最新九年级数学上期末模拟试卷及答案

合集下载

九年级数学(上册)期末试卷及参考答案

九年级数学(上册)期末试卷及参考答案

九年级数学(上册)期末试卷及参考答案班级: 姓名:一、选择题(本大题共10小题, 每题3分, 共30分)1. 的倒数是()A. B. C. D.2.某种衬衫因换季打折出售, 如果按原价的六折出售, 那么每件赔本40元;按原价的九折出售, 那么每件盈利20元, 则这种衬衫的原价是()A. 160元B. 180元C. 200元D. 220元3. 已知x1.x2是关于x的方程x2﹣ax﹣2=0的两根, 下列结论一定正确的是()A. x1≠x2B. x1+x2>0C. x1•x2>0D. x1<0, x2<0 4.关于x的一元二次方程有两个实数根, , 则k的值()A. 0或2B. -2或2C. -2D. 25.关于x的不等式组的解集为x<3, 那么m的取值范围为()A. m=3B. m>3C. m<3D. m≥36.已知是一元二次方程的一个根, 则的值为()A. -1或2B. -1C. 2D. 07.如图, 把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°, 那么∠2的度数是()A. 30°B. 25°C. 20°D. 15°8.下列图形中, 是中心对称图形的是()A. B. C. D.9.如图, △ABC中, AD是BC边上的高, AE、BF分别是∠BAC、∠ABC的平分线, ∠BAC=50°, ∠ABC=60°, 则∠EAD+∠ACD=()A. 75°B. 80°C. 85°D. 90°10.如图, 点A, B在双曲线y= (x>0)上, 点C在双曲线y= (x>0)上, 若AC∥y轴, BC∥x轴, 且AC=BC, 则AB等于()A. B. 2 C. 4 D. 3二、填空题(本大题共6小题, 每小题3分, 共18分)1. 计算: =_____.2. 因式分解: =_______.3. 若式子在实数范围内有意义, 则x的取值范围是__________.4. 如图, △ABC中, ∠BAC=90°, ∠B=30°, BC边上有一点P(不与点B, C 重合), I为△APC的内心, 若∠AIC的取值范围为m°<∠AIC<n°, 则m+n=__________.5.把图1中的菱形沿对角线分成四个全等的直角三角形, 将这四个直角三角形分别拼成如图2, 图3所示的正方形, 则图1中菱形的面积为__________.6. 如图, 已知正方形ABCD的边长为5, 点E、F分别在AD.DC上, AE=DF=2, BE与AF相交于点G, 点H为BF的中点, 连接GH, 则GH的长为__________.三、解答题(本大题共6小题, 共72分)1. 解分式方程:2. 关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时, 利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根, 写出一组满足条件的a, b的值, 并求此时方程的根.3. 如图, 在口ABCD中, 分别以边BC, CD作等腰△BCF, △CDE, 使BC=BF, CD=DE, ∠CBF=∠CDE, 连接AF, AE.(1)求证: △ABF≌△EDA;(2)延长AB与CF相交于G, 若AF⊥AE, 求证BF⊥BC.4. 如图, 已知P是⊙O外一点, PO交圆O于点C, OC=CP=2, 弦AB⊥OC, 劣弧AB的度数为120°, 连接PB.(1)求BC的长;(2)求证: PB是⊙O的切线.5. 为了树立文明乡风, 推进社会主义新农村建设, 某村决定组建村民文体团队, 现围绕“你最喜欢的文体活动项目(每人仅限一项)”, 在全村范围内随机抽取部分村民进行问卷调查, 并将调查结果绘制成如下两幅不完整的统计图. 请你根据统计图解答下列问题:(1)这次参与调查的村民人数为人;(2)请将条形统计图补充完整;(3)求扇形统计图中“划龙舟”所在扇形的圆心角的度数;(4)若在“广场舞、腰鼓、花鼓戏、划龙舟”这四个项目中任选两项组队参加端午节庆典活动, 请用列表或画树状图的方法, 求恰好选中“花鼓戏、划龙舟”这两个项目的概率.6. 东营市某学校2015年在商场购买甲、乙两种不同足球, 购买甲种足球共花费2000元, 购买乙种足球共花费1400元, 购买甲种足球数量是购买乙种足球数量的2倍, 且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召, 这所学校决定再次购买甲、乙两种足球共50个, 恰逢该商场对两种足球的售价进行调整, 甲种足球售价比第一次购买时提高了10%, 乙种足球售价比第一次购买时降低了10%, 如果此次购买甲、乙两种足球的总费用不超过2900元, 那么这所学校最多可购买多少个乙种足球?参考答案一、选择题(本大题共10小题, 每题3分, 共30分)1、B2、C3、A4、D5、D6、B7、B8、D9、A10、B二、填空题(本大题共6小题, 每小题3分, 共18分)1、2、()()()22 a b a a-+-3、x2≥4.255.5.12.6三、解答题(本大题共6小题, 共72分)1.x=.2、(1)方程有两个不相等的实数根;(2)b=-2, a=1时, x1=x2=﹣1.3.(1)略;(2)略.4.(1)2(2)略5、(1)120;(2)答案见解析;(3)90°;(4).6、(1)购买一个甲种足球需50元, 购买一个乙种足球需70元;(2)这所学校最多可购买18个乙种足球.。

九年级数学期末模拟卷(全解全析)(北师大版)

九年级数学期末模拟卷(全解全析)(北师大版)

2024-2025学年九年级数学上学期期末模拟卷(考试时间:120分钟分值:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.测试范围:北师大版九上全册。

4.难度系数:0.6。

第Ⅰ卷一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.“斗”是我国古代称量粮食的量器,它无盖,其示意图如图所示,下列图形是“斗”的俯视图的是()A.B.C.D.【答案】C【解答】解:从上面看,看到的图形为一个正方形,在这个正方形里面还有一个小正方形,即看到的图形为,故选C.2.如图,电路图上有1个小灯泡以及4个断开状态的开关A,B,C,D,现随机闭合两个开关,小灯泡发光的概率为()A.B.C.D.【答案】A【解答】解:电路图上有1个小灯泡以及4个断开状态的开关A,B,C,D,现随机闭合两个开关,画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,则小灯泡发光的有4种情况,∴小灯泡发光的概率为,故选:A.3.如图,AD∥BE∥CF,若AB=3,BC=4,EF=5,则DE的长度是()A.3 B.4 C.D.【答案】D【解答】解:∵AD∥BE∥CF,AB=3,BC=4,EF=5,∴,∴,∴,故选:D.4.如图,菱形ABCD对角线AC与BD交于点O,AC=8,BD=6,则菱形的面积为()A.10 B.24 C.40 D.48【答案】B【解答】解:菱形的面积=,故选:B.5.用配方法解一元二次方程x2﹣8x+7=0,方程可变形为()A.(x+4)2=9 B.(x﹣4)2=9 C.(x﹣8)2=16 D.(x+8)2=57 【答案】B【解答】解:x2﹣8x+7=0,x2﹣8x=﹣7,x2﹣8x+16=﹣7+16,(x﹣4)2=9.故选:B.6.若点A(1,y1),B(﹣2,y2),C(3,y3)都在反比例函数3yx=−的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y1<y2【答案】C【解答】解:∵反比例函数3yx=−中,k=﹣3<0,∴函数图象的两个分支分别位于第二、四象限,且在每一象限内,y随x的增大而增大.又∵﹣2<0,∴点B(﹣2,y2)位于第二象限,∴y2>0;又∵0<1<3,∴点A(2,y1),点C(3,y3)位于第四象限,∴y1<y3<0;∴y1<y3<y2,故选:C.7.如图,△ABC和△A'B'C'是以点O为位似中心的位似图形.若OA:AA'=1:3,则△ABC与△A'B'C'的面积比是()A.1:3 B.1:4 C.1:9 D.1:16【答案】D【解答】解:∵OA:AA'=1:3,∴OA:OA'=1:4,∴△ABC与△A'B'C'的相似比为1:4,∴△ABC与△A'B'C'的面积比为1:16.故选:D.8.近年来,由于新能源汽车的崛起,燃油汽车的销量出现了不同程度的下滑,某款燃油汽车2月份的售价为23万元,4月份售价为18.63万元,设该款汽车这两月售价的月平均降价率是x,可列方程正确的是()A.18.63(1+x)2=23 B.23(1﹣x)2=18.63C.18.63(1﹣x)2=23 D.23(1﹣2x)=18.63【答案】B【解答】解:根据题意得:23(1﹣x)2=18.63.故选:B.9.若关于x的一元二次方程x2﹣6x+9k=0有实数根,则k的取值范围是()A.k>1 B.k≥1C.k≤1D.k<1【答案】C【解答】解:∵关于x的一元二次方程x2﹣6x+9k=0有实数根,∴Δ=(﹣6)2﹣4×1×9k=36﹣36k≥0,∴k≤1,故选:C.10.如图,点A是反比例函数在第二象限内图象上一点,点B是反比例函数在第一象限内图象上一点,直线AB与y轴交于点C,且AC=BC,连接OA、OB,则△AOB的面积是()A.2 B.2.5 C.3 D.3.5【答案】C【解答】解:分别过A、B两点作AD⊥x轴,BE⊥x轴,垂足为D、E,∵AC=CB,∴OD=OE,设A(﹣a,),则B(a,),故S△AOB=S梯形ADEB﹣S△AOD﹣S△BOE=(+)×2a﹣a×﹣a×=3.解法二:过A,B两点作y轴的垂线,由AC=BC求两个三角形全等,再求面积,故选:C.第Ⅱ卷二、填空题(本大题共5小题,每小题3分,满分15分)11.如图,身高1.7m的某学生沿着树影BA由B向A走去,当走到点C时,他的影子顶端正好与树的影子顶端重合,测得BC=4m,CA=1m,则树的高度为m.【答案】8.5【解答】解:设树的高度为x m,由题意得:=,∵BC=4m,CA=1m,∴=,解得:x=8.5,∴树的高度为8.5m,故答案为:8.5.12.已知反比例函数的图象在第二、四象限,则m的取值范围是.【答案】m<﹣2【解答】解:∵反比例函数的图象在第二、四象限,∴m+2<0,解得m<﹣2,故答案为m<﹣2.13.已知x=a是方程x2﹣2x﹣24=0的一个根,则代数式2a2﹣4a﹣8的值为.【答案】40【解答】解:由条件可知:a2﹣2a=24,∴2a2﹣4a﹣8=2(a2﹣2a)﹣8=2×24﹣8=40,故答案为:40.14.如图,点E在正方形ABCD内部,且△ABE是等边三角形,连接BD、DE,则∠BDE= °.【答案】30【解答】解:∵点E在正方形ABCD内部,且△ABE是等边三角形,BD是正方形的对角线,∴∠ADB=45°,∠DAE=90°﹣60°=30°,AD=AE,∴=75°,∴∠BDE=∠ADE﹣∠ADB=75°﹣45°=30°,故答案为:30.15.如图,BD是Rt△ABC斜边AC上的中线.AB=6,BC=8,点P是BC上一个动点,过点P分别作AC 和BD的垂线,垂足为E、F.则PE+PF的值是.【答案】4.8【解答】解:连接DP,在Rt△ABC中,AB=6,BC=8,∴AC===10,∵BD是斜边AC上的中线,∴BD=CD=AD=AC=5,∴△BDC的面积=△ABD的面积=△ABC的面积=×AB•BC=××6×8=12;∵PE⊥CD,PF⊥BD,∵△BDP的面积+△CDP的面积=△BDC的面积,∴BD•PF+CD•PE=12,∴5PF+5PE=24,∴PF+PE=4.8,故答案为:4.8.三、解答题(本题共8小题,共75分。

