、斜率、直线方程和两条直线的位置关系等相关知识.对“点到直线的距离〞的研究,为以后直线与圆的位置关系和圆锥曲线的进一步学习奠定了基础,具有承前启后的重要作用.2. 学情分析高一年级学生已掌握了函数等有关知识,具备了一定的利用代数方法研究几何问题的能力.根据我校学生基础知识较扎实、思维较活跃,但处理抽象问题的能力还有待进一步提高的学习现状和认知特点,本课采用启发引导法、讨论教学法.3.教学目标〔1〕知识技能①理解点到直线的距离公式的推导过程;②掌握点到直线的距离公式;③掌握点到直线的距离公式的应用.〔2〕数学思考①通过点到直线的距离公式的探索和推导过程,渗透算法的思想;②通过自学教材上利用直角三角形的面积公式的证明过程,培养学生的数学阅读能力;③通过灵活应用公式的过程,提高学生类比化归、数形结合的能力.〔3〕情感态度结合现实模型,将教材知识和实际生活联系起来,认识事物〔知识〕之间相互联系、互相转化的辩证法思想,培养学生转化的思想和综合应用知识分析问题解决问题的能力。

二. 教学重点、难点1.教学重点⑴ 点到直线的距离公式的推导思路分析; ⑵ 点到直线的距离公式的应用.2.教学难点点到直线的距离公式的推导思路和算法分析.三.教学方法启发引导法、讨论法四.教学过程复习旧知:111(,)P x y ,222(,)P x y ,那么12||PP =问题引入:思考如图,点P 00(,)x y ,直线22:0(0)l Ax By C A B ++=+≠,如何求点P 到直线l 的距离?解法一:〔定义法〕0,0A B ≠≠1 当时,,PQ BQ l Q k A⊥=作P 于点则 000:()P Q Bl y y x x A-=- 00()()A y y B x x -=-即00()()0A y yB x x Ax ByC -=-⎧⎨++=⎩由得 000000()()0(1)()()(2)B x x A y y A x x B y y Ax By C⎧---=⎪⎨-+-=---⎪⎩()2222220000(1)(2)()()()A B x x y y Ax By C ⎡⎤++-+-=++⎣⎦2得22200002()()()Ax By C x x y y A B ++∴-+-=+2*d==即思考:当A=0,或B=0时,上述公式是否成立?0,0:||C CA B l y d yB B=≠=-=+2当时,此时满足*式0,0:||C CA B l x d xA A≠==-=+3当时,此时满足*式d=综上解法二:〔面积法〕利用直角三角形的面积公式的算法思路如下:教师:根据得到的算法思路,请同学们自学教材107P的证明方法.例1求点(1,2)P-到以下直线的距离:(1)2100;x y+-=(2)32;x=(3)37x y-+=; ()24(4)133y x-=-〔1〕解:根据点到直线的距离公式,得)yd===〔2〕解法①因直线32x=平行于y轴,所以25(1).33d=--=解法②根据点到直线的距离公式,得53d==(3):370l x y-+=解: 根据点到直线的距离公式, 得0.d==(4):4320.l x y--=根据点到直线的距离公式,得12.5d==注意:使用点到直线的距离公式的前提条件是把直线的方程化成一般式方程,如果给出的直线方程不是一般式方程,应先将方程化成一般式,以便确定系数A B、的值,这一点对于直线方程中含参数的问题尤为重要..(1,3),(3,1)A B例2在平面直角坐标系内,已知两点(1)AB求直线的方程;(2)(1,0)C ABC-∆若点的坐标为,求的面积;(3)D,x ABD∆在轴求一点使的面积为7.BC:40C(1,0)ABx yh+-=-==解:(1)直线(2)点到直线的距离11||||522ABCAB S AB h∆==⨯⨯=⨯=又D(,0)AB|11||4x h ABS AB h x==∴=⨯⨯=⨯=-(3)设到直线的距离(3,0)(11,0)D D -故例3点P(m,n)在直线x + y=4上,O 是原点,那么|OP|的最小值是( )注意:等价于求原点O 到直线x + y=4的距离变式(1):点P(m,n)在直线x + y=4上,那么m 2+ n 2的最小值是( )变式(2):点P(m,n)在直线x + y=4( )小结本课主要学习了以下内容:〔1〕点到直线的距离公式的推导中不同的算法思路: 利用定义的算法、利用直角三角形的面积公式的算法; 〔2〕点到直线的距离公式:点00(,)P xy 到直线0Ax By C ++=的距离d =说明:对于00A B ==或时的特殊情况公式仍然适用. 〔3〕数学思想方法:作业布置〔1〕书面作业:课本110P B 组 2、5 〔2〕课后尝试:(1,3),(3,1)20A B ax y a --=1.在平面直角坐标系内,已知到直线的距离相等,求的值..2B D 74=7,3,11ABC S x x x ∆=-=-=-又,所以解得或.4.8B C .2.4A B C课后反思1.数学公式的教学应包含两个部分:公式的推导和公式的运用。

