八年级数学-函数的图象练习题(含解析)
2021八年级数学下册一次函数图像题专项训练(含解析)

2021八年级数学下册一次函数图像题专项训练(含解析)一、作图题(共22题;共281分)1.(2020八下·北京期末)已知一次函数经过点A(3,0),B(0,3).(1)求k,b的值.(2)在平面直角坐标系xOy中,画出函数图象;(3)结合图象直接写出不等式的解集.2.(2020八下·南丹期末)已知一次函数的图象经过(2,3)和(-1,-3)两点.(1)先画平面直角坐标系,再画出这个函数的图象;(2)求这个一次函数的关系式.3.(2020八上·甘州月考)已知,直线l经过点A(4,0),B(0,2).(1)画出直线l的图象,并求出直线l的解析式;(2)求S△AOB;(3)在x轴上是否存在一点P,使S△PAB=3?若存在,求出点P的坐标,若不存在,请说明理由.4.(2020八上·相山期中)(1)在同一平面直角坐标系内用列表、描两点画直线,画出一次函数和的图象.(2)利用图象求:方程的解;(3)方程组的解;(4)不等式的解集.5.(2020八上·烈山期中)(1)画出函数的图象,(2)利用图象:求方程的解;(3)求不等式的解集;(4)若,求x的取值范围.6.(2020八上·平川期中)如图所示,已知:一次函数y=2x-4.(1)在直角坐标系内画出一次函数y=2x-4的图象.(2)求函数y=2x-4的图象与坐标轴围成的三角形面积.(3)当x取何值时,y>0.7.(2020八上·三水期中)已知一次函数y=(2m+1)x+3+m.(1)若y随x的增大而减小,求m的取值范围;(2)若图象经过点(﹣1,1),求m的值,画出这个函数图象.8.(2020八上·郑州开学考)已如一次函数y=kx+b的图象经过点(-1.-5),且与正比例函数y= x的图象相交于点(2,a),求:(1)a的值:(2)k,b的值;(3)在同一平面直角坐标系中画出这两个函数的图象;(4)求这两个函数图象与x轴所围成的三角形的面积.9.(2020八下·重庆期末)已知函数的图像,经过点和(0,-1)完成下列问题.(1)求函数的表达式;(2)在给出的平面直角坐标系中,请画出这个函数的图像并写出这个函数的一条性质;(3)已知函数的图像如图所示,结合你所画的函数图像,直接写出不等式的解集.10.(2020八下·涪陵期末)某次数学活动时,八年级数学兴趣小组成员研究函数y=|2x﹣4|﹣2的图象和性质.如表是该函数y与自变量x的几组对应值:(1)如图,在平面直角坐标系xOy中,描出以上各组对应值为坐标的点,再根据描出的点画出该函数的图象;(2)观察函数图象,当x>2时,y随x的增大而________(填“增大”或“减小”);(3)若一次函数y=kx+b的图象过点A(1,0)、B(4,2),结合你所画的函数图象,不等式kx+b≥|2x﹣4|﹣2的解集是________.11.(2020八下·曾都期末)在平面直角坐标系中,直线与直线交于点,点在直线上.(1)求直线的解析式;(2)在如图所示的坐标系中,画出直线和;(3)直接写出关于的不等式的解集.12.(2020八下·河池期末)如图,已知一次函数,解答下列问题:(1)画出此函数的图象(本题不要求列表);(2)根据函数图象回答:①方程的解是________;②当0<y<4时,则的取值范围是________;③当时,则的取值范围是________.13.(2020八下·长沙期中)已知一次函数y=kx+b的图象平行于y=-2x+1,且过点(2,-1),求:(1)这个一次函数的解析式;(2)画出该一次函数的图象:根据图象回答:当x取何值时不等式kx+b>3.14.(2020八上·邳州期末)已知一次函数的图像经过点.(1)求的值;(2)在图中画出这个函数的图像;(3)若该图像与轴交于点,与轴交于点,试确定的面积..15.(2020八上·新昌期末)直线与直线相交于点.(1)求的值,并在图中画出直线.(2)根据图象,写出关于的不等式组的解集.16.(2019八上·金坛月考)已知一次函数y1=kx+b的图象经过点(0,﹣2),(3,1).(1)求一次函数的表达式,并在所给直角坐标系中画出此函数的图象;(2)根据图象回答:当x________时,y1=0;(3)求直线y1=kx+b、直线y2=﹣2x+4与y轴围成的三角形的面积.17.(2019八上·驿城期中)在如图所示的平面真角坐标系中,函数的图象于、轴交于、两点,(1)画出函数的图象;并求出的面积:(2)函数的图象向上平移个单位长度得到.请直接写出:当时,的取值范围.18.(2019八上·温州开学考)已知函数和.(1)在同一个平面直角坐标系中画出这两个函数的图象;(2)根据图象,写出它们的交点坐标;19.(2019八下·正定期末)已知直线y=kx+3(1-k)(其中k为常数,k≠0),k取不同数值时,可得不同直线,请探究这些直线的共同特征.实践操作(1)当k=1时,直线l1的解析式为________,请在图1中画出图象;当k=2时,直线l2的解析式为________,请在图2中画出图象________;(2)探索发现直线y=kx+3(1-k)必经过点(________,________);(3)类比迁移矩形ABCD如图2所示,若直线y=kx+k-2(k≠0)分矩形ABCD的面积为相等的两部分,请在图中直接画出这条直线.20.(2019八下·松北期末)如图所示,已知一次函数的图像直线AB经过点(0,6)和点(-2,0).(1)求这个函数的解析式;(2)直线AB与x轴交于点A,与y轴交于点B,求△AOB的面积.21.(2019八下·遂宁期中)已知一次函数的解析式为y=2x+5,其图象过点A(-2,a),B(b,-1).(1)求a,b的值,并画出此一次函数的图象;(2)在y轴上是否存在点C,使得AC+BC的值最小?若存在,求出点C的坐标;若不存在,说明理由.22.(2019八下·赛罕期末)在坐标系下画出函数的图象,(1)正比例函数的图象与图象交于A,B两点,A在B的左侧,画出的图象并求A,B两点坐标(2)根据图象直接写出时自变量x的取值范围(3)与x轴交点为C,求的面积答案解析部分一、作图题1.【答案】(1)解:由题意,将点代入一次函数的解析式得:,解得,即(2)解:先描出点,再过点A、B画直线即可,如图所示:(3)解:由(2)的函数图象得:当时,一次函数的图象位于x轴的上方,即,则不等式的解集为【解析】【分析】(1)将点代入一次函数的解析式可得一个关于k、b的二元一次方程组,解方程组即可得;(2)先描出点,再过点A、B画直线即可得;(3)根据题(2)的函数图象即可得.2.【答案】(1)解:画图如下:(2)解:设这个一次函数的关系式为y=kx+b,根据题意得解得即一次函数的关系式为y=2x-1【解析】【分析】(1)图象经过(2,3)和(-1,-3)两点,在平面直角坐标系中描点、连线即可画出函数图像。