广州2023-2024学年第一学期九年级数学期末模考试卷及参考答案

广州2023-2024学年第一学期九年级数学期末模考试卷及参考答案

广东省广州市2023-2024学年第一学期九年级数学期末模考试卷一、选择题(本大题共10小题,每小题3分,满分30分)1.下列汽车标志中既是轴对称图形又是中心对称图形的是( )A .B .C .D .2 .将抛物线223y x =+沿着x 轴向右平移2个单位,再沿y 轴向上平移3个单位, 则得到的抛物线的解析式为( )A .()2226y x =++B .()2226y x =−+ C .()2226y x =+− D .()2226y x =−− 3. 若关于x 的一元二次方程2210kx x −−=有两个不相等的实数根,则实数k 的取值范围是( )A .1k >−B .k <1且k ≠0C .k ≥﹣1且k ≠0D .1k >−且0k ≠ 4.若函数y =3m x−的图象在第一、三象限内,则m 的取值范围是( ) A .m >﹣3 B .m <﹣3 C .m >3 D .m <35 .不透明的口袋中装有3个黄球、1个红球和n 个蓝球,这些小球除颜色外其余均相同.课外兴趣小组每次摸出一个球记录下颜色后再放回,大量重复试验后发现,摸到蓝球的频率稳定在0.6,则n 的值最可能是( A .4 B .5 C .6 D .76 . 如图,在△ABC 中,AC =BC ,∠C =40°.将△ABC 绕着点B 逆时针方向旋转得△DBE , 其中AC ∥BD ,BF 、BG 分别为△ABC 与△DBE 的中线,则∠FBG =( )A .90°B .80°C .75°D .70°7.若关于x 的一元二次方程2310kx x −+=有实数根,则k 的取值范围为( )A .k ≥94B .k 94≤且k ≠0C .k <94且k ≠0D .k 94≤ 8. 如图,⊙O 的直径AB 垂直于弦CD ,垂足为E .若30A ∠=°,2AC =,则CD 的长是( )A .4B .C .2D 9 . 如图,矩形ABCD 的顶点A 、B 分别在反比例函数4y x=()0x >与2y x =−()0x <的图像上, 点C 、D 在x 轴上,AB BD 、分别交y 轴于点E 、F ,则阴影部分的面积等于( )A. 103B. 2C. 116D. 5310. 抛物线y =ax 2+bx +c 对称轴为x =1,与x 轴的负半轴的交点坐标是(x 1,0),且-1<x 1<0,它的部分图象如图所示,有下列结论:①abc <0;②b 2-4ac >0;③9a +3b +c <0;④3a +c <0,其中正确的结论有( )A .1个B .2个C .3个D .4个二、填空题(本大题共6小题,每小题3分,满分18分.)11. 一个不透明的袋中装有黄、白两种颜色的球共40个,这些球除颜色外都相同,小亮通过多次摸球试验后,发现摸到黄球的频率稳定在0.35左右,则袋中白球可能有 个.12.关于x 的一元二次方程260x ax −+=的一个根是2,则a 的值为 .13 .已知点()12,y −、()21,y −、()33,y 在反比例函数2y x=−的图象上,则123、、y y y 的大小关系是 . 14 . 如图,在△ABC 中,∠BAC =55°,∠C =20°,将△ABC 绕点A 逆时针旋转α角度(0<α<180°)得到△ADE ,若DE //AB ,则α的值为_______15 . 如图,正五边形ABCDE 的边长为2,以A 为圆心,以AB 为半径作弧BE ,则阴影部分的面积为_________(结果保留π).16 . 图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB = .三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17. 解下列方程:(1)2220x x −−=(2)()()23230x x x −+−=18. 如图,ABC 的三个顶点A 、B 、C 都在格点上,坐标分别为()2,4−、()2,0−、()4,1−.(1)画出ABC 绕着点O 顺时针旋转90°得到的111A B C △;(2)写出点1C 的坐标.19. 已知关于x 的方程x 2+ax+16=0,(1)若这个方程有两个相等的实数根,求a 的值(2)若这个方程有一个根是2,求a 的值及另外一个根20. 如图,在Rt ABC △中,90ACB ∠=°,32A ∠=°,以直角顶点C 为旋转中心, 将ABC 旋转到A B C ′′′ 的位置,其中A ′,B ′分别是A ,B 的对应点,且点B 在斜边A B ′′上,直角边CA ′交AB 于D ,求BDC ∠的度数.21 .某学校为了解全校学生对电视节目(新闻、体育、动画、娱乐、戏曲)的喜爱情况,从全校学生中随机抽取部分学生进行问卷调查,并把调查结果绘制成两幅不完整的统计图.请根据以上信息,解答下列问题(1)这次被调查的学生共有多少名?(2)请将条形统计图补充完整;(3)若该校有3000名学生,估计全校学生中喜欢体育节目的约有多少名?(4)该校宣传部需要宣传干事,现决定从喜欢新闻节目的甲、乙、丙、丁四名同学中选取2名,用树状图或列表法求恰好选中甲、乙两位同学的概率.22 .如图,在ABC 中,90C ∠=°,O 是AB 上一点,以OA 为半径的O 与BC 相切于点D ,与AB 相交于点E .(1)求证:AD 是BAC ∠的平分线;(2)若2BE =,4BD =,求AE 的长.23 . 某商店经销一种健身球,已知这种健身球的成本价为每个20元,市场调查发现,该种健身球每天的销售量y (个)与销售单价x (元)有如下关系:()2802040y x x =−+≤≤, 设这种健身球每天的销售利润为w 元.(1)如果销售单价定为25元,那么健身球每天的销售量是 个;(2)求w 与x 之间的函数关系式;(3)该种健身球销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?24 .已知()4,2A −、(),4B n −两点是一次函数y kx b =+和反比例函数m y x=图象的两个交点, 点P 坐标为(),0n .(1)求一次函数和反比例函数的解析式;(2)求AOB 的面积;(3)观察图象,直接写出....不等式0m kx b x+−>的解集; (4)若ABP 为直角三角形,直接写出....n 值.25 .如图,已知直线443y x =+与x 轴交于点A ,与y 轴交于点C , 抛物线24y ax bx ++经过A ,C 两点,且与x 轴的另一个交点为B ,对称轴为直线=1x −.(1) 求抛物线的表达式;(2)D 是第二象限内抛物线上的动点,设点D 的横坐标为m ,求四边形ABCD 面积S 的最大值及此时D 点的坐标;(3) 若点P 在抛物线对称轴上,点Q 为任意一点,是否存在点P 、Q ,(4) 使以点A ,C ,P ,Q AC 为对角线的菱形?若存在,请直接写出P ,Q 两点的坐标,若不存在,请说明理由.广东省广州市2023-2024学年第一学期九年级数学期末模考试卷解答卷一、选择题(本大题共10小题,每小题3分,满分30分)1.下列汽车标志中既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【详解】解:A .不是中心对称图形,是轴对称图形,故此选项不符合题意;B .不是中心对称图形,是轴对称图形,故此选项不符合题意;C .既是中心对称图形,也是轴对称图形,故此选项符合题意;D .不是中心对称图形,是轴对称图形,故此选项符不符合题意;故选:C .2 .将抛物线223y x =+沿着x 轴向右平移2个单位,再沿y 轴向上平移3个单位, 则得到的抛物线的解析式为( )A .()2226y x =++B .()2226y x =−+ C .()2226y x =+−D .()2226y x =−− 【答案】B【分析】先写出原抛物线的顶点坐标,再根据平移得出新抛物线的顶点坐标,根据坐标写出解析式即可. 【详解】解:抛物线223y x =+的顶点坐标为(0,3),将抛物线223y x =+沿着x 轴向右平移2个单位,再沿y 轴向上平移3个单位,则得到的抛物线的顶点坐标为(2,6),则得到的抛物线的解析式为()2226y x =−+; 故选:B .3. 若关于x 的一元二次方程2210kx x −−=有两个不相等的实数根,则实数k 的取值范围是( )A .1k >−B .k <1且k ≠0C .k ≥﹣1且k ≠0D .1k >−且0k ≠ 【答案】D【分析】利用一元二次方程的定义和判别式的意义得到0k ≠且△2(2)4(1)0k =−−⋅−>,然后求出两个不等式的公共部分即可.【详解】解:根据题意得0k ≠且△2(2)4(1)0k =−−⋅−>,解得1k >−且0k ≠.故选:D .4.若函数y =3m x−的图象在第一、三象限内,则m 的取值范围是( ) A .m >﹣3B .m <﹣3C .m >3D .m <3【答案】C 【分析】根据反比例函数的性质得m ﹣3>0,然后解不等式即可.【详解】解:根据题意得m ﹣3>0,解得m >3.故选:C .5 .不透明的口袋中装有3个黄球、1个红球和n 个蓝球,这些小球除颜色外其余均相同.课外兴趣小组每次摸出一个球记录下颜色后再放回,大量重复试验后发现,摸到蓝球的频率稳定在0.6,则n 的值最可能是( )A .4B .5C .6D .7【答案】C【分析】0.6附近,再根据概率公式列出方程,最后解方程即可求出n .【详解】解:∵大量重复试验后发现,摸到蓝球的频率稳定在0.6,0.631n n =++, 解得:6n =,即n 的值最可能是6.故选:C6 . 如图,在△ABC 中,AC =BC ,∠C =40°.将△ABC 绕着点B 逆时针方向旋转得△DBE ,其中AC ∥BD ,BF 、BG 分别为△ABC 与△DBE 的中线,则∠FBG =( )A .90°B .80°C .75°D .70°【答案】D 【分析】先根据等腰三角形的性质可得70BAC ∠=°,再根据平行线的性质可得70DBE BAC ∠=∠=°,然后根据旋转的性质即可得.【详解】解:,40AC BC C =∠=° ,()1180702BAC ABC C ∠=∠=°−∠=∴°, AC BD ,70DBE BAC ∴∠=∠=°,由旋转可知,点,A F 绕点B 旋转后的对应点分别为点,D G ,70DBE FBG ∴=∠=∠°,故选:D .7.若关于x 的一元二次方程2310kx x −+=有实数根,则k 的取值范围为( )A .k ≥94B .k 94≤且k ≠0C .k <94且k ≠0D .k 94≤ 【答案】B【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】解:∵关于x 的一元二次方程2310kx x −+=有实数根,∴()20Δ3410k k ≠ =−−××≥, 解得:k ≤94且k ≠0. 故选B .8. 如图,⊙O 的直径AB 垂直于弦CD ,垂足为E .若30A ∠=°,2AC =,则CD 的长是( )A .4B .C .2D 【答案】C 【分析】根据直角三角形的性质可求出CE=1,再根据垂径定理可求出CD .【详解】解:∵⊙O 的直径AB 垂直于弦CD , ∴12CE DE CD == ∵30A ∠=°,2AC =,∴CE=1∴CD=2.故选:C .9 . 如图,矩形ABCD 的顶点A 、B 分别在反比例函数4y x=()0x >与2y x =−()0x <的图像上, 点C 、D 在x 轴上,AB BD 、分别交y 轴于点E 、F ,则阴影部分的面积等于( )A. 103B. 2C. 116D. 53【答案】D【解析】 【分析】设4Aa a (,)、0a >,根据题意:利用函数关系式表示出线段OD OE OC OF EF 、、、、,然后利用三角形的面积公式计算即可.【详解】解:设点A 的坐标为4A a a (,),0a >.则4OD a OE a ==,. ∴点B 的纵坐标为4a. ∴点B 的横坐标为2a −. ∴2a OC =. ∴2a BE =. ∵AB CD ∥,∴BEF DOF , ∴12EF BE OFOD ==. ∴1428,3333EF OE OF OE a a====. ∴114122323BEF a S EF BE a ∆=×=××=. 11842233ODF S OD OF a a ∆=×⋅=××=. ∴145333BEF ODF S S S =+=+=阴影 . 故选:D .10. 抛物线y =ax 2+bx +c 对称轴为x =1,与x 轴的负半轴的交点坐标是(x 1,0),且-1<x 1<0,①abc <0;②b 2-4ac >0;③9a +3b +c <0;④3a +c <0,其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】D 【分析】根据函数图象的对称轴和与y 轴的交点位置判断出①正确,根据函数图象与x 轴有两个交点坐标判断出②正确,根据当3x =时,函数值小于0,判断出③正确,由对称轴得2b a =−,再根据当=1x −时,函数值小于0,判断出④正确.【详解】解:∵函数图象对称轴在y 轴右边,∴0ab <,∵函数图象与y 轴交于正半轴,∴0c >,∴<0abc ,故①正确;∵函数图象与x 轴有两个交点坐标,∴240b ac −>,故②正确;根据二次函数图象的对称性,它与x 轴的另一个交点坐标在2和3之间,∴当3x =时,930y a b c ++<,故③正确; ∵抛物线的对称轴是直线12b x a=−=, ∴2b a =−,当=1x −时,230y a b c a a c a c =−+=++=+<,故④正确.故选:D .二、填空题(本大题共6小题,每小题3分,满分18分.)11. 一个不透明的袋中装有黄、白两种颜色的球共40个,这些球除颜色外都相同,小亮通过多次摸球试验后,发现摸到黄球的频率稳定在0.35左右,则袋中白球可能有 个.【答案】26【分析】利用频率估计概率得到摸到白球的概率为1-0.35,然后根据概率公式计算即可.【详解】解:设袋子中白球有x 个,根据题意,得:40x =1-0.35, 解得:x =26,即布袋中白球可能有26个,故答案为:26.12.关于x 的一元二次方程260x ax −+=的一个根是2,则a 的值为 .【答案】5【分析】根据一元二次方程根的定义把2x =代入260x ax −+=中得到关于a 的方程,解方程即可得到答案.【详解】解:把2x =代入260x ax −+=中得22260a +=−,解得5a =.