《点到直线的距离公式》教案、导学案、同步练习

《点到直线的距离公式》教案、导学案、同步练习

《2.3.3 点到直线的距离公式》教案【教材分析】本节课选自《2019人教A版高中数学选择性必修第一册》第二章《直线和圆的方程》,本节课主要学习点到直线的距离公式。

在前面已经研究了两点间的距离公式、直线方程、两直线的位置关系,同时也介绍了“以数论形,以形辅数”的数学思想方法.“点到直线的距离”是从初中平面几何的定性作图,过渡到了解析几何的定量计算;《点到直线的距离》的研究,又为以后直线与圆的位置关系和圆锥曲线的进一步学习奠定了基础,具有承前启后的重要作用.【教学目标与核心素养】课程目标学科素养A. 会用向量工具推导点到直线的距离公式.B.掌握点到直线的距离公式,能应用点到直线距离公式解决有关距离问题.C. 通过点到直线的距离公式的探索和推导过程,培养学生运用等价转化、数形结合等数学思想方法解决问题的能力1.数学抽象:点到直线的距离公式2.逻辑推理:点到直线的距离公式的推导3.数学运算:点到直线的距离公式的运用4.直观想象:几何中的距离问题【教学重点】:点到直线的距离公式的推导思路分析;点到直线的距离公式的应用.【教学难点】:点到直线的距离公式的推导不同方法的思路分析.【教学过程】教学过程教学设计意图一、情境导学在公路附近有一家乡村饭馆,现在需要铺设一条连接饭馆和公路的道路.请同学们帮助设计一下:在理论上怎样铺路可以使这条连接道路的长度最短?通过生活中点到直线距离的问题情境,二、探究新知思考:最容易想到的方法是什么?思路①. 定义法,其步骤为:①求l 的垂线l PQ的方程;② 解方程组;③得交点Q 的坐标;④求|P Q|的长反思:这种解法的优缺点是什么?我们知道,向量是解决距离、角度问题的有力工具。

能否用向量方法求点到直线的距离?如图,点P 到直线l 的距离,就是向量PQ⃗⃗⃗⃗⃗ 的模,设M(x,y)是直线l 上的任意一点, n 是与直线l 的方向向量垂直的单位向量,则PQ ⃗⃗⃗⃗⃗ 是PM⃗⃗⃗⃗⃗⃗ 在上n 的投影向量, |PQ ⃗⃗⃗⃗⃗ |=|PM ⃗⃗⃗⃗⃗⃗ ∙n|。

