高频课程设计--调幅发射机(正文)

合集下载

高频课程设计调频发射机

高频课程设计调频发射机

高频课程设计调频发射机一、课程目标知识目标:1. 学生能够理解调频发射机的基本原理,掌握调频调制技术的基本概念。

2. 学生能够描述高频课程设计调频发射机的结构组成及其工作原理。

3. 学生能够掌握调频发射机参数调整对发射信号质量的影响。

技能目标:1. 学生能够运用所学知识,进行调频发射机的组装与调试。

2. 学生能够通过实际操作,分析并解决调频发射过程中出现的问题。

3. 学生能够利用调频发射机进行信号的传输,具备实际应用的能力。

情感态度价值观目标:1. 学生通过学习,培养对无线电通信技术的兴趣,激发创新意识。

2. 学生在学习过程中,树立团队协作意识,提高沟通与协作能力。

3. 学生能够认识到无线电通信技术在生活中的应用,增强社会责任感和使命感。

课程性质分析:本课程为高年级电子技术课程,以实践操作为主,理论联系实际,注重培养学生的动手能力与创新能力。

学生特点分析:高年级学生对电子技术有一定的基础,具备一定的自学能力和动手能力,对新鲜事物充满好奇心。

教学要求:1. 教师应注重理论与实践相结合,引导学生通过实践掌握理论知识。

2. 教师应关注学生的个体差异,因材施教,提高学生的创新能力。

3. 教师应注重培养学生的团队协作能力,提高学生的综合素质。

二、教学内容1. 理论知识:- 调频发射机原理:包括调频调制技术、发射机结构及其工作原理。

- 调频发射机关键参数:如频率、带宽、调制指数等对信号质量的影响。

- 无线电发射法规与标准:了解国家对无线电发射设备的相关规定。

2. 实践操作:- 调频发射机的组装:学生根据原理图,自行组装调频发射机。

- 调频发射机调试:学生调整发射机参数,优化发射效果。

- 信号传输实验:利用调频发射机进行信号传输,测试传输距离和信号质量。

3. 教学大纲:- 第一周:调频发射机原理学习,包括理论知识讲解和案例分析。

- 第二周:调频发射机关键参数学习,进行实际操作训练。

- 第三周:无线电发射法规与标准学习,了解行业规范。

哈工大通信专业高频专业课程设计高频发射机和超外差接收机

哈工大通信专业高频专业课程设计高频发射机和超外差接收机

哈工大通信专业高频专业课程设计高频发射机和超外差接收机高频电子线路课程设计学院:电子与信息工程学院专业班级:姓名:学号:日期:目录高频电子线路课程设计 (2)一问题重述与分析 (3)1.1 调幅发射机分析 (3)1.2 超外差接收机分析 (3)二中波电台发射系统的设计 (4)2.1 模块电路设计与仿真 (4)2.1.1正弦波振荡器及缓冲电路及仿真 (4)2.1.2高频小信号放大电路及仿真 (8)2.1.3.振幅调制电路及仿真 (9)2.1.4功率放大电路及仿真 (11)2.2整体电路设计及仿真 (11)三中波电台接收系统设计 (12)3.1混频器电路及仿真 (12)3.2 检波电路及仿真 (14)3.3 低频功率放大器及仿真 (15)四心得与体会 (17)五参考文献 (18)一:问题重述与分析本次设计中的两个系统,第一个是中波电台发射系统,设计目的是要求掌握最基本的小功率调幅发射系统的设计与安装调试。

本设计中试用是基本调幅发射机。

第二个是中波电台接收系统,设计目的是要求掌握最基本的超外差接收机的设计与调试。

1.1调幅发射机系统系统框图如下图正弦振荡器缓冲电路高频小信号放大振幅调制电路声电变换前置放大器低频放大高频功率放大天线调制信号载波信号图一:调幅发射机系统框图本设计将声电变换部分,及其之后的前置放大器,低频放大器都省略,用一个低频的正弦波交流电源表示,输出部分的天线模块也用规定的输出负载代替。

现在结合题目所给性能指标进行分析:载波频率535-1605KHz ,载波频率稳定度不低于10-3:正弦波振荡器产生的正弦波信号频率f为535 KHz到1605KHz,当震荡波形不稳定时,最大波动频率范围f 与频率f之比的数量级应该小于10-3 。