故答案为:5.13 .已知点()12,y −、()21,y −、()33,y 在反比例函数2y x=−的图象上,则123、、y y y 的大小关系是 . 【答案】312y y y <</213y y y >>【分析】分别把点()12,y −、()21,y −、()33,y 代入反比例函数2y x=−求出123、、y y y ,即可比较出大小. 【详解】解:∵点()12,y −、()21,y −、()33,y 在反比例函数2y x=−的图象上, ∴12==12y −−,22==21y −− 32=3y −, ∴312y y y <<.故答案为:312y y y <<14 . 如图,在△ABC 中,∠BAC =55°,∠C =20°,将△ABC 绕点A 逆时针旋转α角度(0<α<180°)得到△ADE ,若DE //AB ,则α的值为_______【答案】75°【分析】根据旋转的性质及题意易得∠EAB 的度数,然后直接进行求解即可.【详解】解:∵在△ABC 中,∠BAC =55°,∠C =20°,∴∠ABC =180°﹣∠BAC ﹣∠C ═180°﹣55°﹣20°=105°,∵将△ABC 绕点A 逆时针旋转α角度(0<α<180°)得到△ADE ,∴∠ADE =∠ABC =105°,∵DE ∥AB ,∴∠ADE +∠DAB =180°,∴∠DAB =180°﹣∠ADE =75°∴旋转角α的度数是75°,故答案为:75°15 . 如图,正五边形ABCDE 的边长为2,以A 为圆心,以AB 为半径作弧BE ,则阴影部分的面积为_________(结果保留π).【答案】65π 【解析】【分析】根据正多边形内角和公式求出正五边形的内角和,再求出A ∠的度数,利用扇形面积公式计算即可.【详解】解:正五边形的内角和()52180540=−×°=°,5401085A °∴∠==°, 2108263605ABE S ππ∴==扇形, 故答案为:65π. 16 . 图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB = .【答案】3【分析】根据两三角形相似列出比例式进而求解即可. 【详解】依题意,两高脚杯中的液体部分两三角形相似,则1176157AB −=− 解得3AB =.故答案为:3.三、解答题(本大题共9小题,满分72分.解答应写出文字说明、证明过程或演算步骤.)17. 解下列方程:(1)2220x x −−=(2)()()23230x x x −+−=【答案】(1)11x = 2x =2)11x = 23x =【分析】(1)利用公式法,先算出根的判别式,再根据公式解得两根即可;(2)利用因式分解法将等号左边进行因式分解,即可解出方程.【详解】解:(1)由题可得:a 1,b 2,c 2==−=−, 所以()()224241212b ac ∆=−=−−××−=,所以x整理可得11x =,2x =(2)()()23230x x x −+−= 提公因式可得:()()3320−−+=x x x 化简得:()()3310−−=x x解得:11x =,23x =;18. 如图,ABC 的三个顶点A 、B 、C 都在格点上,坐标分别为()2,4−、()2,0−、()4,1−.(1)画出ABC 绕着点O 顺时针旋转90°得到的111A B C △;(2)写出点1C 的坐标.【答案】(1)画图见解析(2)()1,4【分析】(1)分别确定A ,B ,C 绕O 点顺时针旋转90°后的111A B C △,从而可得答案;(2)根据1C 的位置可得其坐标.【详解】(1)解:如图,111A B C △即为所求;(2)由1C 的位置可得坐标为:()1,4;19. 已知关于x 的方程x 2+ax+16=0,(1)若这个方程有两个相等的实数根,求a 的值(2)若这个方程有一个根是2,求a 的值及另外一个根【答案】(1)a=8或﹣8;(2)a=﹣10,方程的另一个根为8.【分析】(1=0,由此可得关于a 的方程,解方程即得结果;(2)把x=2代入原方程即可求出a ,然后再解方程即可求出方程的另一个根.【详解】解:(1)∵方程x 2+ax+16=0有两个相等的实数根,∴a 2-4×1×16=0,解得a=8或﹣8;(2)∵方程x 2+ax+16=0有一个根是2,∴22+2a+16=0,解得a=﹣10;此时方程为x 2﹣10x+16=0,解得x 1=2,x 2=8;∴a=﹣10,方程的另一个根为8. 20. 如图,在Rt ABC △中,90ACB ∠=°,32A ∠=°,以直角顶点C 为旋转中心, 将ABC 旋转到A B C ′′′ 的位置,其中A ′,B ′分别是A ,B 的对应点,且点B 在斜边A B ′′上,直角边CA ′交AB 于D ,求BDC ∠的度数.【答案】96°【分析】由内角和定理求出58ABC ∠=°,由旋转的性质得到58B CBA ′∠=∠=°,BC B C ′=,得到58CB B B BC ′′∠=∠=°,再由三角形内角和定理求出64A BD ′∠=°,由三角形外角的性质求出BDC ∠的度数即可.【详解】解:∵90ACB ∠=°,32A ∠=°, ∴18058ABCABC A ∠=°−∠−∠=°, ∵以直角顶点C 为旋转中心,将ABC 旋转到A B C ′′′ 的位置,∴58B CBA ′∠=∠=°,BC B C ′=, ∴58CB B B BC ′′∠=∠=°, ∴180180585864A BDABC B BC ′′∠=°−∠−∠=°−°−°=°, ∴326496BDCA A BD ′′∠=∠+∠=°+°=°. 21 .某学校为了解全校学生对电视节目(新闻、体育、动画、娱乐、戏曲)的喜爱情况,请根据以上信息,解答下列问题(1)这次被调查的学生共有多少名?(2)请将条形统计图补充完整;(3)若该校有3000名学生,估计全校学生中喜欢体育节目的约有多少名?(4)该校宣传部需要宣传干事,现决定从喜欢新闻节目的甲、乙、丙、丁四名同学中选取2名,用树状图或列表法求恰好选中甲、乙两位同学的概率.【答案】(1)50名;(2)见解析;(3)600名;(4)16【分析】(1)根据动画类人数及其百分比求得总人数;(2)总人数减去其他类型人数可得体育类人数,据此补全图形即可;(3)用样本估计总体的思想解决问题;(4)根据题意先画出列表,得出所有情况数,再根据概率公式即可得出答案.【详解】解:(1)这次被调查的学生人数为1530%50÷=(名); (2)喜爱“体育”的人数为50(415183)10−+++=(名), 补全图形如下:(3)估计全校学生中喜欢体育节目的约有10300060050×=(名); (4)列表如下:所有等可能的结果为12种,恰好选中甲、乙两位同学的有2种结果,所以恰好选中甲、乙两位同学的概率为21126=. 22 .如图,在ABC 中,90C ∠=°,O 是AB 上一点,以OA 为半径的O 与BC 相切于点D ,与AB 相交于点E .(1)求证:AD 是BAC ∠的平分线;(2)若2BE =,4BD =,求AE 的长.【答案】(1)见解析(2)6【分析】(1)根据切线的性质得OD BC ⊥,再由90C ∠=°,得OD AC ∥,由平行线的性质得ODA DAC ∠=∠,又因为等腰三角形得ODA OAD ∠=∠,等量代换即可得证; (2)在Rt BOD 中222BD OD BO +=,由勾股定理即可求半径.【详解】(1)证明:连接OD ;∵O 与BC 相切于点D∴OD BC ⊥∴90ODB ∠=°∵90C ∠=°,∴ODB C ∠=∠ ∴OD AC ∥∴ODA DAC ∠=∠ ∵OD OA =∴ODA OAD ∠=∠ ∴OAD DAC ∠=∠∴AD 是BAC ∠的平分线;(2)解:∵90C ∠=°∴在Rt BOD 中222BD OD BO +=;∵2BE =,4BD =,设圆的半径为r ,∴()22242r r +=+解得3r :,∴圆的半径为3∴6AE =.23 . 某商店经销一种健身球,已知这种健身球的成本价为每个20元,市场调查发现, 该种健身球每天的销售量y (个)与销售单价x (元)有如下关系:()2802040y x x =−+≤≤, 设这种健身球每天的销售利润为w 元.(1)如果销售单价定为25元,那么健身球每天的销售量是 个;(2)求w 与x 之间的函数关系式;(3)该种健身球销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?【答案】(1)30(2)221201600w x x =−+−(3)该种健身球销售单价定为30元时,每天的销售利润最大,最大利润是200元【分析】(1)在2080y x =−+中,令25x =,进行计算即可得; (2)根据总利润=每个建生球的利润×销售量即可列出w 与x 之间的函数关系式;(3)结合(2)的函数关系式,根据二次函数性质即可得.【详解】(1)解:在280y x =−+中,令25x =得,2258030y =−×+=, 故答案为:30;(2)解:根据题意得,2(20)(280)21201600w x x x x =−−+=−+−, 即w 与x 之间的函数关系式为:221201600w x x =−+−;(3)解:22212016002(30)200w x x x =−+−=−−+, ∵20−<,∴当30x =时,w 取最大值,最大值为200,即该种健身球销售单价定为30元时,每天的销售利润最大,最大利润是200元.24 .已知()4,2A −、(),4B n −两点是一次函数y kx b =+和反比例函数m y x=图象的两个交点, 点P 坐标为(),0n .(1)求一次函数和反比例函数的解析式;(2)求AOB 的面积;(3)观察图象,直接写出....不等式0m kx b x+−>的解集; (4)若ABP 为直角三角形,直接写出....n 值.【答案】(1)8yx−,2y x =−− (2)6AOB S =(3)不等式0m kx b x +−>的解集为:<4x −或02x <<(4)n 的值为:-6,6,1−,1−【分析】(1)根据待定系数求得反比例函数解析式,进而求得点B 的坐标, 根据,A B 的坐标待定系数法求一次函数解析式即可;(2)求得直线2y x =−−与x 轴交于点()2,0C −,根据AOBAOC BOC S S S =+△△△求解即可 (3)由图象可得,直线在双曲线上方部分时,求得x 的取值范围;(4)分,,AP AB BP 分别为直角三角形的斜边,三种情况讨论,根据勾股定理建立方程求解即可.【详解】(1)把()4,2A −代入m y x =,得()248m =×−=−, 所以反比例函数解析式为8y x −,把(),4B n −代入8yx−,得48n −=−, 解得2n =, 把()4,2A −和()2,4B −代入y kx b =+,得4224k b k b −+= +=−, 解得12k b =− =− , 所以一次函数的解析式为2y x =−−;(2)设直线2y x =−−与x 轴交于点C ,2y x =−−中,令0y =,则2x =−,即直线2y x =−−与x 轴交于点()2,0C −, ∴112224622AOB AOC BOC S S S =+=××+××= ;(3)由图象可得,不等式0m kx b x+−>的解集为:<4x −或02x <<. (4)(),0P n ,()4,2A −,()2,4B − ,()()222244272AB ∴=++−−=,()222242820PA n n m =++=++,()222224420PB n n n =−+=−+①当AB 是斜边时,2PA +2PB =2AB∴2820n m +++2420n n −+=72解得: n =1−n =1−①当AP 是斜边时, 2AB +2PB =2PA∴72+2420n n −+=2820n m ++解得:6n =①当BP 是斜边时,2PA +2AB =2PB∴2820n m +++72=2420n n −+解得: 6n =−∴n的值为:-6,6,1−,1−25 .如图,已知直线443y x =+与x 轴交于点A ,与y 轴交于点C , 抛物线24y ax bx ++经过A ,C 两点,且与x 轴的另一个交点为B ,对称轴为直线=1x −.(1)求抛物线的表达式;(2)D 是第二象限内抛物线上的动点,设点D 的横坐标为m ,求四边形ABCD 面积S 的最大值及此时D 点的坐标;(3)若点P 在抛物线对称轴上,点Q 为任意一点,是否存在点P 、Q ,使以点A ,C ,P ,Q 为顶点的四边形是以AC 为对角线的菱形?若存在,请直接写出P ,Q 两点的坐标,若不存在,请说明理由.【答案】(1)248433y x x =−−+ (2)S 的最大值为252,3,52D −(3)存在;131,8P − ,192,8Q −【分析】(1)先求得A ,B ,C 三点的坐标,将抛物线设为交点式,进一步求得结果;(2)作DF AB ⊥于F ,交AC 于E ,根据点D 和点E 坐标可表示出DE 的长,进而表示出三角形ADC 的面积,进而表示出S 的函数关系式,进一步求得结果;(3)根据菱形性质可得PA PC =,进而求得点P 的坐标,根据菱形性质,进一步求得点Q 坐标.【详解】(1)解:当0x =时,4y =,()0,4C ∴,当0y =时,4403x +=, 3x ∴=−,()3,0A ∴−,对称轴为直线=1x −,()1,0B ∴,∴设抛物线的表达式:()()13y a x x =−⋅+,43a ∴=−,43a ∴=−, ∴抛物线的表达式为:()()2448134333y x x x x =−−⋅+=−−+; (2)解:如图1,作DF AB ⊥于F ,交AC 于E ,248,433D m m m ∴−−+ ,4,43E m m + , 2248444443333DE m m m m m ∴=−−+−+=−−, 22344262312ADC S DE m OA m m m ⋅−−=∴=−− ⋅= ,1144822ABC AB OC S ⋅=××== , 22325268222S m m m ∴=−−+=−++, ∴当32m =−时,252S =最大, 当32m =−时,433135322y =−×−−×−+=, 3,52D ∴−; (3)解:设()1,P n −, 以A ,C ,P ,Q 为顶点的四边形是以AC 为对角线的菱形,PA PC ∴=, 即:22PA PC =,()()2221314n n ∴−++=+−, 138n ∴=, 131,8P ∴−, P Q A C x x x x +=+ ,P Q A C y y y y +=+,()312Q x ∴=−−−=−,1348Q y =− 192,8Q ∴−.。