人教版数学八年级下册同步训练:19.1.2《函数图像》(含答案解析)

人教版数学八年级下册同步训练:19.1.2《函数图像》一、选择题1.下列函数关系中,属于正比例函数关系的是()A. 圆的面积与它的半径B. 面积为常数S时矩形的长y与宽xC. 路程是常数时,行驶的速度v与时间tD. 三角形的底边是常数a时它的面积S与这条边上的高h2.一枝蜡烛长20厘米,点燃后每小时燃烧掉5厘米,则下列3幅图象中能大致刻画出这支蜡烛点燃后剩下的长度h(厘米)与点燃时间t之间的函数关系的是()A. B. C.3.下列四个点中在函数y=2x-3的图象上有()个.(1,2) , (3,3) , (-1, -1), (1.5,0)A. 1B. 2C. 3D. 44.如果A、B两人在一次百米赛跑中,路程s(米)与赛跑的时间t(秒)的关系如图所示,则下列说法正确的是()A. A比B先出发B. A、B两人的速度相同C. A先到达终点D. B比A跑的路程多5.函数y=3x+1的图象一定经过( )A. (2,7)B. (4,10)C. (3,5)D. (-2,3)6.下列各点中,在函数y=2x-6的图象上的是( )A. (-2,3)B. (3,-2)C. (1,4)D. (4,2)7.一艘轮船和一艘快艇沿相同路线从甲港出发到乙港,行驶过程随时间变化的图象如图所示,下列结论错误的是()A. 轮船的速度为20千米/小时B. 快艇的速度为千米/小时C. 轮船比快艇先出发2小时D. 快艇比轮船早到2小时8.某星期下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A. 小强从家到公共汽车在步行了2公里B. 小强在公共汽车站等小明用了10分钟C. 公共汽车的平均速度是30公里/小时D. 小强乘公共汽车用了20分钟9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反应当天爷爷离家的距离y(米)与时间t(分钟)之间的大致图象是( )A. B.C. D.10.如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B(1,),C(2,),由此函数的最小值()A. 0B.C. 1D.11.均匀地向如图的容器中注满水,能反应在注水过程中水面高度h随时间t变化的图象是()A. B. C. D.12.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了速度,下面是小明离家后他到学校剩下的路程s关于时间t的函数的图象,那么符合小明行驶情况的图象大致是()A. B. C. D.13.小亮家与学校相距1500m,一天放学后他步行回家,最初以某一速度匀速前进,途中遇到熟人小强,说话耽误几分钟,与小强告别后他就改为匀速慢跑,最后回到了家,设小亮从学校出发后所用的时间为t(min),与家的距离为s(m),下列图象中,能表示上述过程的是()A. B. C. D.14.如图,将一个高度为12c m的锥形瓶放入一个空玻璃槽中,并向锥形瓶中匀速注水,若水槽的高度为10c m,则水槽中的水面高度y(c m)随注水时间x(s)的变化图象大致是()A. B. C. D.15.如图,李老师早晨出门锻炼,一段时间内沿⊙M的半圆形M→A→C→B→M路径匀速慢跑,那么李老师离出发点M的距离与时间x之间的函数关系的大致图象是()A. B. C. D.二、填空题16.放学后,小明骑车回家,他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示,则小明的骑车速度是________千米/分钟.17.一慢车和一快车沿相同路线从A地到B地,所行的路程与时间图象如图,则慢车比快车早出发________小时,快车追上慢车行驶了________千米,快车比慢车早________小时到达B地.18.园林队在公园进行绿化,中间休息了一段时间.已知绿化面积S与时间t的函数关系的图象如图所示,则休息后园林队绿化面积为________ 平方米.19.某型号汽油的数量与相应金额的关系如图,那么这种汽油的单价为每升________ 元.20.甲、乙两人分别从A、B两地相向而行,y与x的函数关系如图,其中x表示乙行走的时间(时),y表示两人与A地的距离(千米),甲的速度比乙每小时快________千米.三、解答题21.小明从家里出发到超市买东西,再回到家,他离家的距离y(千米)与时间t(分钟)的关系如图所示.请你根据图象回答下列问题:(1)小明家离超市的距离是________千米;(2)小明在超市买东西时间为________小时;(3)小明去超市时的速度是________千米/小时.22.一次越野跑中,当李明跑了1600米时,小刚跑了1450米,此后两人匀速跑的路程s(米)与时间t(秒)的关系如图,结合图象解答下列问题:Ⅰ.请你根据图象写出二条信息;Ⅱ.求图中S1和S0的位置.23.李老师为锻炼身体一直坚持步行上下班.已知学校到李老师家总路程2000米.一天,李老师下班后,以45米/分的速度从学校往家走,走到离学校900米时,正好遇到一个朋友,停下来聊了半小时,之后以110米/分的速度走回了家.李老师回家过程中,离家的路程S(米)与所用时间t(分)之间的关系如图所示.(1)求a、b、c的值;(2)求李老师从学校到家的总时间.24.小强骑自行车去交游,下图表示他离家的距离y(千米)与所用的时间x(小时)之间的函数图象,根据图象所提供的数据,请你写出3个信息.25.某天早晨,王老师从家出发步行前往学校,途中在路边一饭店吃早餐,如图所示是王老师从家到学校这一过程中所走的路程S(米)与时间t(分)之间的关系.(1)学校离他家________米,从出发到学校,王老师共用了________分钟;(2)王老师吃早餐用了多少分钟?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?吃完早餐后的平均速度是多少?答案解析部分一、选择题1.【答案】D【解析】【解答】As=πr,s是r的二次函数By= ,y是x的反比例函数Cv= ,v是t的反比例函数Ds= ah ,s是h的正比例函数故答案为:D【分析】将每个选项的关系式列出来,然后再判断即可2.