输出负载51Ω :输出部分,即电路最终端的输出负载为51Ω。

总的输出功率50mW :即输出负载上的交流功率,调幅指数30%~80% :设A 为调幅波形的峰峰值,B 为谷谷值,则由调幅指数计算公式有100%a A B m A B -=⨯+。

高频课程设计调频发射机

高频课程设计调频发射机

高频课程设计调频发射机一、教学目标本章节的教学目标是使学生掌握调频发射机的基本原理、结构和功能,能够运用所学知识分析和解决实际问题。

具体目标如下:1.知识目标:(1)了解调频发射机的工作原理和基本组成;(2)掌握调频发射机的各个部件的功能和作用;(3)了解调频发射机在通信领域的应用。

2.技能目标:(1)能够正确使用调频发射机进行通信;(2)能够分析调频发射机的工作状态,判断并解决问题;(3)能够根据实际需求,设计并制作简单的调频发射机。

3.情感态度价值观目标:(1)培养学生对通信技术的兴趣和好奇心;(2)培养学生团队合作、动手实践的能力;(3)使学生认识到调频发射机在现代通信中的重要性,提高学生的社会责任感和使命感。

二、教学内容本章节的教学内容主要包括调频发射机的基本原理、结构和功能,具体如下:1.调频发射机的工作原理;2.调频发射机的组成部分及其功能;3.调频发射机的应用领域;4.调频发射机的设计和制作。

三、教学方法为了提高教学效果,本章节将采用多种教学方法,如讲授法、讨论法、案例分析法、实验法等。

具体如下:1.讲授法:用于讲解调频发射机的基本原理、结构和功能;2.讨论法:用于探讨调频发射机的应用领域和发展趋势;3.案例分析法:分析实际案例,使学生更好地理解调频发射机的工作原理;4.实验法:让学生动手实践,制作和调试调频发射机,提高学生的实际操作能力。

四、教学资源为了支持教学内容和教学方法的实施,本章节将准备以下教学资源:1.教材:提供理论知识的学习;2.参考书:拓展学生的知识视野;3.多媒体资料:包括图片、视频等,用于直观展示调频发射机的工作原理和制作过程;4.实验设备:用于学生的实践操作和实验教学。

五、教学评估本章节的教学评估将采用多种方式,以全面、客观地评估学生的学习成果。

具体评估方式如下:1.平时表现:通过课堂参与、提问、讨论等环节,评估学生的学习态度和积极性;2.作业:布置与本章节相关的作业,评估学生的理解能力和应用能力;3.实验报告:评估学生在实验过程中的操作能力和问题解决能力;4.考试:设置选择题、填空题、简答题等题型,全面考察学生对调频发射机知识的掌握程度。

无线电调幅发射机的设计与制作.

无线电调幅发射机的设计与制作.

无线电调幅发射机的设计与制作无线电调幅发射机课程设计任务书1、设计课题:无线调幅发射机2、设计目的:通过本课题的设计与装配、调试,提高学生的实际动手能力,巩固已学的理论知识,能够使学生建立无线电发射机的整机概念,了解发射机整机各单元电路之间的关系及相互影响,从而能正确设计、计算发射机的各个单元电路:主振级、激励级、输出级、调制级、输出匹配网络及音频放大器。

初步掌握小型调幅波发射机的调整及测试方法。

3、技术指标与要求:(1)设计达到的主要技术指标有:等幅波发射机1工作频率f0=1.2 MHz~ 2.6MHz;2输出功率P Omax≥0.25W;3频率稳定度0f f∆≤5×10-4;4负载电阻R A=50Ω;5电源电压Ec=12V。

调幅波发射机1载波频率f0=1.2 MHz~ 2.6MHz;2峰包功率P Omax≥0.25W;3调制系数Ma=50%±5%;4包络失真系数γ≤1%;5负载电阻R A=50Ω;6频率稳定度0f f∆≤5×10—4;7电源电压Ec=12V。