高中数学 第三章3.3.1~3.3.2两条直线的交点坐标、两点间的距离导学案 新人教A版必修2

高中数学 第三章3.3.1~3.3.2两条直线的交点坐标、两点间的距离导学案 新人教A版必修2

3.3 直线的交点坐标与距离公式3.3.1~3.3.2 两条直线的交点坐标、两点间的距离一、两直线的交点问题活动与探究1求经过两条直线2x -3y -3=0和x +y +2=0的交点且与直线3x +y -1=0平行的直线l 的方程.迁移与应用1.直线3x +4y -2=0与直线2x +y +2=0的交点坐标是( )A .(2,2)B .(2,-2)C .(-2,2)D .(-2,-2)2.求经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程.3.求经过点P (1,0)和两直线l 1:x +2y -2=0,l 2:3x -2y +2=0交点的直线方程.4.无论实数a 取何值,方程(a -1)x -y +2a -1=0表示的直线恒过定点,试求该定点.(1)两条直线的交点坐标就是联立两直线方程所得方程组的解.(2)经过直线l 1:A 1x +B 1y +C 1=0(A 1,B 1不同时为0)和直线l 2:A 2x +B 2y +C 2=0(A 2,B 2不同时为0)的交点的直线方程可设为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0.反之,若直线方程可写为A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0,则该直线过直线l 1与l 2的交点.二、两点间的距离公式及其应用活动与探究2在直线2x -y =0上求一点P ,使它到点M (5,8)的距离为5,并求直线PM 的方程.迁移与应用1.已知△ABC 的三个顶点为A (3,-1),B (2,2),C (-3,3),则AC 边上的中线长为__________.2.已知点A (4,12),点P 在x 轴上,且点A 与点P 间的距离为13,则点P 的坐标为__________.3.已知三个点A (-3,1),B (3,-3),C (1,7),则△ABC 的形状是__________.三、对称问题活动与探究3求直线l 1:2x +y -4=0关于直线l :3x +4y -1=0对称的直线l 2的方程.迁移与应用1.两条直线x -2y +3=0和2x -y +3=0关于直线x -ay =0对称,则实数a =( )A .1B .-1C .-2D .22.一束光线从原点O (0,0)出发,经过直线l :8x +6y =25反射后通过点P (-4,3),求反射光线的方程.(1)点A (x 0,y 0)关于直线l :Ax +By +C =0的对称点M (x ,y )可由方程组⎩⎪⎨⎪⎧ y -y 0x -x 0·⎝ ⎛⎭⎪⎫-A B =-1(AB ≠0),A ·x +x 02+B ·y +y 02+C =0求得.(2)求直线l 1:A 1x +B 1y +C 1=0关于直线l :Ax +By +C =0对称的直线l 2的方程的方法:转化为点关于直线对称,在l 1上任取两点P 1和P 2,求出P 1,P 2关于l 的对称点,再用两点式可求出l 2的方程.当堂检测1.已知点P (x,2),Q (-2,-3),M (1,1),且|PQ |=|PM |,则x 的值为( )A .-1B .1 C.-92 D .92 2.直线x -ay +1=0与直线x +y -1=0的交点在y 轴上,则a 的值是( )A .0B .1C .-1D .±13.点P (-4,2)关于直线l :2x -y +1=0的对称点P ′的坐标是( )A .⎝ ⎛⎭⎪⎫165,-85B .⎝ ⎛⎭⎪⎫-165,85 C .⎝ ⎛⎭⎪⎫165,85 D .⎝ ⎛⎭⎪⎫-165,-85 4.直线2ax +y -2=0过定点__________.5.过直线2x -y +1=0与x -y +5=0的交点,且与直线2x +y -5=0平行的直线方程是__________.提示:用最精练的语言把你当堂掌握的核心知识的精华部分和基本技能的要领部分写下来并进行识记.答案:课前预习导学【预习导引】1.相交 交点的坐标 无公共点 平行预习交流1 0 平行 1 相交 无数 重合提示:不对.还有可能重合.2.