【答案】C【解析】【解答】设蜡烛点燃后剩下h厘米时,燃烧了t小时,则h与t的关系是h=20-5t ,是一次函数图象,即t越大,h越小,符合此条件的只有C故答案为:C【分析】可以列出蜡烛点燃后,剩下的长度h与点燃时间t的函数关系式,利用函数的性质判断即可3.【答案】B【解析】【解答】分别代入:2≠2×1-3;3=2×3-3;-1≠2×(-1)-3;0=2×1.5-3;共两个满足.故答案为:B【分析】分别将各选项代入函数关系式,能满足左边等于右边的即在函数图象上.4.【答案】C【解析】【解答】结合图象可得出,A、B同时出发,A比B先到达终点,A的速度比B的速度快.故答案为:C【分析】根据图象法表示函数,观察A、B的出发时间相同5.【答案】A【解析】【解答】将A、B、C、D的坐标分别代入解析式只A符合左边等右边,故A选项正确.故答案为:A【分析】将ABCD各点分别代入解析式,使等式成立的即为函数图象上的点6.【答案】D【解析】【解答】将A、B、C、D的坐标分别代入解析式只D符合左边等右边,故D选项正确.故答案为:D【分析】将ABCD各点分别代入解析式,使等式成立的即为函数图象上的点7.【答案】B【解析】【解答】解:轮船的速度为:160÷8=20千米/小时,快艇的速度为:160÷(6﹣2)=40千米/小时,故A正确,B错误;由函数图象可知,C、D正确.故选B.【分析】先计算轮船和快艇的速度,再结合图象,逐一判断.8.【答案】D【解析】【解答】A.依题意得小强从家到公共汽车步行了2公里,故A不符合题意;B.依题意得小强在公共汽车站等掌上小明用了10分钟,故B不符合题意;C.公交车的速度为30公里/小时,故C不符合题意;D.小强和小明一起乘坐公共汽车,时间为30分钟,故D不符合题意.故答案为:D.【分析】观察图像可得出相关的信息:小强从家到公共汽车在步行了2公里;小强在公共汽车站等小明用了30-20=10分钟;公共汽车30分钟行驶的路程是15公里;即可得出答案。
4.3.1 正比例函数的图象和性质 湘教版数学八年级下册同步练习(含答案)

4.3 一次函数的图象1 正比例函数的图象和性质要点感知1画函数图象的步骤:(1)__________;(2)__________:建立直角坐标系,以__________为横坐标,__________为纵坐标,确定点的坐标;(3)__________.预习练习1-1下面所给点的坐标满足y=-2x的是( )A.(2,-1)B.(-1,2)C.(1,2)D.(2,1)要点感知2 正比例函数y=kx(k为常数,k≠0)的图象是一条__________,因此画正比例函数图象时,只要描出图象上的__________,然后过两点作一条直线即可,这条直线叫作“直线__________”.预习练习2-1 如图,某正比例函数的图象过点M(-2,1),则此正比例函数表达式为( )A.y=-xB.y=xC.y=-2xD.y=2x要点感知3 正比例函数图象的性质:直线y=kx(k≠0)是一条经过________的直线.当k>0时,直线y=kx经过第_______象限,从左到右,y随x的增大而________;当k<0时,直线y=kx经过第_____象限,从左到右,y随x的增大而________.知识点1 画正比例函数的图象1.正比例函数y=3x的大致图像是( )2.已知正比例函数y=x,请在平面直角坐标系中画出这个函数的图象.知识点2 正比例函数的图象与性质3.已知函数y=kx的函数值随x的增大而增大,则函数的图象经过( )A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限4.对于函数y=-k2x(k是常数,k≠0)的图象,下列说法不正确的是( )A.其函数图象是一条直线B.其函数图象过点(,-k)C.其函数图象经过一、三象限D.y随着x增大而减小5.正比例函数y=-x的图象平分( )A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限6.函数y=-5x的图象在第__________象限内,y随x的增大而__________.知识点3 实际问题中的正比例函数7.一根蜡烛长20 cm,点燃后每小时燃烧5 cm,则蜡烛燃烧的长度y(cm)与燃烧时间x(h)的函数关系用图象表示为下图中的( )8.小明用16元零花钱购买水果,已知水果单价是每千克4元,设买水果x千克用去的钱为y元,(1)求买水果用去的钱y(元)随买水果的数量x(千克)而变化的函数表达式;(2)画出这个函数的图象.9.已知正比例函数y=kx(k≠0),当x=1时,y=-2,则它的图象大致是( )10.已知正比例函数y=(3k-1)x,若y随x的增大而增大,则k的取值范围是( )A.k<0B.k>0C.k<D.k>11.若点A(-2,m)在正比例函数y=-x的图象上,则m的值是( )A. B.- C.1 D.-112.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是( )A.y1+y2>0B.y1+y2<0C.y1-y2>0D.y1-y2<013.甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是( )A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多14.写出一个图像经过一、三象限的正比例函数y=kx(k≠0)的解析式(关系式):_______________.15.当m=__________时,函数y=mx3m+4是正比例函数,此函数y随x的增大而__________.16.如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则系数k,m,n的大小关系是__________.17.已知正比例函数y=(k-2)x.(1)若函数图象经过第二、四象限,则k的范围是什么?(2)若函数图象经过第一、三象限,则k的范围是什么?18.已知正比例函数图象经过点(-1,2).(1)求此正比例函数的表达式;(2)画出这个函数图象;(3)点(2,-5)是否在此函数图象上?(4)若这个图象还经过点A(a,8),求点A的坐标.19.已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的表达式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.参考答案要点感知1(1)列表(2)描点自变量值相应的函数值(3)连线预习练习1-1B要点感知2 直线两点y=kx预习练习2-1A要点感知3 原点一、三上升增大二、四下降减少1.B2.