此外,还要适当考虑发射机的效率,输出波形失真以及波段内输出功率的均匀度等;电路结构采用分立元件构建的LC振荡器、缓冲隔离、高频宽放和高频功放等电路实现。

2、要求完成的设计工作主要有:(1)收集资料、消化资料;(2)选择原理电路,分析并计算电路参数;(3)绘制电路原理图一张(用A4图纸);(4)绘制元件明细表一张(用A4图纸);(5)设计印制电路板底图一张;(6)撰写设计报告一份,要求字数在5000字以上。

3、时间安排总时间一周,最后半天(4学时)为答辩时间。

答辩过程分两步完成,前2节课时间分小组进行答辩,并初步推举出优秀设计2~4个;后2节课时间为优秀设计集中答辩时间。

4、注意事项(1)作图必须规范,图幅清洁干净;(2)设计报告内容详细,叙述清楚,计算准确,有根有据,书写工整;(3)设计必须独立完成,不得抄袭。

高频课程设计调幅发射机

高频课程设计调幅发射机

高频课程设计调幅发射机一、教学目标本章节的教学目标分为三个部分:知识目标、技能目标和情感态度价值观目标。

1.知识目标:学生需要掌握调幅发射机的基本原理、工作方式和应用场景。

具体包括调幅发射机的工作原理、调幅电路的组成、调幅信号的传输和调幅技术的优点等。

2.技能目标:学生能够通过实验和实践,掌握调幅发射机的搭建和调试方法,培养动手能力和实验技能。

3.情感态度价值观目标:培养学生对通信技术的兴趣和好奇心,提高学生对科学技术的认同感和自豪感,培养学生的创新精神和团队合作意识。

二、教学内容本章节的教学内容主要包括调幅发射机的基本原理、工作方式和应用场景。

具体包括以下几个部分:1.调幅发射机的工作原理:介绍调幅发射机的工作原理,包括调幅电路的组成、调幅信号的生成和传输等。

2.调幅电路的组成:介绍调幅电路的基本组成部分,包括放大器、调制器、滤波器等,并解释它们在调幅发射机中的作用。

3.调幅信号的传输:讲解调幅信号在传输过程中的特点和优点,以及调幅信号在通信中的应用。

4.调幅技术的应用场景:介绍调幅技术在实际通信中的应用场景,如无线电广播、卫星通信等。

三、教学方法为了提高教学效果,本章节将采用多种教学方法相结合的方式进行教学。

具体包括以下几种方法:1.讲授法:通过讲解调幅发射机的基本原理、工作方式和应用场景,使学生掌握相关知识。

2.实验法:学生进行调幅发射机的搭建和调试实验,培养学生的动手能力和实验技能。

3.案例分析法:分析实际应用中的调幅技术案例,使学生更好地理解和掌握调幅技术的应用。

4.讨论法:学生进行小组讨论,分享学习心得和实验经验,提高学生的团队合作意识。

四、教学资源为了支持本章节的教学,我们将准备以下教学资源:1.教材:提供相关章节的学习资料,帮助学生掌握调幅发射机的基本原理和应用。

2.参考书:提供相关的参考书籍,为学生提供更多的学习资料和拓展知识。

3.多媒体资料:制作PPT、视频等多媒体资料,形象地展示调幅发射机的工作原理和应用场景。

高频课程设计报告_调频发射机

高频课程设计报告_调频发射机

高频课程设计报告_调频发射机目录1. 内容概述 (2)1.1 课程背景 (3)1.2 报告目的 (3)1.3 报告结构 (4)2. 调频发射机概述 (5)2.1 调频通信原理 (6)2.2 调频发射机组成 (7)3. 调频发射机设计要求 (8)3.1 系统指标 (10)3.2 性能要求 (11)4. 设计方案与实现 (11)4.1 发射机结构设计 (13)4.2 高频电路设计 (14)4.3 调制和解调电路设计 (15)4.4 电源模块设计 (17)5. 调试与优化 (19)5.1 测试方法 (21)5.2 调试过程 (22)5.3 性能优化 (23)6. 测试结果与分析 (25)6.1 发射功率 (26)6.2 频谱纯度 (27)6.3 调制质量 (28)6.4 系统稳定性 (30)7. 结论与展望 (31)7.1 设计总结 (32)7.2 存在问题 (34)7.3 未来改进方向 (35)1. 内容概述本报告详细介绍了调频发射机的高频课程设计,围绕其工作原理、设计要点、实现路径以及未来改进方向展开深入探讨。