(x 2-x 1)2+(y 2-y 1)2预习交流2 提示:当直线P 1P 2垂直于坐标轴时,公式仍适用.当直线P 1P 2垂直于x 轴时,|P 1P 2|=|y 1-y 2|;当直线P 1P 2垂直于y 轴时,|P 1P 2|=|x 1-x 2|.课堂合作探究【问题导学】活动与探究1 思路分析:可先求出交点坐标,再利用点斜式求方程,或用直线系方程求解.解法一:由方程组233=02=0,x y x y --⎧⎨⎩,++得3=,57=.5x y ⎧-⎪⎪⎨⎪-⎪⎩∵直线l 和直线3x +y -1=0平行,∴直线l 的斜率k =-3.∴根据点斜式有y -⎝ ⎛⎭⎪⎫-75=-3⎣⎢⎡⎦⎥⎤x -⎝ ⎛⎭⎪⎫-35, 即所求直线方程为15x +5y +16=0.解法二:设直线l 的方程为(2x -3y -3)+λ(x +y +2)=0,即(2+λ)x +(λ-3)y +2λ-3=0.∵直线l 与直线3x +y -1=0平行,∴2+λ-3(λ-3)=0,解得λ=112.∴直线l 的方程为⎝ ⎛⎭⎪⎫2+112x +⎝ ⎛⎭⎪⎫112-3y +2×112-3=0. 化简得15x +5y +16=0.迁移与应用 1.C2.解法一:解方程组24=02=0,x y x y -⎧⎨-⎩+,+得交点P 坐标为(0,2),又l 3的斜率为34,∴直线l 的斜率为-43.由点斜式得y -2=-43(x -0),即4x +3y -6=0.解法二:设直线l 的方程为x -2y +4+λ(x +y -2)=0.即(1+λ)x +(λ-2)y +4-2λ=0.∵l ⊥l 3,∴3(1+λ)-4(λ-2)=0,解得λ=11.∴直线l 的方程为(1+11)x +(11-2)y +4-2×11=0.化简得4x +3y -6=0.3.解:设所求直线方程为x +2y -2+λ(3x -2y +2)=0.∵点P (1,0)在直线上,∴1-2+λ(3+2)=0.∴λ=15.∴所求方程为x +2y -2+15(3x -2y +2)=0,即x +y -1=0.4.解:由(a -1)x -y +2a -1=0,得-x -y -1+a (x +2)=0.所以,已知直线恒过直线-x -y -1=0与直线x +2=0的交点.解方程组1=02=0,x y x ---⎧⎨⎩,+得=2=1x y -⎧⎨⎩,. 所以方程(a -1)x -y +2a -1=0表示的直线恒过定点(-2,1).活动与探究2 思路分析:设出点P 的坐标,根据条件求出点P 的坐标,再求直线PM 的方程.解:∵点P 在直线2x -y =0上,∴可设P (a,2a ).根据两点的距离公式得|PM |2=(a -5)2+(2a -8)2=52,即5a 2-42a +64=0,解得a =2或a =325,∴P (2,4)或⎝ ⎛⎭⎪⎫325,645.∴直线PM 的方程为y -84-8=x -52-5或y -8645-8=x -5325-5,即4x -3y +4=0或24x -7y -64=0. 迁移与应用 1. 52.(-1,0)或(9,0)3.等腰直角三角形活动与探究3 思路分析:求出l 1与l 的交点,再在直线l 1上取一点并求出该点关于直线l 的对称点,最后用两点式写出直线方程.解:由⎩⎪⎨⎪⎧ 2x +y -4=0,3x +4y -1=0得l 1,l 的交点M (3,-2).在直线l 1上取点A (2,0),设点A 关于直线l 的对称点为A ′(x 0,y 0).由AA ′⊥l 及线段AA ′的中点在l 上得⎩⎪⎨⎪⎧y 0x 0-2×⎝ ⎛⎭⎪⎫-34=-1,3×x 0+22+4×y 02-1=0, 即⎩⎪⎨⎪⎧ 4x 0-3y 0-8=0,3x 0+4y 0+4=0,解得⎩⎪⎨⎪⎧x 0=45,y 0=-85, 即A ′⎝ ⎛⎭⎪⎫45,-85. 所以,所求直线l 2的方程为y +2-85+2=x -345-3, 即2x +11y +16=0.迁移与应用 1.B2.解:如图所示,设原点关于直线l 的对称点A 的坐标为(a ,b ),由直线AO 与l 垂直和线段AO 的中点在l 上得⎩⎪⎨⎪⎧ b a ·⎝ ⎛⎭⎪⎫-43=-1,8×a 2+6×b 2=25,解得⎩⎪⎨⎪⎧ a =4,b =3,∴A 的坐标为(4,3).∵反射光线的反向延长线过A (4,3),又由反射光线过P (-4,3),∴两点纵坐标相等,故反射光线所在直线的方程为y =3.【当堂检测】1.C 2.B 3.A 4.(0,2) 5.2x +y -17=0。