图略.3.B4.C5.D6.二、四减小7.A8.(1)根据题意可得y=4x(0≤x≤4).(2)当x=0时,y=0;当x=4时,y=16.在平面直角坐标系中画出两点O(0,0),A(4,16),过这两点作线段OA,线段OA即函数y=4x(0≤x≤4)的图象,如图.9.A 10.D 11.C 12.C 13.B 14.y=3x(答案不唯一) 15.-1减小16.k>m>n 17.(1)k-2<0,∴k<2;(2)k-2>0,∴k>2.18.(1)设函数的表达式为:y=kx,则-k=2,即k=-2.故正比例函数的表达式为:y=-2x.(2)图象图略.(3)将点(2,-5)代入,左边=-5,右边=-4,左边≠右边,故点(2,-5)不在此函数图象上.(4)把(a,8)代入y=-2x,得8=-2a.解得a=-4.故点A的坐标是(-4,8).19.(1)∵点A的横坐标为3,且△AOH的面积为3,∴点A的纵坐标为-2,点A的坐标为(3,-2).∵正比例函数y=kx经过点A,∴3k=-2.解得k=-.∴正比例函数的表达式是y=-x.(2)∵△AOP的面积为5,点A的坐标为(3,-2),∴OP=5.∴点P的坐标为(5,0)或(-5,0).。
八年级最新数学下册单元测试题初二数学下册章节练习题带图文答案解析全部100篇第十九章2函数函数的图象

初二数学第十九章 19.1函数(函数的图象)同步练习(答题时间:60分钟)微课程:函数图象的应用同步练习一、选择题1. (湖北黄石)如右图,已知某容器是由上下两个相同的圆锥和中间一个与圆锥同底等高的圆柱组合而成。
若往此容器中注水,设注入水的体积为y ,高度为x ,则y 关于x 的函数图象大致是( )yOx A.yOxB .yO x C . yO xD .*2. (湖北鄂州)一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间。
用x 表示注水时间,用y 表示浮子的高度,则用来表示y 与x 之间关系的选项是( )A B C D**3. (湖北仙桃)小文、小亮从学校出发到青少年宫参加书法比赛,小文步行一段时间后,小亮骑自行车沿相同路线行进,两人均匀速前行。
他们的路程差s (米)与小文出发时间t (分)之间的函数关系如图所示。
下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的2.5倍;③24=a ;④480=b 。
其中正确的是( )A. ①②③B. ①②④C. ①③④D. ①②③④t /分 9 a 720O b1915 s /米4. 早晨,小张去公园晨练,下图是他离家的距离y (千米)与时间t (分钟)的函数图象,根据图象信息,下列说法正确的是( )1y(千米)x(分钟)20OA. 小张去时所用的时间多于回家所用的时间B. 小张在公园锻炼了20分钟C. 小张去时的速度大于回家的速度D. 小张去时走上坡路,回家时走下坡路二、填空题5. 已知函数y =ax +b 的图象经过点M (2,0)和N (1,-6)两点,则a =_______,b =_____。
6. 如图,射线l 甲,l 乙分别表示甲,乙两名运动员在自行车比赛中所走路程S 与时间t 的函数关系图象,则甲的速度_______乙的速度(用“>”,“=”,“<”填空)。
北师大版八年级数学上册《4.3一次函数的图象》练习题(附带参考答案)

北师大版八年级数学上册《4.3一次函数的图象》练习题(附带参考答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.一次函数y =3x +1的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限2.如图为正比例函数y =kx (k ≠0)的图象,则一次函数y =x +k 的大致图象是( )A .B .C .D .3.已知点P(1,4)在直线y =kx −2k 上,则k 的值为( )A .43B .−43C .4D .-44.如图,已知一次函数的图象与正比例函数y=12x 的图象交于点A ,则一次函数的表达式为()A .y=2x+2B .y=-12x+2C .y=-2x+2D .y=12x+25.将一次函数y =2x +5的图象沿y 轴向下平移4个单位长度,所得直线的解析式为( )A .y =2x −5B .y =x +5C .y =2x +1D .y =x +16.如图所示,点A (﹣1,m ),B (3,n )在一次函数y =kx+b 的图象上,则( )A .m =nB .m >nC.m<n D.m、n的大小关系不确定7.已知一次函数y=kx−k过点(−1,4),则下列结论正确的是()A.y随x增大而增大B.k=2C.一次函数的图象过点(1,0)D.一次函数的图象与坐标轴围成的三角形面积为28.如图,在平面直角坐标系中,已知A(2,0),B(1,3)在y轴上有一动点C,当△ABC的周长最小时,点C的坐标是()A.(0,0)B.(0,−2)C.(0,2)D.(−2,0)二、填空题9.直线y=2x+m−3经过点(2,3),则m=;10.已知y与x−2成正比例,且当x=1时y=1,则y与x之间的函数关系式为.11.如果正比例函数y=(3k+1)x的图像经过第二、四象限,那么k的取值范围是.12.若点P(m,n)在直线y=−2x+3上,则2m+n−3=.13.如果不论k为何值,一次函数y= 2k−1k+3x−k−11k+3的图象都经过一定点,则该定点的坐标是.三、解答题14.直线y=kx+1沿着y轴向上平移b个单位后,经过点A(−2,0)和y轴正半轴上的一点B,若△ABO(O为坐标原点)的面积为4,求b的值.15.已知y−2与x−3成正比例,且x=4时y=8.(1)求y与x之间的函数关系式;(2)当y=−6时,求x的值.16.已知y与3x−2成正比例,且当x=2时y=8.(1)求y与x的函数关系式;(2)画出这个函数的图象;(3)当x>0时, y的取值范围是.17.在直角坐标系内,一次函数y=kx+b的图象经过三点A(4,0),B(0,2)C(m,−3). (1)求这个一次函数解析式(2)求m的值.(3)若点P在直线y=kx+b上且到y轴的距离是3,求点P的坐标.参考答案1.D2.B3.D4.B5.C6.C7.C8.C9.210.y=-x+211.k<−1312.013.(2,3)14.