湖北省武汉市2023—2024学年九年级上册数学期末模拟试卷 考卷及参考答案

湖北省武汉市2023—2024学年九年级上册数学期末模拟试卷  考卷及参考答案

湖北省武汉市2023—2024学年九年级上册数学期末模拟试卷一、选择题(本部分共10小题,每小题3分,共30分)1.下列图形中,是中心对称图形的是( )A .B .C .D .2 .在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次实验发现, 摸出红球的频率稳定在0.3左右,则袋子中红球的个数最有可能是( )A. 14B. 12C. 6D. 43 .如图,已知A ,B ,C 是O 上的三点,100BOC ∠=°,则BAC ∠的度数为( )A .30°B .40°C .45°D .50°4. 若关于x 的一元二次方程2310kx x −+=有实数根,则k 的取值范围为( )A .k ≥94B .k 94≤且k ≠0 C .k <94且k ≠0 D .k 94≤ 5 .抛物线()2213y x =−−+上有三个点()()()123104y y y −,,,,,,那么123、、y y y 的大小关系是( )A .123y y y <<B .132y y y =<C .123y y y =<D .213y y y >> 6. 抛物线()222y x =−+与y 轴的交点坐标是( )A .()22,B .()06,C .()02,D .()04,7 . 如图,△ABC 中,∠BAC=30°,△ABC 绕点A 逆时针旋转至△AED ,连接对应点CD ,AE 垂直平分CD 于点F ,则旋转角度是( )A .30°B .45°C .50°D .60°8 . 如图所示,ABC 的三个顶点的坐标分别为()1,3A −、()2,2B −−、()4,2C −,则ABC 外接圆半径的长为( )A .B .CD 9 . 如图,在ABC 中,8cm AB =,16cm BC =,动点P 从点A 开始沿AB 边运动,速度为2cm/s ;动点Q 从点B 开始沿BC 边运动,速度为4cm/s ;如果P 、Q 两动点同时运动,那么经过( )秒时QBP △与ABC 相似.A .2秒B .4秒C .2或0.8秒D .2或4秒10 .对称轴为直线1x =的抛物线2y ax bx c ++(a b c ,,为常数,且0a ≠)如图所示,小明同学得出了以下结论:①<0abc ,②24b ac >,③420a b c ++>,④30a c +>,⑤()a b m am b +≤+(m 为任意实数),⑥当1x <−时,y 随x 的增大而增大.其中结论正确的个数为( )A .3B .4C .5D .6二、填空题:(本大题共6小题,每小题3分,共18分)11 .已知75x y =.则x y x+= . 12 .把一枚均匀的硬币连续抛掷两次,两次正面朝上的概率是 .13. 点(2,3)绕原点逆时针旋转90°对应点的坐标是 _______.14 ..如图,A ,B ,C 是O 上的三个点,25ABC ∠=°,则OAC ∠的度数是 .15. 如图,已知双曲线(0)k y k x=>经过直角三角形OAB 斜边OB 的中点D , 与直角边AB 相交于点C ,若OBC △的面积为6,则k = .16 .如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG ;②GB =2AG ;③△GDE ∽△BEF ;④S △BEF =725. 在以上4个结论中,其中一定成立的 (把所有正确结论的序号都填在横线上)三、解答题(本大题共8小题,共72分)17. 已知关于x 的一元二次方程21=0x mx m −+−.(1)求证:方程总有两个实数根;(2)若方程有一个根为负数,求m 的取值范围.18 .如图,在△ABC中,AB=BC,∠ABC=120°,点D在边AC上,且线段BD绕着点B按逆时针方向旋转120°能与BE重合,点F是ED与AB的交点.(1)求证:AE=CD;(2)若∠DBC=45°,求∠BFE的度数.19. 某学校在推进新课改的过程中,开设的体育社团活动课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,学校李老师对某班全班同学的选课情况进行调查统计,制成了如图所示的两幅不完整的统计图.(1)则该班的总人数为______人,其中学生选D“羽毛球”所在扇形的圆心角的度数是______度;(2)补全条形统计图;(3)该班班委4人中,2人选修篮球,1人选修足球,1人选修排球,李老师要从这4人中选2人了解他们对体育社团活动课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.20. 如图,在△ABC 中,∠C =90°,点O 在边AB 上,点D 在边BC 上,以OA 为半径的⊙O 经过点D ,交AB 于点E ,连接AD ,且AD 平分∠BA C .(1)求证:BC 是⊙O 的切线;(2)若∠BAC =60°,⊙O 的半径为2,求阴影部分的面积.21 .已知一次函数y =kx +b 和反比例函数y =m x 图象相交于A (-4,2),B (n ,-4)两点. (1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)观察图象,直接写出不等式kx +b -m x<0的解集.22. 某商店经销一种健身球,已知这种健身球的成本价为每个20元,市场调查发现,该种健身球每天的销售量y (个)与销售单价x (元)有如下关系:()2802040y x x =−+≤≤, 设这种健身球每天的销售利润为w 元.(1)如果销售单价定为25元,那么健身球每天的销售量是 个;(2)求w 与x 之间的函数关系式;(3)该种健身球销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?23. 【发现问题】(1)如图1,已知CAB △和CDE 均为等边三角形,D 在AC 上,E 在CB 上,易得线段AD 和BE 的数量关系是______.(2)将图1中的CDE 绕点C 旋转到图2的位置,直线AD 和直线BE 交于点F .①判断线段AD 和BE 的数量关系,并证明你的结论;②图2中AFB ∠的度数是______.(3)【探究拓展】如图3,若CAB △和CDE 均为等腰直角三角形,90ABC DEC ∠=∠=°,AB BC =,DE EC =,直线AD 和直线BE 交于点F ,分别写出AFB ∠的度数,线段AD 、BE 间的数量关系,并说明理由.24. 综合与探究如图,已知点B (3,0),C (0,-3),经过B .C 两点的抛物线y =x 2-bx +c 与x 轴的另一个交点为A .(1)求抛物线的解析式;(2)点D 在抛物线的对称轴上,当△ACD 的周长最小时,求点D 的坐标;(3)已知点E 在第四象限的抛物线上,过点E 作EF //y 轴交线段BC 于点F ,连结EC ,若点E (2,-3),请直接写出△FEC 的面积;(4)在(3)的条件下,在坐标平面内是否存在点P ,使以点A ,B ,E ,P 为顶点的四边形是平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.湖北省武汉市2023—2024学年九年级上册数学期末模拟试卷一、选择题(本部分共10小题,每小题3分,共30分)1.下列图形中,是中心对称图形的是( )A .B .C .D .【答案】C【分析】根据中心对称图形的概念判断.把一个图形绕某一点旋转180度,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】解:选项A 、B 、D 的图形不都能找到一个点,使图形绕某一点旋转180度后与原来的图形重合,所以不是中心对称图形.选项C 的图形能找到一个点,使图形绕某一点旋转180度后与原来的图形重合,所以是中心对称图形. 故选:C .2 .在一个不透明的袋子里装有红球、黄球共20个,这些球除颜色外都相同.小明通过多次实验发现, 摸出红球的频率稳定在0.3左右,则袋子中红球的个数最有可能是( )A. 14B. 12C. 6D. 4【答案】C【解析】【分析】根据红球出现的频率和球的总数,可以计算出红球的个数.【详解】解:由题意可得,20×0.3=6(个),即袋子中红球的个数最有可能是6个,故选:C . 3 .如图,已知A ,B ,C 是O 上的三点,100BOC ∠=°,则BAC ∠的度数为( )A .30°B .40°C .45°D .50°【答案】D【分析】根据圆周角定理即可得到结论.【详解】解:A ,B ,C 是O 上的三点,100BOC ∠=°, 111005022BAC BOC ∴∠=∠=×°=°, 故选:D .4. 若关于x 的一元二次方程2310kx x −+=有实数根,则k 的取值范围为( )A .k ≥94B .k 94≤且k ≠0C .k <94且k ≠0D .k 94≤ 【答案】B【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于k 的一元一次不等式组,解之即可得出k 的取值范围.【详解】解:∵关于x 的一元二次方程2310kx x −+=有实数根,∴()20Δ3410k k ≠ =−−××≥, 解得:k ≤94且k ≠0. 故选B .5 .抛物线()2213y x =−−+上有三个点()()()123104y y y −,,,,,,那么123、、y y y 的大小关系是( ) A .123y y y <<B .132y y y =<C .123y y y =<D .213y y y >>【答案】D 【分析】本题考查了二次函数的图象与性质,根据二次函数的解析式可得二次函数的开口方向以及对称轴,从而得出抛物线上的点离对称轴的距离越远函数值越小,由此即可出答案,熟练掌握二次函数的图象与性质是解此题的关键.【详解】解:()2213y x =−−+ , ∴20a =−<,抛物线开口向下,对称轴为直线1x =,∴抛物线上的点离对称轴的距离越远函数值越小,()411110−>−−>− ,213y y y ∴>>,故选:D .6. 抛物线()222y x =−+与y 轴的交点坐标是( )A .()22,B .()06,C .()02,D .()04,【答案】B【分析】本题主要考查了抛物线与坐标轴交点的知识.根据题意得出0x =,然后求出y 的值,即可以得到与y 轴的交点坐标.【详解】解:令0x =,得()()22220226y x =−+=−+=, 故与y 轴的交点坐标是:()06,. 