【人教A版】:3.3.2两点间的距离 精品导学案

【人教A版】:3.3.2两点间的距离 精品导学案

第三章直线与方程3.3 直线的交点坐标与距离公式3.3.2 两点间的距离学习目标1.探索并掌握两点间的距离公式;2.能用坐标法证明简单的几何问题.合作学习一、设计问题,创设情境问题1:已知x轴上点A(-1,0),B(5,0),则A,B两点之间的距离|AB|是多少?推广到一般情形,若x轴上点A(x1,0),B(x2,0),则A,B两点之间的距离|AB|是多少呢?问题2:如何求平面内点A(3,4)到原点O的距离|OA|呢?到点B(-1,1)的距离|AB|呢?你能将这类问题推广到一般情形,提出问题,并得到规律吗?二、信息交流,揭示规律问题3:大家是用什么办法求|P1P2|的?你是怎样想到构造直角三角形的?请大家交流一下.三、运用规律,解决问题【例1】已知点A(-1,2),B(2,),在x轴上求一点P,使|PA|=|PB|,并求|PA|的值.问题4:平面内要确定一个点,需要几个条件?求点的坐标这种题目,解答时可以考虑哪些方法?【例2】证明:平行四边形四条边的平方和等于两条对角线的平方和.问题5:对于例2,你是否还有其他建立坐标系的方法呢?请尝试.四、变式演练、深化提高变式训练:如图,△ABD和△BCE是在直线AC同侧的两个等边三角形,试证明AE=CD.五、信息交流、教学相长问题6:无论是距离公式的证明还是例1及例2的求解,都体现了什么共同特征?上述过程必须借助什么来完成?布置作业课本P109习题3.3,A组第6,7,8题,B组第6题.参考答案一、问题1:6;|x1-x2|.问题2:求|OA|时,在作图的过程中自然想到坐标的含义,构造出直角三角形后,求得|OA|=5.求|AB|时,也需根据坐标的含义,构造出直角三角形,根据勾股定理得出|AB|=5,但此时可能没有要从特殊问题中发现规律的意识.已知平面上两点P1(x1,y1),P2(x2,y2),如何求P1,P2的距离|P1P2|?提出问题:如图,过点P1向x轴作垂线,过点P2向y轴作垂线,两垂线交于点Q.在Rt△P1QP2中,|P1P2|2=|P1Q|2+|P2Q|2.|P1Q|=|N1N2|=|y1-y2|,|P2Q|=|M1M2|=|x1-x2|.所以, |P1P2|2=|x1-x2|2+|y1-y2|2.由此得到两点P1(x1,y1),P2(x2,y2)间的距离公式|P1P2|=.二、问题3:几何法,构造直角三角形;一方面条件中的坐标就涉及点到坐标轴的距离,即坐标可以转化为线段的长度,另一方面,两点间距离就是连接两点的线段的长度,而解直角三角形可以求线段的长度.基于上述原因,我们构造直角三角形.三、【例1】 P(1,0),|PA|=2.问题4:两个;方法一:可以设出点的坐标,然后建立坐标的方程组,解方程组求点的坐标;方法二:可以将点看成两直线的交点,求出两直线方程后,求交点坐标;方法三:可以将求点的坐标的题目转化为求到坐标轴的距离.【例2】证明:如图所示,以顶点A为坐标原点,AB边所在的直线为x轴,建立平面直角坐标系,有A(0,0).设B(a,0),D(b,c),由平行四边形的性质得点C的坐标为(a+b,c),|AB|2=a2,|CD|2=a2,|AD|2=b2+c2=|BC|2|AC|2=(a+b)2+c2,|BD|2=(a-b)2+c2,所以,|AB|2+|CD|2+|AD|2+|BC|2=2(a2+b2+c2)|AC|2+|BD|2=2(a2+b2+c2),所以,|AB|2+|CD|2+|AD|2+|BC|2=|AC|2+|BD|2.因此,平行四边形四条边的平方和等于两条对角线的平方和.问题5:有,比如还可以以对角线的交点为坐标原点,一条对角线为x轴建立平面直角坐标系.四、变式训练:如图以B为原点,AC所在直线为x轴建立直角坐标系,设等边△ABD和△BCE的边长分别为2a和2b,于是可得相关各点坐标:B(0,0),A(-2a,0),C(2b,0),D(-a,a),E(b,b),由两点间的距离公式,则|AE|=, |CD|=,所以|AE|=|CD|,即AE=CD.五、问题6:用代数的方法解决几何问题;坐标系.教师个人研修总结在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。