解:直线y=kx+1沿着y轴向上平移b个单位后,得到y=kx+b+1 ∵直线y=kx+b+1经过点A(-2,0)和y轴正半轴上的一点B∴B(0,b+1)∵△ABO的面积是:1×2×(b+1)=42解得b=3.15.(1)解:∵y−2与x−3成正比例∴设y−2=k(x−3)∵x=4时∴8−2=k(4−3)∴k=6∴y=6x−16;(2)解:把y=−6代入y=6x−16,可得:−6=6x−16解得:x=5.316.(1)解:设y=k(3x−2)∵当x=2时x=2∴8=k(3×2−2)解得:k=2∴y与x的函数关系式为y=6x−4(2)解:令x =0,则y =−4,令x =1 过点(0,−4),(1,2)作直线如图所示:(3)y >-417.(1)解:∵一次函数y =kx +b 的图象经过三点A(4,0) B(0,2)则:{4k +b =0b =2,解得:{k =−12b =2∴这个一次函数解析式为:y =−12x +2(2)解:把C(m ,−3)代入:y =−12x +2中得:−3=−12m +2,解得:m =10(3)解:设P(x ,y)∵点P 在直线y =−12x +2上且到y 轴的距离是3 ∴x =±3当x =3时y =−12×3+2=12当x =−3时y =−12×(−3)+2=72∴点P 的坐标是(3,12)或(−3,72)。
八年级数学上册第四章一次函数4.3一次函数的图象同步练习北师大版

4.3一次函数的图象同步检测一、选择题1.若正比例函数的图象经过点(2,—3),则这个图象必经过点()A.(-3,-2)B.(2,3)C.(3,—2)D.(—2,3)答案:D解析:解答:设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(2,—3),所以-3=2k,解得:k=3-,2所以y=3-x,2把这四个选项中的点的坐标分别代入y=3-x中,等号成立的点2就在正比例函数y=3-x的图象上,所以这个图象必经过点(—2,23).故选D.分析:求出函数解析式,然后根据正比例函数的定义用代入法计算.2.如果函数y=3x+m的图象一定经过第二象限,那么m的取值范围是()A.m>0 B.m≥0C.m<0 D.m≤0答案:A解析:解答:因为k=3所以图象经过一、三象限函数y=3x+m的图象一定经过第二象限所以m>0,故选A.分析:图象一定经过第二象限,则函数一定与y轴的正半轴相交,因而m>0.3.函数y=-x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限答案:C解析:解答:由已知得,k=-1<0,b=2>0,∴函数y=-x+2的图象经过一、二、四象限,不过第三象限.故选C.分析:一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.4。
设0<k<2,关于x的一次函数y=kx+2(1—x),当1≤x≤2时的最大值是()A.2k—2 B.k-1 C.k D.k+1答案:C解析:解答:原式可以化为:y=(k-2)x+2,∵0<k<2,∴k-2<0,则函数值随x的增大而减小.∴当x=1时,函数值最大,最大值是:(k-2)+2=k.故选:C.分析:首先确定一次函数的增减性,根据增减性即可求解.5.已知正比例函数y=kx(k≠0)的图象如图所示,则在下列选项中k值可能是()A.1 B.2 C.3 D.4答案:B解析:解答:解:根据图象,得2k<6且3k>5,<k<3.只有2符合.故选B.所以53分析: 根据图象,列出不等式求出k的取值范围,再结合选项解答.6.如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a答案:B解析:解答:∵y=ax,y=bx,y=cx的图象都在第一三象限,∴a>0,b>0,c>0,∵直线越陡,则|k|越大,∴c>b>a,故选:B.分析:根据所在象限判断出a、b、c的符号,再根据直线越陡,则|k|越大可得答案.7.在平面直角坐标系中,一次函数y=2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限答案:D解析:解答:当x=0时,y=1,当y=0时,x=1-,2∴A(0,1),B(1-,0),2∴y=2x+1的图象经过第一、二、三象限.故选D.分析:分别求出函数与x、y轴的交点,过两点作直线,根据直线即可求出答案.8.已知正比例函数y=kx (k≠0),当x=—1时,y=—2,则它的图象大致是()A.B.C.D.答案:C解析:解答:将x=-1,y=-2代入正比例函数y=kx(k≠0)得, -2=-k,k=2>0,∴函数图象过原点和一、三象限,故选C.分析:将x=—1,y=-2代入正比例函数y=kx(k≠0),求出k的值,即可根据正比例函数的性质判断出函数的大致图象.9.已知点P(m,n)在第四象限,则直线y=nx+m图象大致是下列的()A.B.C.D.答案:D解析:解答: 因为点P(m,n)在第四象限,所以m>0,n<0,所以图象经过一,二,四象限,故选D分析:根据第四象限的特点得出m>0,n<0,再判断图象即可.10。
八年级数学:一次函数的图像练习(含解析)

八年级数学:一次函数的图像练习(含解析)1.一次函数y=x+2的图像大致是下图中的( A )解析:根据直线y=x+2与y轴和x轴的交点分别是(0,2)和(-2,0),观察得到选项A.故选A.2.若一次函数y=3x+k的图像过点(1,2),则函数y=kx+2的图像大致为下图中的( A )解析:把(1,2)代入y=3x+k,得k=-1,则y=kx+2为y=-x+2,故图像为A.故选A.3.直线y=kx-1一定经过点( D )A.(1,0) B.(1,k) C.(0,k) D.(0,-1)解析:当x=0时,y=-1.故选D.4.(2017·沈阳)在平面直角坐标系中,一次函数y=x-1的图像是( B )解析:一次函数y=x-1,其中k=1,b=-1,其图像为,故选B.5.若k≠0,b<0,则y=kx+b的图像可能是( B )解析:一次函数,k≠0,不可能与x轴平行,排除D选项;b<0,说明图像过第三、四象限,排除A,C选项.故选B.6.已知一条直线y=kx+b,其中k+b=-5,kb=6,那么该直线经过( D )A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限解析:由kb=6,k+b=-5.知k<0,b<0,∴图像经过第二、三、四象限.故选D.7.如图,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图像是( A )解析:由A中正比例函数图像可知mn<0,∴m与n异号.