从调频发射机的基本原理出发,我们讨论了信号调制、载波频率的调整以及功率放大等关键技术点。

报告紧密结合实际工程需求,详尽阐述了调频发射机的工作著魔步骤和各个模块的功能设计,包括射频前端、调制器、功率放大器等核心部件。

在分析过程中,我们考虑了复杂信号环境下的抗干扰性设计,确保信号传输的稳定性和清晰度。

通过对调频发射机的仿真和数据分析,本报告优化了不同负载条件下的性能表现,为实际生产提供了有效的理论支持。

本课程设计报告还包括了项目实施过程中的遇到的挑战和解决方案,同时讨论了调频发射机在现代无线通信技术中的应用及其市场潜力。

报告最后展望了的未来科技发展趋势,提出了进一步提升调频发射机性能的潜在技术和创新方向。

通过本报告的学习与应用,读者能够获得关于高频调频发射机设计过程的全面了解,并为后续相关研究提供有益的参考和指导。

高频电子线路课程设计报告-小功率调幅发射机

高频电子线路课程设计报告-小功率调幅发射机

提供全套毕业设计,欢迎咨询吉林建筑大学电气与电子信息工程学院高频电子线路课程设计报告设计题目:小功率调幅发射机专业班级:电子信息工程学生姓名:学号:指导教师:设计时间:2014.12.08-2014.12.19一、设计题目:小功率调幅发射机的设计二、设计目的、内容及要求:2.1 设计目的(1)加深对《高频电子线路》理论知识的进一步理解,进一步巩固理论知识,能够建立起无线发射机的整机概念,学会分析电路、设计电路的步骤和方法,深入地贯穿到实践中。

(2)提高同学们自学和独立工作的实际能力,为今后课程的学习和从事相应工作打下坚实基础。

2.2 设计内容及要求小功率调幅发射机的设计(1)掌握小功率调幅发射机原理;(2)设计出实现调幅功能的电路图;(3)应用multisim软件对所设计电路进行仿真验证。

技术指标:载波频率f0=1MHz~ 10MHz;低频调制信号1KHz正弦信号;调制系数Ma=50%±5%;负载电阻RA=50Ω。

三、工作原理:由振荡器产生一个固定频率的载波信号,载波信号经缓冲级送至振幅调制电路,缓冲级将振荡级与调制级隔离,减小调制级对晶体振荡级的影响,放大级将低频信号放大至足够的电压后送到振幅调制电路,振幅调制电路的输出信号经高频功率放大器,高放级将载频信号的功率放大到所需的发射功率。

调幅发射机常用于通信系统与其他无线电系统中,在中短波领域应用极为广泛,由于调幅简便,占用频带窄,设备简单等优点,因此在发射机系统中应用非常广泛。

在实际的广播发射系统中,中波调幅的频率范围为535 ~ 1605 千赫,音频信号中的高音频率应该被限制在 4.5 千赫以下,发射功率需要达到300W以上才能使空间覆盖面达到比较好的状态,此次设计需要在实验室环境中研究发射机的工作原理与原件选择,因此,根据实验室条件适当降低技术指标,载波频率采用实验室较为常用的6MHz,单音频调制信号选择1KHz,发射机功率初步定为1W。

高频课程设计--调幅发射机(正文)

高频课程设计--调幅发射机(正文)

一.总体设计思路及原理图1.总体设计思路调幅发射机的主要任务是完成有用的低频声音信号对高频载波的调制,将其变为在某一中心频率上具有一定带宽、适合通过天线发射的电磁波。

通常,调幅发射机包括三个部分:高频部分,低频部分,和电源部分。

高频部分一般包括本振电路、缓冲放大电路、倍频电路、中间放大电路、功放推动与末级功放电路。

本振电路的作用是产生频率稳定的高频载波。

为了提高频率稳定性,本振级往往采用石英晶体振荡器,并在它后面加上缓冲级,以削弱本振电路对后级的影响。

低频部分一般包括话筒、低频电压放大级、低频功率放大级与末级低频功率放大级。

一般是用基带信号去改变某个高频正弦电压(载波)的参数,使载波的振幅、频率或相位随基带信号而变化,这一过程称为调制。

在通信系统中,调制有三个主要作用:1调制的过程就是一个频谱搬移的过程,将原来不适宜传输的基带信号频谱搬移到适宜传输的某一个频段上,然后传输至信道;2调制的另一个重要作用是实现信道的多路复用,即把多个信号分别安排在不同的频段上同时进行传输,提高信道容量,有利于节省成本;3调制可以提高通信系统抗干扰的能力,例如将信号频率搬移,从而离开某一特定干扰频率。