高中数学 3.3.2《点到直线的距离》导学案 新人教A版必修2

高中数学 3.3.2《点到直线的距离》导学案 新人教A版必修2

3.3.2《点到直线的距离》导学案【学习目标】知识与技能:让学生理解点到直线距离公式的推导,掌握点到直线距离公式及其应用,会用点到直线距离求两平行线间的距离;过程与方法:培养学生观察、思考、分析、归纳等数学能力,数形结合、转化(或化归)、等数学思想、特殊与一般的方法以及数学应用意识与能力;情感态度与价值观:引导学生用联系与转化的观点看问题,了解和感受探索问题的方式方法,在探索问题的过程中获得成功的体验【重点难点】学习重点:点到直线距离公式及其应用.学习难点:发现点到直线距离公式的推导方法.【学法指导】1、先阅读教材106—108页,认真思考、独立规范作答,认真完成每一个问题,每一道习题,不会的先绕过,做好记号。

2、把学案中自己易忘、易出错的知识点和疑难问题以及解题方法规律,及时整理在解题本,多复习记忆。

(尤其两点间的距离公式及点到直线的距离公式牢记)3、A:自主学习;B:合作探究;C:能力提升4、小班、重点班完成全部,平行班至少完成A.B类题。

平行班的A级学生完成80%以上B完成70%~80%C力争完成60%以上。

【知识链接】:1.两点间的距离公式特别的:原点O与任一点P(x,y)的距离22y=OP+x2.平面内点与直线的位置关系有几种?【学习过程】自主探究A问题1:已知点P(x0,y0),直线l:A x+C=0,求点P到直线的距离.A问题2:已知点P(x0,y0),直线l:B y+C=0,求点P到直线的距离.B问题3:已知点P(x0,y0),直线l:A x+B y+C=0,求点P到直线的距离.A例1 求点P(-1,2)到直线①2x+y-10=0;②3x=2; ③2y+3=0的距离。

A问题4:两条平行直线间的距离的定义A问题5:设直线l1∥l2,如何求l1与l2之间的距离?B例2已知直线,l1:2x-7y-8=0,l2:6x-21y-l=0,l l与l2是否平行?若平行求l l与l2间的距离。

由上面的例题可知,两条平行直线间的距离可以转化为点到直线的距离,取点时可考虑取x轴上的点或y轴上的点,运算可以简便点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《3.3.2点到直线的距离》导学案
学习目标
1、理解点到直线的距离公式的推导过程
2、明确公式的形式并能处理简单的距离问题.
学习过程
课前(预案)
(预习课本106—107,找出疑惑之处)
1:点0P 到直线0Ax By C ++=的距离是指?
2:课本106页试图用何种方法求解点到线的距离公式?如何求解0P Q 所在的直线方程以及Q 点的坐标?用公式简要表示.
3:画出图形3.3-5,求解0P 点S,点R 的坐标,并且表示出指教三角00,,P S P R SR 直角边斜边.
4:已知点00(,)P x y 和直线:0l Ax By C ++=,则点P 到直线l 的距离为:d =______________.
课中
一、学情调查,情景导入
1、检查预习情况
1.
若点A (3,y )在直线3450x y +-=上,则y =_____________ 2.
点P 0(,)x y 在直线0Ax By C ++=上,则y =____________ 3. 若点12,P P 的坐标分别为111221(,),(,)P x y P x y ,则12PP =____________
若点12,P P 的坐标分别为111212(,),(,)P x y P x y ,则12PP =_____________
4. 若点12,P P 的坐标分别为111222(,),(,)P x y P x y ,则12PP =_____________
二、问题展示,合作探究
例5 试用两种方法求出
0(1,2)32
P x
-=
到直线的距离
例6 已知点(1,3),(3,1),(1,0)
A B C-,求三角形ABC的面积.
三、小结
点到直线的距离公式的应用。

相关文档
最新文档