由一次函数可知m<0,n>0,∴A 选项中图像与描述一致,故选A.8.如图,是一个正比例函数的图像,把该图像向左平移一个单位长度,得到的函数图像的表达式为y=-2x-2.解析:正比例函数为y=-2x,图像向左平移一个单位长度则x+1,即y=-2(x+1)=-2x-2.9.一次函数y=3x-6的图像与坐标轴围成的三角形的面积是6.解析:y=3x-6与x轴交于(2,0),与y轴交于(0,-6),∴S=12×2×6=6.10.已知y+1与2-x成正比,且当x=-1时,y=5,则y与x的函数关系式是y=-2x+3.解析:设y+1=k(2-x)(k≠0),把x=-1,y=5代入得5+1=k(2+1),解得k=2,则y+1=2(2-x),即y=-2x+3.11.已知一次函数y=kx+2的图像经过A(-1,1).(1)求此一次函数的表达式;(2)求这个一次函数图像与x轴的交点B的坐标,画出函数图像;(3)求△AOB的面积.解:(1)将A(-1,1)的坐标代入一次函数y=kx+2,解得k=1,故其表达式为y=x+2.(2)令y=0,解得x=-2,故该一次函数的图像与x轴交于点B(-2,0).函数图像如图.(3)过A作AC⊥x轴于点C,△AOB的面积=12OB·AC=12×2×1=1.12.在同一平面直角坐标系中画出一次函数y=32x与y=32x+3的图像,并根据图像回答:(1)两个函数的图像有什么位置关系?你是怎样看出的?(2)其中一个函数图像能否通过平移得到另一个函数图像?若能,说出你的平移方法.解:对于y=32x,当x=0时,y=0;当x=2时,y=3.对于y=32x+3,当x=0时,y=3;当y=0时,解得x=-2.过点(0,0)与(2,3)画直线,则得到y=32x的图像;过点(-2,0)与(0,3)画直线,则得到y=32x+3的图像,如图所示.(1)两个函数图像互相平行.理由为:因为点A与B的纵坐标相同、横坐标相差2,点O与C的纵坐标相同、横坐标相差2,所以两个函数图像互相平行.(2)能.平移方法不唯一,如:把函数y=32x的图像向左平移2个单位长度则得到函数y=32x+3的图像.。
八年级数学下册《一次函数的图像和性质》练习题及答案

2019年八年级数学下册《一次函数的图像和性质》练习题及答案大家在遇到各种类型的题型时,能否沉着应对,关键在于平时多做练习,下文是由查字典大学网为大家推荐的一次函数的图像和性质练习题及答案,一定要认真对待哦!第1题. 对于任何实数x,点M(x,x-3)一定不在第几象限? 答案:点M(x,x-3)在直线y=x-3上,而直线y=x-3不过第二象限,所以,对于任何实数x,点M(x,x-3)一定不在第二象限.第2题. 一次函数,如果,则x的取值范围是( )A. ?B. ?C. ?D.答案:B.第3题. 已知直线y=kx+b(k≠0)与x轴的交点在x轴的正半轴,下列结论:①k>0,b>0;②k>0,b0;④kA.1?B.2?C.3?D.4答案:B第4题. 如图所示,函数y=mx+m的图像中可能是( )答案:D第5题. 当自变量x增大时,下列函数值反而减小的是( ) A.?y=???????????????? B.y=2xC.y=???????????????D.y=-2+5x答案:C第6题. 正比例函数的图像如图,则这个函数的解析式为(? )A.y=x?B.y=-2xC.y=-x?D.答案:C第7题. 直线y=(2-5k)x+3k-2不过第一象限,则k需满足?????? ,写出一个满足上述条件的一个函数的解析式?????? .答案:,第8题. 直线y=4x-2与x轴的交点是?????? ,与y轴的交点是?????? .答案:第9题. 直线y=(2-5k)x+3k-2若经过原点,则k=?????? ;若直线与x轴交于点(-1,0),则k=?????? ,答案:第10题. 一次函数的图像经过的象限是____,它与x轴的交点坐标是____,与y轴的交点坐标是____,y随x的增大而____.答案:一、二、四象限,(2,0),(0,4),减小第11题. (1)已知关于x的一次函数y=(2k-3)x+k-1的图像与y轴交点在x轴的上方,且y随x的增大而减小,求k的取值范围;(2)已知函数y=(4m-3)x是正比例函数,且y随x的增大而增大,求m的取值范围.答案:(1)依题意,有,解得 ;(2)依题意,得,即时,y随x的增大而增大.第12题. 已知一次函数,当0≤x≤3时,函数y的最大值是(? ).A.0???B.3???C.-3???D.无法确定答案:B点拔:画图得的图象是一条线段,又,故y随x 的增大而减小,∴当x=0时,y的最大值等于3第13题. 下列图像中,不可能是关于x的一次函数y=mx-(m-3)的图像的是( )答案:C第14题. 在同一坐标内,函数关系式为y=kx+b(k、b为常数且k≠0)的直线有无数条,在这些直线中,不论怎样抽取,至少要抽几条直线,才能保证其中的两条直线经过完全相同的象限( )A.4?B.5?C.6?D.7答案:D第15题. 如图,直线l是一次函数y=kx+b的图像,看图填空:(1)?b=______,k=______;(2)?x=-20时,y=_______;(3)?当y=-20时,x=_______.答案:第16题. 若一次函数y=kx+b交于y轴的负半轴,且y的值随x的增大而减小,则k_____0,b______0.(填">"、"="、或"0,b>0?B.k>0,b0?D.k答案:B第22题. 一次函数y=-3x-4与x轴交于( ),与y轴交于( ),y随x的增大而___________.答案:,,减少第23题. 如果正比例函数 =3 和一次函数 =2 +k的图象的交点在第三象限,那么k的取值范围是???????????? .答案:k")答案:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学-函数的图象练习题(含解析)基础闯关全练1.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校的路程s(单位:m)与时间t(单位:min )之间函数关系的大致图象是()A. B. C. D.2.某日上午,静怡同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿,接到通知后,静怡立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一会儿,静怡继续录入并加快了录入速度,直至录入完成,设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A. B. C. D.3.