振幅调制就是由调制信号去控制载波的振幅,使之按调制信号幅度的规律变化,严格地讲,是使高频振荡的振幅与调制信号呈线性关系,其他参数(频率和相位)不变。

通信系统中的发送设备若采用调幅调制方式则称为调幅发射机,一般调幅发射机的组成框图如图所示,工作原理是:本机振荡产生一个固定频率的载波信号,载波信号经缓冲电路送至振幅调制电路;音频放大电路将低频语音信号放大至足够高的电压送到振幅调制电路;振幅调制电路的输出信号经高频功率放大器放大到所需的发射功率,然后经天线发射出去。

一般小功率点频调幅发射机可以分为四个部分:本振级,音频处理及振幅调制级,以及高频功率放大级。

2.原理框图本机振荡:产生频率为MHz4的载波频率缓冲级:将振荡级与调制级隔离,减小调制级对振荡级的影响;受调级:将要传送的音频信息装载到某一高频振荡(载频)信号上去。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.总体设计思路及原理图1.总体设计思路调幅发射机的主要任务是完成有用的低频声音信号对高频载波的调制,将其变为在某一中心频率上具有一定带宽、适合通过天线发射的电磁波。

通常,调幅发射机包括三个部分:高频部分,低频部分,和电源部分。

高频部分一般包括本振电路、缓冲放大电路、倍频电路、中间放大电路、功放推动与末级功放电路。

本振电路的作用是产生频率稳定的高频载波。

为了提高频率稳定性,本振级往往采用石英晶体振荡器,并在它后面加上缓冲级,以削弱本振电路对后级的影响。

低频部分一般包括话筒、低频电压放大级、低频功率放大级与末级低频功率放大级。

一般是用基带信号去改变某个高频正弦电压(载波)的参数,使载波的振幅、频率或相位随基带信号而变化,这一过程称为调制。

在通信系统中,调制有三个主要作用:1调制的过程就是一个频谱搬移的过程,将原来不适宜传输的基带信号频谱搬移到适宜传输的某一个频段上,然后传输至信道;2调制的另一个重要作用是实现信道的多路复用,即把多个信号分别安排在不同的频段上同时进行传输,提高信道容量,有利于节省成本;3调制可以提高通信系统抗干扰的能力,例如将信号频率搬移,从而离开某一特定干扰频率。

振幅调制就是由调制信号去控制载波的振幅,使之按调制信号幅度的规律变化,严格地讲,是使高频振荡的振幅与调制信号呈线性关系,其他参数(频率和相位)不变。

通信系统中的发送设备若采用调幅调制方式则称为调幅发射机,一般调幅发射机的组成框图如图所示,工作原理是:本机振荡产生一个固定频率的载波信号,载波信号经缓冲电路送至振幅调制电路;音频放大电路将低频语音信号放大至足够高的电压送到振幅调制电路;振幅调制电路的输出信号经高频功率放大器放大到所需的发射功率,然后经天线发射出去。

一般小功率点频调幅发射机可以分为四个部分:本振级,音频处理及振幅调制级,以及高频功率放大级。

2.原理框图本机振荡:产生频率为MHz4的载波频率缓冲级:将振荡级与调制级隔离,减小调制级对振荡级的影响;受调级:将要传送的音频信息装载到某一高频振荡(载频)信号上去。

高频功放级:将信号放大到发射机所需要的输出功率。

匹配网络:对前后级进行阻抗匹配并高效率输出所需功率。

二.本振级的设计本机振荡电路的输出是发射机的载波信号,它要求的振荡频率应十分稳定,一般的LC振荡电路,其频率稳定度约为-,晶体振荡电路的Q值可高达数万,其频率稳定度可达210310-~-。