故选:B .7 .如图,△ABC 中,∠BAC=30°,△ABC 绕点A 逆时针旋转至△AED ,连接对应点CD ,AE 垂直平分CD 于点F ,则旋转角度是( )A .30°B .45°C .50°D .60°【答案】D 【分析】根据旋转的性质得出,∠DAE=∠BAC=30°,求出∠DAE=∠CAE=30°,再求出∠DAC 的度数即可.【详解】∵△ABC 绕点A 逆时针旋转至△AED ,∠BAC=30°,∴AD=AC ,∠DAE=∠BAC=30°,∵AE 垂直平分CD 于点F ,∴∠DAE=∠CAE=30°,∴∠DAC=30°+30°=60°,即旋转角度数是60°,故选D .7. 如图所示,ABC 的三个顶点的坐标分别为()1,3A −、()2,2B −−、()4,2C −,则ABC 外接圆半径的长为( )A .B .CD 【答案】D 【分析】三角形的外心是三边垂直平分线的交点,设ABC 的外心为M ,由B ,C 的坐标可知M 必在直线1x =上,由图可知线段AC 的垂直平分线经过点()1,0,由此可得()1,0M ,过点M 作MD BC ⊥于点D ,连接MB ,由勾股定理求出MB 的长即可.【详解】解:设ABC 的外心为M ,()2,2B −−、()4,2C −,∴M 必在直线2412x −+=上, 由图可知,线段AC 的垂直平分线经过点()1,0,∴()1,0M ,如图,过点M 作MD BC ⊥于点D ,连接MB ,Rt MBD △中,2MD =,3BD =,由勾股定理得:MB =,即ABC故选D .9 . 如图,在ABC 中,8cm AB =,16cm BC =,动点P 从点A 开始沿AB 边运动,速度为2cm/s ;动点Q 从点B 开始沿BC 边运动,速度为4cm/s ;如果P 、Q 两动点同时运动,那么经过( )秒时QBP △与ABC 相似.A .2秒B .4秒C .2或0.8秒D .2或4秒【答案】C 【分析】设经过t 秒时, QBP △与ABC 相似,则2cm,82)cm,4(cm AP t BP t BQ t ==−=, 利用两组对应边的比相等且夹角对应相等的两个三角形相似进行分类讨论:当BP BQ BA BC =时,BPQ BAC ∽ ,即 824;816t t −= 当 BP BQ BC BA =时,BPQ BCA △∽△,即 824,168t t −=然后解方程即可求出答案. 【详解】解:设经过t 秒时, QBP △与ABC 相似,则2cm,82)cm,4(cm AP t BP t BQ t ==−= PBQ ABC ∠=∠ ,∴当BP BQ BA BC =时,BPQ BAC ∽ , 即 824,816t t −= 解得:2t =当BP BQ BC BA =时,BPQ BCA △∽△ , 即 824,168t t −= 解得:0.8t =综上所述:经过0.8s 或2s 秒时,QBP △与ABC 相似故选:C10 .对称轴为直线1x =的抛物线2y ax bx c ++(a b c ,,为常数,且0a ≠)如图所示,小明同学得出了以下结论:①<0abc ,②24b ac >,③420a b c ++>,④30a c +>,⑤()a b m am b +≤+(m 为任意实数),⑥当1x <−时,y 随x 的增大而增大.其中结论正确的个数为( )A .3B .4C .5D .6【答案】A 【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,结合对称轴判断①,然后根据对称轴及抛物线与x 轴交点情况判断②,根据对称性求得2x =时的函数值小于0,判断③;根据=1x −时的函数值,结合2b a =−,代入即可判断④,根据顶点坐标即可判断⑤,根据函数图象即可判断⑥.【详解】解:①由图象可知:00a c ><,, ∵对称轴为直线:12b x a=−=, ∴20b a =−<, ∴0abc >,故①错误;②∵抛物线与x 轴有两个交点,∴240b ac −>,∴24b ac >,故②正确;③∵对称轴为直线1x =,则0x =与2x =的函数值相等,∴当2x =时,420y a b c ++<④当=1x −时,()20y a b c a a c =−+=−−+>,∴30a c +>,故④正确;⑤当1x =时,y 取到最小值,此时,y a b c =++,而当x m =时,2y am bm c ++,所以2a b c am bm c ++≤++,故2a b am bm +≤+,即()a b m am b +≤+,故⑤正确,⑥当1x <−时,y 随x 的增大而减小,故⑥错误,综上,正确的是②④⑤共3个,故选:A .二、填空题:(本大题共6小题,每小题3分,共18分)11 .已知75x y =.则x y x += . 【答案】125【分析】根据比例的性质求解即可,设7,5xk y k =,代入代数式进行计算即可. 【详解】解:∵75x y = 设7,5xk y k =, ∴x y x +751275k k k += 故答案为:12512 .把一枚均匀的硬币连续抛掷两次,两次正面朝上的概率是 . 【答案】14【分析】举出所有情况,看正面都朝上的情况数占总情况数的多少即可.【详解】解:共4种情况,正面都朝上的情况数有1种,所以概率是14. 故答案为:14. 13. 点(2,3)绕原点逆时针旋转90°对应点的坐标是 _______.【答案】(3,2)−【解析】【分析】先画出平面直角坐标系,再根据旋转的性质即可得出答案.【详解】解:由题意,画出图形如下,其中点A 的坐标为(2,3):过点A 作AB x ⊥轴于点B ,则2,3OB AB ==, 因为点,A B ′′分别是点,A B 绕原点逆时针旋转90°的对应点,所以2,3,OB OB A B AB A B y ′′′′′====⊥轴,又因为点A ′位于第二象限,所以点A ′的坐标为(3,2)−,故答案为:(3,2)−14 ..如图,A ,B ,C 是O 上的三个点,25ABC ∠=°,则OAC ∠的度数是 .【答案】65°【分析】根据圆周角定理先求出AOC ∠,再利用三角形内角和为180°和等腰三角形的性质求解即可.【详解】解:∵25ABC ∠=°, ∴50AOC ∠=°, ∵OA OC =, ∴18050652OAC °−°∠==°, 故答案为:65°.15. 如图,已知双曲线(0)k y k x=>经过直角三角形OAB 斜边OB 的中点D , 与直角边AB 相交于点C ,若OBC △的面积为6,则k = .【答案】4【分析】过D 点作x 轴的垂线交x 轴于E 点,可得到四边形DBAE ,和三角形OBC 的面积相等,通过面积转化,可求出k 的值.【详解】解:过D 点作x 轴的垂线交x 轴于E 点,ODE △的面积和OAC 的面积相等.OBC ∴ 的面积和四边形DEAB 的面积相等且为6.设D 点的横坐标为x ,纵坐标就为k x, D 为OB 的中点.EA x ∴=,2k AB x=, ∴四边形DEAB 的面积可表示为:12()62kk x x x += 4k =.故答案为:4.16 .如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG ;②GB =2AG ;③△GDE ∽△BEF ;④S △BEF =725. 在以上4个结论中,其中一定成立的 (把所有正确结论的序号都填在横线上)【答案】①②④.【详解】解:由折叠可知,DF =DC =DA ,∠DFE =∠C =90°,∴∠DFG =∠A =90°,∴△ADG ≌△FDG ,①正确;∵正方形边长是12,∴BE =EC =EF =6,设AG =FG =x ,则EG =x +6,BG =12-x ,由勾股定理得:EG 2=BE 2+BG 2,即:(x +6)2=62+(12-x )2,解得:x =4∴AG =GF =4,BG =8,BG =2AG ,②正确;BE =EF =6,△BEF 是等腰三角形,,DG DE ≠ 则△GED 不是等腰三角形,∴△GDE 与△BEF 不相似, ③错误;S △GBE =12×6×8=24,S △BEF =EF EG S △GBE =610×24=725,④正确. 故答案为:①②④ 三、解答题(本大题共8小题,共72分)17. 已知关于x 的一元二次方程21=0x mx m −+−.(1)求证:方程总有两个实数根;(2)若方程有一个根为负数,求m 的取值范围.【答案】(1)见解析;(2)1m <【分析】(1)计算方程根的判别式,判断其符号即可;(2)求方程两根,结合条件则可求得m 的取值范围.【详解】(1)2224()41(1)(2)b ac m m m ∆=−=−−××−=−,∵2(2)0m −≥,∴方程总有实数根;(2)∵x =, ∴1212m m x m +−==−,2212m m x −+==, ∵方程有一个根为负数,∴10m −<,∴1m <.18 .如图,在△ABC 中,AB =BC ,∠ABC =120°,点D 在边AC 上,且线段BD 绕着点B 按逆时针方向旋转120°能与BE 重合,点F 是ED 与AB 的交点.(1)求证:AE =CD ;(2)若∠DBC =45°,求∠BFE 的度数.【答案】(1)证明见解析;(2)∠BFE=105°.【解析】【分析】(1)根据旋转的性质证明△ABE≌△CBD(SAS),进而得证;(2)由(1)得出∠DBC=∠ABE=45°,BD=BE,∠EBD=120°,最后根据三角形内角和定理进行求解即可.【详解】(1)证明:∵线段BD绕着点B按逆时针方向旋转120°能与BE重合,∴BD=BE,∠EBD=120°,∵AB=BC,∠ABC=120°,∴∠ABD+∠DBC=∠ABD+∠ABE=120°,∴∠DBC=∠ABE,∴△ABE≌△CBD(SAS),∴AE=CD;(2)解:由(1)知∠DBC=∠ABE=45°,BD=BE,∠EBD=120°,(180°﹣120°)=30°,∴∠BED=∠BDE=12∴∠BFE=180°﹣∠BED﹣∠ABE=180°﹣30°﹣45°=105°.19. 某学校在推进新课改的过程中,开设的体育社团活动课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,学校李老师对某班全班同学的选课情况进行调查统计,制成了如图所示的两幅不完整的统计图.(1)则该班的总人数为______人,其中学生选D“羽毛球”所在扇形的圆心角的度数是______度;(2)补全条形统计图;(3)该班班委4人中,2人选修篮球,1人选修足球,1人选修排球,李老师要从这4人中选2人了解他们对体育社团活动课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.