星期天,小明与小刚骑自行车去距家50千米的某地旅游,匀速骑行1.5小时后,其中一辆自行车出现故障,因此二人在自行车修理点修车,用了半小时,然后以原速继续前行,骑行1小时后到达目的地,请在如图19-1-2-1所示的平面直角坐标系中画出符合他们骑行的路程s(千米)与骑行时间t (小时)之间的函数图象.4.已知两个变量x和y它们之间的3组对应值如下表所示:x -1 0 1y -1 1 3则y与x对应的函数关系可能是()A.y=x B.y=2x+1 C.y=x²+x+1 D.y=x35.商场进了一批花布,出售时要在进价(进货价格)的基础上加一定的利润,其数量x(米)与售价y(元)如下表:数量x(米) 1 2 3 4 …售价y(元)8+0.3 16+0.624+0.932+1.2…下列用数量x(米)表示售价y(元)的关系式中,正确的是()A.y=8x+0.3 B.y=(8+0.3)x C.y=8+0.3x D.y=8+0.3+x能力提升全练1.“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始时领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行,最终赢得比赛,下列函数图象可以体现这一故事过程的是()A. B. C. D.2.小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图19-1-2-2反映了这个过程中,小明离家的距离y与时间x之间的对应关系,根据图象,下列说法正确的是()A.小明吃早餐用了25min B.小明读报用了30minC.食堂到图书馆的距离为0.8km D.小明从图书馆回家的速度为0.8km/min3.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.x … 1 2 3 5 7 9 …y … 1.983.952.63 1.581.13 0.88 …小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图19-1-2-3,在平面直角坐标系xOy中,描出了以表中各组对应值为坐标的点,根据描出的点,画出该函数的图象:(2)根据画出的函数图象,写出:①x=4对应的函数值y约为________;②该函数的一条性质:____________________.三年模拟全练一、选择题1.如图19-1-2-4,在矩形ABCD中,AB=1,AD=2,M是AD的中点,点P在矩形的边上,从点A出发,沿A→B→C→D运动,到达点D后运动终止.设△APM的面积为y,点P经过的路程为x,那么能正确表示y与x之间的函数关系的图象是()A. B. C. D.2.一支蜡烛长20 cm,若点燃后每小时燃烧5cm,则燃烧剩余的长度y(cm)与燃烧时间x(h)之间的函数关系的图象大致为()A. B. C. D.二、填空题3.小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图19-1-2-5所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和上班时一致,那么他从单位到家门口需要的时间是_______分钟.4.快车和慢车同时从甲地出发以不同的速度匀速前往乙地,快车到达乙地后停留了一段时间,立即从原路以原速度匀速返回,在途中与慢车相遇,相遇后两车朝各自的方向继续行驶,两车之间的距离y (千米)与慢车行驶的时间t(小时)之间的函数图象如图19-1-2-6所示,则两车相遇时距甲地_______千米.五年中考全练一、选择题1.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A. B. C. D.2.在物理实验课上,老师用弹簧秤将铁块悬于盛有水的水槽中,然后匀速向上提起,直到铁块完全露出水面一定的高度,如图19-1-2-7所示,则下列选项能反映弹簧秤的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A .B .C .D .3.甲、乙两地相距80 km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20 km/h,并继续匀速行驶至乙地,汽车行驶的路程y( km)与时间x(h)之间的函数关系如图19-1-2-8所示,该车到达乙地的时间是当天上午()A.10:35 B.10:40 C.10:45 D.10:504.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2 400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图19-1-2-9所示,下列结论:①甲步行的速度为60米/分:②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米.其中正确的结论有 ( )A.1个 B.2个 C.3个 D.4个二、填空题5.一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来的一半.小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的函数关系如图19-1-2-10所示(小玲和妈妈上、下楼以及妈妈将学习用品交给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为_______米.核心素养全练1.2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图19-1-2-11所示,中国创新综合排名全球第22,创新效率排名全球第_______.2.小红帮弟弟荡秋千(如图19-1-2-12a),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图19-1-2-12b所示.(1)根据函数的定义,请判断变量h是不是关于t的函数.(2)结合图象回答:①当t=0.7 s时,h的值是多少?并说明它的实际意义:②秋千摆动第一个来回需多少时间?3.