因此,本机振荡电路采用晶体振荡器。

510610-~由于晶体稳定性好,Q值高,故频率稳定度也高。

因此,主振级(高频振荡器)采用晶体振荡器,以满足所需的频率稳定度。

此电路中其工作在较低的8MHZ频率,一般晶体振荡器都能实现,且具有一定的输出电压。

本振级电路图:三.缓冲电路的设计缓冲隔离级将振荡级与功放级隔离,以减小功放级对振荡级的影响,因为功放级输出信号较大,工作状态的变化会影响振荡器的频率稳定度或波形失真或输出电压减小。

为减小级间相互影响,通常在中间插入缓冲隔离级。

缓冲隔离级经常采用射极跟随器电路,如图所示。

射极跟随器调节射极电阻2E R ,可以改变射极跟随器输入阻抗,如果忽略晶体管基极体电阻b b r '的影响,则射极输出器的输入电阻''//L B i R R R β=输出电阻()0210//r R R R E E +=式中,0r 很小,所以可将射极输出器的输出电路等效为一个恒压源,电压放大倍数im im V R g R g A +=1一般情况下,1>>i m R g ,所以图示射极输出器具有输入阻抗高、输出阻抗低、电压放大倍数近似于1的特点。

晶体管的静态工作点应位于交流负载的中点,一般取CC CEQ V V 21=,()mA I CQ 10~3=,对于图示电路,若取V V CEQ 6=,mA I CEQ 4=,则Ω==+5.121CQ EQ E E I V R R取Ω=k R EQ 1电阻,Ω=k R E 12电位器()Ω=+-==k I V V V I V R CQBE CEQ CC BQBQ B 1010102βΩ=-=k R VV V R B BQCC B 9.721根据宽带功率放大器中已计算出功率激励级的输出阻抗为325Ω,即射极跟随器的负载电阻Ω=325L R ,则射极跟随器的输入电阻为Ω==k R R R L B i 6.3//''β输入电压V R P V i i i 1.2==四.音频处理电路的设计1.语音采集电路1.1 驻极体话筒的内部结构及使用方法驻极体话筒内部电气原理图驻极体话筒的一般接法1.2 MIC驱动电路语音输入信号有驻极体话筒负责采集,一般取Rr=2KΩ,常见的MIC工作电压有1.5V,3V,4.5V三种,工作电流I A在0.1mA至1mA,输出电阻Ro<2KΩ。

这里采用工作电压为3V的MIC。

MIC驱动电路2.音频放大电路由我们日常生活中手机使用双MIC降噪技术的启发,故在此也采用双MIC设计。

放大电路采用差分式放大电路。

差分式放大电路具有抑制共模,放大差模的特点。

两个MIC分别接差分放大的两个输入端,其中一个MIC采集语音信号,另一个则采集外部环境的噪声。

双MIC设计可以达到降低周围环境噪声的干扰,提高语音清晰度的目的。

音频放大级电路图:3.参数计算驻极体话筒输出电阻取Ro=2KΩ,得输出电压Vo约为0.35V。

取三极管β=200,r bb`=200Ω,Io=1mA;Ic=0.5Io=0.5mAr be=r bb`+26mV(1+β)/I c;=200+60*81.25=5KΩ差模电压增益Avd=Vod/Vid=βRc/(2r be);=(60*4.7KΩ)/5KΩ=56.4所以差分放大电路的输出电压为:56.4*0.35V=19.74V<30V,满足MC1496对调制信号的输入幅值要求。

五.混频调制电路的设计MC1496属于模拟乘法器。

以MC1496为核心,构成调幅电路,通常调节RP3数值可准确地将调幅系数ma调在50%以上。

乘法器的静态偏置电流主要由内部恒流源IO 的值来确定,IO是第5脚上的镜像电流,改变电阻R25可调节IO的大小,在设置模拟乘法器各点的静态偏置电压时,应使模拟乘法器内部的三极管均工作在放大状态,并尽量使静态工作点处于直流负载线的中点。

MC1496需要外加直流偏置电压。

建立这三种等级的方案是三极管的集电极和基极电压不小于2.0V,并且不能超出以下范围前述所有的前提是基本满足:进入引脚1,4,8,10的偏置电流是三极管的基极电流在外部偏置被设计为不小于1.0mA时可以忽略。