【答案】(1)50,72(2)见解析(3)1 3【分析】(1)利用“选A:篮球”的学生人数除以其所占的百分比即可求得该班学生的总人数,再利用学生选D“羽毛球”的人数除以总人数,再乘以360°,即可求得结果;(2)利用选足球的学生的百分比乘以总人数求得选足球的人数,(3)再利用总人数减去其他课程的人数求得选兵乓球的学生人数,即可补全条形统计图;(3)画出树状图可得共有12种等可能的情况,其中选出的2人恰好1人选修篮球,1人选修足球的情况有4种,再利用概率公式进行计算即可.【详解】(1)解:由题意可得:该班的总人数为:1530%50÷=(人),学生选D“羽毛球”所在扇形的圆心角的度数为:103607250×°=°,故答案为:50;72;(2)解:由题意可得:选“B:足球”的学生人数为:12%50=6×(人),选“E:兵乓球”的学生人数为:50159610=10−−−−(人)补全条形统计图如下;(3)解:画树状图如下:共有12种等可能的情况,其中选出的2人恰好1人选修篮球,1人选修足球的情况有4种;∴选出的2人恰好1人选修篮球,1人选修足球的概率为41123P ==. 20. 如图,在△ABC 中,∠C =90°,点O 在边AB 上,点D 在边BC 上,以OA 为半径的⊙O 经过点D ,交AB 于点E ,连接AD ,且AD 平分∠BA C .(1)求证:BC 是⊙O 的切线;(2)若∠BAC =60°,⊙O 的半径为2,求阴影部分的面积.【答案】(1)证明见解析;(2)S 阴影=23−π. 【分析】(1)连接OD ,推出OD BC ,根据切线的判定推出即可;(2)阴影部分的面积=三角形ODB 的面积-扇形EOD 的面积即可.【详解】解:(1)证明:连接OD ,∵AD 平分∠BAC ,∴∠BAD=∠DAC ,∵AO=DO ,∴∠BAD=∠ADO ,∴∠CAD=∠ADO ,∴AC ∥OD ,∵∠ACD=90°,∴OD ⊥BC ,∴BC 与⊙O 相切;(2)∵∠C=90°,∠BAC=60°,∴∠B=30°,∠DOE=60°,又∵OD=2,∴∴阴影部分的面积=S △OBD -S 扇形ODE16042360BD OD π×=×⋅− 12223π=×− 23π.21 .已知一次函数y =kx +b 和反比例函数y =m x 图象相交于A (-4,2),B (n ,-4)两点. (1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)观察图象,直接写出不等式kx +b -m x<0的解集.【答案】(1) y =-8x, y =-x -2;(2)6;(3) x >2或-4<x <0. 【解析】 【分析】(1)先把点A 的坐标代入反比例函数解析式,即可得到m=-8,再把点B 的坐标代入反比例函数解析式,即可求出n=2,然后利用待定系数法确定一次函数的解析式;(2)先求出直线y=-x-2与x 轴交点C 的坐标,然后利用S △AOB =S △AOC +S △BOC 进行计算;(3)观察函数图象得到当x >2或-4<x <0时,一次函数的图象在反比例函数图象上方,据此可得不等式的解集.【详解】(1)把A(-4,2)的坐标代入y =m x,得m =2×(-4)=-8, ∴反比例函数的解析式为y =-8x. 把B(n ,-4)的坐标代入y =-8x ,得-4n =-8, 解得n =2.∴B(2,-4).把A(-4,2)和B(2,-4)的坐标代入y =kx +b ,得4224k b k b −+= +=−解得12k b =− =− ∴一次函数的解析式为y =-x -2.(2)y =-x -2中,令y =0,则x =-2,即直线y =-x -2与x 轴交于点C(-2,0).∴S △AOB =S △AOC +S △BOC =×2×2+×2×4=6.(4)由图可得,不等式kx +b 0的解集为x >2或-4<x <0. (5) 22. 某商店经销一种健身球,已知这种健身球的成本价为每个20元,市场调查发现,该种健身球每天的销售量y (个)与销售单价x (元)有如下关系:()2802040y x x =−+≤≤, 设这种健身球每天的销售利润为w 元.(1)如果销售单价定为25元,那么健身球每天的销售量是 个;(2)求w 与x 之间的函数关系式;(3)该种健身球销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?【答案】(1)30(2)221201600w x x =−+−(3)该种健身球销售单价定为30元时,每天的销售利润最大,最大利润是200元【分析】(1)在2080y x =−+中,令25x =,进行计算即可得; (2)根据总利润=每个建生球的利润×销售量即可列出w 与x 之间的函数关系式;(3)结合(2)的函数关系式,根据二次函数性质即可得.【详解】(1)解:在280y x =−+中,令25x =得,2258030y =−×+=, 故答案为:30;(2)解:根据题意得,2(20)(280)21201600w x x x x =−−+=−+−, 即w 与x 之间的函数关系式为:221201600w x x =−+−;(3)解:22212016002(30)200w x x x =−+−=−−+, ∵20−<,∴当30x =时,w 取最大值,最大值为200,即该种健身球销售单价定为30元时,每天的销售利润最大,最大利润是200元.23. 【发现问题】(1)如图1,已知CAB △和CDE 均为等边三角形,D 在AC 上,E 在CB 上,易得线段AD 和BE 的数量关系是______.(2)将图1中的CDE 绕点C 旋转到图2的位置,直线AD 和直线BE 交于点F . ①判断线段AD 和BE 的数量关系,并证明你的结论;②图2中AFB ∠的度数是______.(3)【探究拓展】如图3,若CAB △和CDE 均为等腰直角三角形,90ABC DEC ∠=∠=°,AB BC =,DE EC =,直线AD 和直线BE 交于点F ,分别写出AFB ∠的度数,线段AD 、BE 间的数量关系,并说明理由.【答案】(1)AD BE =(2)①AD BE =,证明见解析;②60°;(3)45AFB ∠=度,AD =,理由见解析 【解析】【分析】(1)由等腰三角形的性质可求解;(2)①由“SAS ”可证≌ACD BCE ,可得AD BE =;②由全等三角形的性质可得ACD CBF ∠=∠,即可解决问题.(3)结论:45AFB ∠=°,AD =.证明ACD BCE ∽△△,可得AD AC BE BC ==CBF CAF ∠=∠,由此即可解决问题.【小问1详解】解:∵CAB △和CDE 均为等边三角形,∴CA CB =,CD CE =,∴AD BE =,故答案为:AD BE =;【小问2详解】如图2中,①∵ABC 和CDE∴CA CB =,CD CE =,60ACB DCE °∠=∠=,∴ACD BCE ∠=∠,∴≌ACD BCE (SAS ),∴AD BE =;②∵≌ACD BCE ,∴ACD CBF ∠=∠,设BC 交AF 于点O .∵AOC BOF ∠=∠,∴60BFO ACO ∠=∠=°,∴60AFB ∠=°,故答案为:60°;【小问3详解】结论:45AFB ∠=°,AD =.理由:如图3中, ∵90ABC DEC ∠=∠=°,AB BC =,DE EC =,∴45ACD BCD BCE ∠=°+∠=∠,AC DC BC EC ==,∴ACD BCE ∽△△,∴AD AC BE BC ==CBF CAF ∠=∠,∴AD =,∵AFB CBF ACB CAF ∠+∠=∠+∠,∴45AFB ACB ∠=∠=°.24. 综合与探究如图,已知点B (3,0),C (0,-3),经过B .C 两点的抛物线y =x 2-bx +c 与x 轴的另一个交点为A .(1)求抛物线的解析式;(2)点D 在抛物线的对称轴上,当△ACD 的周长最小时,求点D 的坐标;(3)已知点E 在第四象限的抛物线上,过点E 作EF //y 轴交线段BC 于点F ,连结EC ,若点E (2,-3),请直接写出△FEC 的面积;(4)在(3)的条件下,在坐标平面内是否存在点P ,使以点A ,B ,E ,P 为顶点的四边形是平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【答案】(1)y =x 2-2x -3;(2)点D 的坐标为(1,-2);(3)△FEC 的面积为2;(4)存在,P 1(0,3),P 2(-2,-3),P 3(6,-3).【分析】(1)将点B (3,0),C (0,-3)代入抛物线y =x 2-bx +c ,求得b,c 即可求解;(2)求出D 点的横坐标为1,当点B 、D 、C 在同一直线上时,ACD C =AC +AD +CD =AC +BD +CD =AC +BC 最小,再求出直线BC 的解析式,即可求D 点坐标;(3)根据点和平行线的性质,先得出线段CE 和EF 的长以及∠CEF=90°即可求得△FEC 的面积;(4)【详解】解:(1) 将点B (3,0),C (0,-3)代入抛物线y =x 2-bx +c ,得,930-3b c c -+== ,解得2-3b c ==, ∴抛物线的解析式为y =x 2-2x -3;(2)如图:由y =x 2-2x -3得对称轴为x =-2b a =-2-21× =1 ∵点A ,.B 关于x =1对称,∴连结BC 与对称轴为x =1的交点就是符合条件的点D ,设直线BC 的解析式为y =mx +n ,将B (3,0),C (0,-3)代入解析式得303m n n +==- ,解得13m n ==-, ∴y =x -3当x =1时,y =-2,∴点D 的坐标为(1,-2);(3)如图:∵E(2,-3),C(0,-3)∴CE∥x轴,且CE=2∵EF//y轴交线段BC于点F且BCl:y=x-3 当x=2时,y=-1,∴F(2,-1)∴EF=2,又∵∠CEF=90°∴12CEFS CE EF=⋅= 12×2×2=2;(4) 存在,如图:①当AB为边长,BE为边长,如图四边形ABE P1为平行四边形∵对称轴为x=1, B(3,0)∴1×2-3=-1∴A(-1,0)AB=3-(-1)=4∴P1E=AB=4∵E(2,-3)∴C P1= P1E-CE=4-2=2∴P1 (-2,-3)②当AB为边长,AE为边长,∵E P2=AB=4∴C P2= P2E+CE=4+2=6∴P2 (6,-3)③当AB为对角线,四边形ABE P1为平行四边形∵四边形ABE P1为平行四边形易得P3恰好交y轴∴P3(0,3)综上所述,P1 (-2,-3),P2 (6,-3),P3(0,3).。