图19-1-2-13①表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)设北京时间为x(时),首尔时间为y(时),若0≤x≤12,求y关于x的函数表达式,并填写下表(同一时刻的两地时间);北京时间7:30 _______ 2:50首尔时间_______12:15 ________(2)图19-1-2-13②表示同一时刻的英国伦敦(夏时制)时间和北京时间,两地时差为整数.如果现在伦敦(夏时制)时间为7:30,那么此时韩国首尔时间是多少?19.1.2 函数的图象1.B小刚从家到学校的路程s(m)应随他行走的时间t(min)的增大而增大,因而选项A一定错误;而在等车的时候离家的路程不变,因此C、D错误;所以能反映小刚从家到学校行走路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是B,故选B.2.C接到通知后,静怡立即在电脑上打字录入这篇文稿,所以函数图象平缓上升;录入一段时间后因事暂停,录入字数不变,函数图象保持水平;过了一会儿,静怡继续录入并加快了录入速度,函数图象上升,且比开始时上升得快,综合这些信息可知答案为C.3.解析由题意可知,共骑行2.5小时走完全程50千米,所以前1.5小时走了30千米,修车用了0.5小时后继续骑行1小时,走了20千米,由此作图如图所示.4.B将3组x、y的对应值分别代入A、B、C、D四个选项中的函数关系式,都成立的是选项B.5.B依题意得y=(8+0.3)x.故选B.1.B乌龟匀速爬行,兔子因在比赛中间睡觉,导致开始时领先,最后输掉比赛,所以线段表示乌龟比赛中路程与时间的关系,折线表示兔子比赛中路程与时间的关系,跑到终点兔子用的时间多于乌龟所用的时间.A中,乌龟用时多,不合题意:C中,兔子和乌龟用时相同,不合题意;D中,乌龟虽然用时少,但图象显示比赛一开始,乌龟就领先,不合题意,只有B选项符合题意.2.B吃早餐用的时间为25-8=17 min,故选项A错误:食堂到图书馆距离应为0.8-0.6=0.2 km,故选项C 错误;小明从图书馆回家的速度应为108.0=0.08 km/min,故选项D错误,故选B.3.解析本题答案不唯一.画出的函数图象需符合表格中所反映出的y与x之间的变化规律,写出的函数值和函数性质需符合所画出的函数图象.如:(1)(2)①1.98.②当x>2时,y随x的增大而减小.一、选择题1.A △APM的面积随x的变化而变化,当点P由A到B,即x由0到1时,y匀速增大至最大值1,当点P由B到C,即x由1到3时,y取得最大值0.5且不变;当点P由C到D,即x由3到4时,y匀速减小.故选A.2.C 由题意,得y=20-5x.∵O≤y≤20,∴ 0≤20-5x≤20,∴0≤x≤4,∴y=20-5x的图象是一条线段,当x=0时,y=20;当x=4时,y=0.故选C . 二、填空题 3.答案15解析 根据图象可知上班时走平路、上坡路和下坡路的速度分别为215131和、(千米/分钟),且平路长度为1千米,A ,B 之间距离为1千米,B 与单位之间距离为2千米,所以他从单位到家门口需要的时间是2÷31121151÷+÷+=15(分钟).4.答案 220解析根据题意,结合图象得,OA 段表示两车同时同地同向往乙地行驶5小时后快车到达乙地,AB 段表示慢车继续行驶1小时,快车在乙地停留1小时,由此得慢车速度为(150-120)÷(5-4)=30千米/小时,设快车速度为x 千米/小时,则5x-30×5=150.解得x=60(千米/小时).甲乙两地之间的距离为5×60=300(千米),慢车行驶6小时后,快车准备从乙地返回,此时两车相距120千米,BC 段表示两车走这120千米直至相遇的情况,设6小时后再经过t 1.小时两车相遇,则30t ₁+60t ₁=120,解得t ₁=34,故慢车又行驶了30×34=40千米,所以此时两车相距甲地150+30+40=220千米. 一、选择题1.D 由题意可知,2x+y=10,根据“三角形任意两边之和大于第三边”可得2x >y 且2x <10,解得2.5<x <5,故选D .2.C 因为铁块在水中受到浮力的影响,所以铁块上底面离开水面前读数y 不变,铁块上底面离开水面后y 逐渐增大,铁块下底面离开水面后y 不变.3.B 由图象知,汽车行驶前一半路程(40 km)所用的时间是1 h .所以速度为40÷1=40(km/h),故行驶后一半路程的速度是40+20=60( km/h),所以行驶后一半路程所用的时间为40÷60=32(h),因为32h=32×60=40 min ,所以该车一共行驶了1小时40分钟到达乙地,故到达乙地的时间是当天上午10:40.4.A 由图象知,甲4分钟步行了240米,∴甲步行的速度为4240=60(米/分),∴结论①正确;∵乙用了16-4=12分钟迫上甲,乙步行的速度比甲快12240=20(米/分),∴乙步行的速度为60+20=80米/分,∴结论③不正确;∴甲走完全程需要602400=40分钟,乙走完全程需要802400=30分钟,∴结论②不正确,∴乙到达终点时,甲用了34分钟,甲还有40-34=6分钟到达终点,离终点还有60×6=360米,∴结论④不正确.故选A . 二、填空题 5.答案200解析由图可知,小玲用30分钟从家里步行到距家1 200米的学校,因此小玲的速度为40米/分;妈妈在小玲步行10分钟后从家时出发,用5分钟追上小玲,因此妈妈的速度为40×15÷5=120米/分,故妈妈返回家时的速度为120÷2=60米/分.设妈妈用x 分钟返回到家里,则60x=40×15,解得x=10,此时小玲已行走了25分钟,共步行了25×40=1 000米,所以距离学校还有1200-1000=200(米). 1.答案3解析从图①可知,创新综合排名全球第22,对应创新产出排名全球第11;从图②可知,创新产出排名全球第11,对应创新效率排名全球第3.2.解析(1)∵对于每一个摆动时间t ,都有唯一一个确定的h 值与其对应,∴变量h 是关于t 的函数.(2)①由题图b 知,当t=0.7时,h=0.5 m ,它的实际意义是秋千摆动0.7 s 时,距离地面的高度为0.5 m .②由题图b 知,秋千摆动第一个来回需2.8 s .3.解析(1)从题图①看出,同一时刻,首尔时间比北京时间早1小时,所以,y 关于x 的函数表达式是y=x+1,O ≤x ≤12.填表如下: 北京时间 7:30 11:15 2:50首尔时8:30 12:15 3:50(2)设伦敦(夏时制)时间为t时,则北京时间为(t+7)时,结合(1)可得,韩国首尔时间为(t+8)时,所以,当伦敦(夏时制)时间为7:30,韩国首尔时间为15:30.。