混频调制级电路图:其中,载波信号C V 经高频耦合电容2C 从⑩脚x V 端输入,3C 为高频旁路电容,使⑧脚交流接地;调制信号ΩV 经低频耦合电容1C 从①脚y V 端输入,4C 为低频旁路电容,使④脚接地。

调制信号0V 从脚单端输出。

采用双电源供电,所以⑤脚的偏置电阻5R 接地,静态偏置电流5I 或0I 为mA R V V I I EE 15007.0505=Ω+--==脚②与③间接入负反馈电阻E R ,以扩展调制信号ΩV 的线性动态范围,E R 增大,线性范围增大,但乘法器的增益随之减小。

电阻6R 、7R 、8R 及1C R 、2C R 提供静态偏置电压。

1R 、2R 与电位器RP 组成平衡调节电路,改变RP 的值可以改变调幅系数。

六.高频功率放大电路的设计1.高频谐振功率放大器的工作原理谐振功率放大器是以选频网络为负载的功率放大器,它是在无线电发送中最为重要、最为难调的单元电路之一。

根据放大器电流导通角的范围可分为甲类、乙类、丙类等类型。

丙类功率放大器导通角θ<900,集电极效率可达80%,一般用作末级放大,以获得较大的功率和较高的效率。

图6-1丙类放大器原理图图6-2 ic与ub关系图图6-1中,Vbb 为基极偏压,Vcc为集电极直流电源电压。

为了得到丙类工作状态,Vbb应为负值,即基极处于反向偏置。

ub为基极激励电压。

图6-2示出了晶体管的转移特性曲线,以便用折线法分析集电极电流与基极激励电压的关系。

Vbz是晶体管发射结的起始电压(或称转折电压)。

由图可知,只有在u b 的正半周,并且大于Vbb和Vbz绝对值之和时,才有集电极电流流通。

即在一个周期内,集电极电流ic只在-θ~+θ时间内导通。

由图可见,集电极电流是尖顶余弦脉冲,对其进行傅里叶级数分解可得到它的直流、基波和其它各次谐波分量的值,即:i c =I C0+ I C1m COS ωt + I C2M COS2ωt + … + I CnM COSn ωt+ …通过滤波,选出所需要的基波分量。

求解方法在此不再叙述。

为了获取较大功率和有较高效率,一般取θ=700~800左右。

2.基本关系式丙类功率放大器的基极偏置电压V BE 是利用发射极电流的直流分量I EO (≈I CO )在射极电阻上产生的压降来提供的,故称为自给偏压电路。

当放大器的输入信号'i v 为正弦波时,集电极的输出电流i C 为余弦脉冲波。

利用谐振回路LC 的选频作用可输出基波谐振电压v c1,电流i c1。

图3画出了丙类功率放大器的基极与集电极间的电流、电压波形关系。

分析可得下列基本关系式:011R I V m c m c图6-3 丙类功放的基极/集电极电流和电压波形式中,m c V 1为集电极输出的谐振电压及基波电压的振幅;m c I 1为集电极基波电流振幅;0R 为集电极回路的谐振阻抗。

2102111212121R V R I I V P m c m c m c m c C === 式中,P C 为集电极输出功率CO CC D I V P =式中,P D 为电源V CC 供给的直流功率;I CO 为集电极电流脉冲i C 的直流分量。

放大器的效率η为CO m c CC m c I I V V 1121⋅⋅=η3.负载特性 当放大器的电源电压+V CC ,基极偏压v b ,输入电压(或称激励电压)v sm 确定后,如果电流导通角选定,则放大器的工作状态只取决于集电极回路的等效负载电阻R q 。

谐振功率放大器的交流负载特性如图2-4所示。

由图可见,当交流负载线正好穿过静态特性转移点A 时,管子的集电极电压正好等于管子的饱和压降V CES ,集电极电流脉冲接近最大值I cm 。

此时,集电极输出的功率P C 和效率η都较高,此时放大器处于临界工作状态。

R q 所对应的值称为最佳负载电阻,用R 0表示,即202)(P V V R CES CC -= 当R q ﹤R 0时,放大器处于欠压状态,如C 点所示,集电极输出电流虽然较大,但集电极电压较小,因此输出功率和效率都较小。

相关文档
最新文档