2023-2024学年上海市闵行区九年级(上)期末数学试卷(一模)(含解析)

2023-2024学年上海市闵行区九年级(上)期末数学试卷(一模)(含解析)

2023-2024学年上海市闵行区九年级(上)期末数学试卷(一模)一、选择题:本题共6小题,每小题4分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列命题中,真命题是( )A. 两个直角三角形一定相似B. 两个等腰三角形一定相似C. 两个钝角三角形一定相似D. 两个等边三角形一定相似2.在Rt △ABC 中,∠C =90°,AB =3,AC =2,那么cosA 的值是( )A. 13B. 23C. 53 D. 523.下列说法错误的是( )A. 如果a 与b 都是单位向量,那么|a |=|b |B. 如果ka =0,那么k =0或a =0C. 如果a =−3b (b 为非零向量),那么a +3b =0D. 如果a +b =2c ,a−b =3c (c 为非零向量),那么a 与b 平行4.如图,已知l 1//l 2//l 3,直线l 1,l 2,l 3分别交直线l 4于点A 、B 、C ,交直线l 5于点D 、E 、F ,那么下列比例式正确的是( )A. AC BC =DF EFB. AB DE =BE ADC. ABBC=DF EF D. DFEF =CFBE 5.已知二次函数的解析式为y =−x 2+2x ,下列关于函数图象的说法正确的是( )A. 对称轴是直线x =−1B. 图象经过原点C. 开口向上D. 图象有最低点6.如图,在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的图象经过(1,0),(−3,0),如果实数P表示9a−3b+c的值,实数Q表示−a−b的值,那么P、Q的大小关系为( )A. P>QB. P=QC. P<QD. 无法确定二、填空题:本题共12小题,每小题4分,共48分。

7.计算:10×2−1=______ .8.已知ab =13,那么a+bb=______ .9.计算:(a+b)−(72a−2b)=______ .10.在Rt△ABC中,∠C=90°,如果tanB=2,BC=2,那么AC=______ .11.如图,在△ABC中,点D在边AC上,点E在边BC上,DE//AB,AD:AC=2:3,那么S△DECS梯形ABED的值为______ .12.将抛物线y=x2+4x向上平移2个单位,平移后的抛物线的顶点坐标是______ .13.抛物线y=x2+bx+c的对称轴是直线x=−4,如果点A(0,y1)、B(1,y2)在此抛物线上,那么y1______ y2.(填“>”、“=”或“<”)14.小明沿斜坡坡面向上前进了5米,垂直高度上升了1米,那么这个斜坡的坡比是______ .15.已知反比例函数y=kx(k≠0),如果x1<x2<0,0<y1<y2,那么k______ 0.(填“>”或“<”) 16.“二鸟饮泉”问题中记载:“两塔高分别为30步和20步.两塔之间有喷泉,两鸟从两塔顶同时出发,以相同速度沿直线飞往喷泉中心,同时抵达.喷泉与两塔在同一平面内,求两塔之间的距离.”如图,已知AC⊥AB,BD⊥AB,M是AB上一点,CM=DM,在C处测得点M的俯角为60°,AC=30,BD=20,那么AB=______ .17.新定义:如果等腰三角形腰上的中线与腰的比值为黄金分割数(黄金数),那么称这个等腰三角形为“精准三角形”.如图,△ABC是“精准三角形”,AB=AC=2,CD⊥AB,垂足为点D,那么BD的长度为______ .18.如图,在△ABC中,AB=AC,tanC=3,点D为边BC上的点,4联结AD,将△ABD沿AD翻折,点B落在平面内点E处,边AE交边BC于点F,联结CE,如果AF=3FE,那么tan∠BCE的值为______ .三、解答题:本题共7小题,共78分。

2024年北京朝阳区初三九年级上学期期末数学试题和答案

2024年北京朝阳区初三九年级上学期期末数学试题和答案

张卡片,除所标注文字不同外无其他差别.其中,写有“珍稀濒危植.随机摸出一张卡片写有“珍的扇形作圆锥的侧面,记扇形的半径为R,所在一定范围内变化时,l与S都随R的变第12题图第14题图试题13.某科技公司开展技术研发,在相同条件下,对运用新技术生产的一批产品的合格率进行检测,下表是检测过程中的一组统计数据:估计这批产品合格的产品的概率为.14.如图,AB 是半圆O 的直径,将半圆O 绕点A 逆时针旋转30°,点B 的对应点为B ',连接A B ',若AB =8,则图中阴影部分的面积是_______.15.对于向上抛的物体,在没有空气阻力的条件下,上升高度h ,初速度v ,抛出后所经历的时间t ,这三个量之间有如下关系:221gt vt h -=(其中 g 是重力加速度,g 取10m/s 2).将一物体以v=21m/s 的初速度v 向上抛,当物体处在离抛出点18m 高的地方时,t 的值为 .16.已知函数y 1=kx +4k -2(k 是常数,k ≠0),y 2=ax 2+4ax -5a (a 是常数,a ≠0),在同一平面直角坐标系中,若无论k 为何值,函数y 1和y 2的图象总有公共点,则a 的取值范围是_______.三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解方程x 2-1 =6x .18.关于x 的一元二次方程x 2-(m +4)x +3(m +1)=0 .(1)求证:该方程总有两个实数根;(2)若该方程有一根小于0,求m 的取值范围.抽取的产品数n 5001000150020002500300035004000合格的产品数m 476967143119262395288333673836合格的产品频率nm0.9520.9670.9540.9630.9580.9610.9620.959图2图3图1图1 图2试题北京市朝阳区2023~2024学年度第一学期期末检测九年级数学试卷参考答案及评分标准(选用)2024.1一、选择题(共16分,每题2分)题号12345678答案DABCACAC二、填空题(共16分,每题2分)三、解答题(共68分,第17-22题,每题5分,第23-26题,每题6分,27-28题,每题7分)17.解:方程化为x 2 -6x =1.x 2 -6x+9 =10.1032=-)(x .103±=-x .1031+=x ,1032-=x .18.(1)证明:依题意,得=[-(m +4)]2-4×3(m +1) =(m -2)2.∵(m -2)2≥0,∴0≥∆∴该方程总有两个实数根.(2)解:解方程,得x =.∴x 1= m +1,x 2=3.依题意,得m +1<0.∴m <-1.19.解:(1)根据题意,设该二次函数的解析式为 y 2=a (x -1)2+4.当x =0时,y 2 =3∴a =-1.∴y 2=-x 2+2x +3.题号9101112答案x 1=3,x 2=-3相切(1,3)140题号13141516答案答案不唯一,如0.9593438+π1.2或3a <0或a ≥52线段垂直平分线上的点与这条线段两个端点的距离相等.三角形的外角等于与它不相邻的两个内角的和.由题意可知,抛物线顶点C ),(9254.设抛物线对应的函数解析式)4(2+-=x a y试题26. 解:(1)由题意知,a +b +c = 9a +3b +c .∴b = -4a .∴22=-=a b t . (2)∵a >0,∴当x ≥t 时,y 随x 的增大而增大;当x ≤t 时,y 随x 的增大而减小.设抛物线上的四个点的坐标为A (t -1,m A ) ,B (t ,m B ),C (2,n C ),D (3,n D ).点A 关于对称轴x =t 的对称点为A'(t +1,m A )∵抛物线开口向上,点B 是抛物线顶点,∴m A >m B .ⅰ 当t ≤1时,n C < n D∴t +1≤2.∴m A ≤n C ,∴不存在m >n ,不符合题意.ⅱ 当1<t ≤2时,n C < n D∴2<t +1≤3.∴m A >n C .∴存在m >n ,符合题意.ⅲ当2<t ≤3时,∴n 的最小值为m B .∵m A >m B .. ∴存在m >n ,符合题意.ⅳ 当3<t <4时,n D <n C .∴2<t -1<3.∴m A >n D .∴存在m >n ,符合题意.ⅴ 当t ≥4时,n D <n C .∴t -1≥3.∴m A ≤n D ,∴不存在m >n ,不符合题意.综上所述,t 的取值范围是1<t <4.)解:补全图1,如图.证明:延长AF到点G,使得GF=AF,连接,连接GE并延长,与AB的延长。

2023-2024学年苏科版九年级数学上册期末考试模拟试卷 (含答案)

2023-2024学年苏科版九年级数学上册期末考试模拟试卷 (含答案)

九年级数学(上)期末考试模拟试卷1一、选择题(本大题有8小题,每小题3分,共24分)1. 若△ABC ∽△DEF ,相似比为1∶2,则△ABC 与△DEF 的周长比为( )A .2∶1B .1∶2C .4∶1D .1∶42. s i n 60°的值是( )A .12B .3C .2D .33.为调查某班学生每天使用零花钱的情况,童老师随机调查了30名同学,结果如下表:则这30名同学每天使用的零花钱的众数和中位数分别是( )每天使用零花钱(单位:元)510152025人数25896A .20、15B .20、20C .20、17.5D .15、154. 如图,点D 、E 、F 分别是△ABC 的边AB 、AC 、BC 上的点,若DE ∥BC ,EF ∥AB ,则下列比例式一定成立的是( )A . =B . =C . =D . =5. 如图,AB为⊙O 的直径,点C ,D 在圆上,若∠BAC =25°,则∠D =( )A . 50°B . 55°C . 65°D . 70°6.如果一个正多边形的外角是锐角,且它的余弦值是,那么它是( )A .等边三角形B .正六边形C .正八边形D .正十二边形7.二次函数y =x 2+bx 的对称轴为直线x =1,若关于x 的方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有实数解,则t 的取值范围是( )A .t ≥﹣1B .﹣1≤t <3C .﹣1≤t <8D .t <38. 已知二次函数(m 是实数),当自变量任取,时,分别与之对应的函数AD DB DE BC BF BC EF AD AE ECBF FC EF AB DE BC 第4题第5题26y x x m =-+1x 2x值,满足>,则,应满足的关系式是()A .B .C .D . 二、填空题(本大题共8个小题,每小题4分,共32分)9. 已知x =1是关于x 的一元二次方程2x 2-x +a =0的一个根,则a 的值是.10. 二次函数y =-(x +2)2+3的图象的最大值是_____.11.如果在比例尺为1∶1000000的地图上,甲、乙两地的图上距离是5.8c m ,那么甲、乙两地的实际距离是 km .12.在Rt △ABC 中,∠C =90°,co sA =,则∠A = 度. 13. 将抛物线y =﹣3x 2向上平移2个单位,再向右1个平移单位所得抛物线的表达式为 .14.如图,A 、B 、C 是正方形网格中的格点,将△ABC 绕A 点逆时针旋转45°得到△ADE ,则t anD 的值为 .15. 如图,在等边三角形ABC 中,D 为BC 的中点,弧ADB 交AC 于点E ,若AB =2,则弧DE 的长为 .16. 如图,在平面直角坐标系中,点A 在抛物线y =x 2﹣2x +5上运动,过点A 作AB ⊥x 轴于点B ,以AB 为斜边作Rt △ABC ,则AB 边上的中线CD 的最小值为 .三、解答题(本大题9个小题,共86分)17.(本题10分)(1)计算:2s i n 60°-3t an 45°+9;(2)解方程:x 2-4x -1=0.1y 2y 1y 2y 1x 2x 1233x x -<-1233x x ->-12|3||3|x x -<-12|3||3|x x ->-12第14题第15题第16题18.(本题8分)如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,-1),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,点A1的坐标为;(2)在网格内以点(1,1)为位似中心,把△A1B1C1按相似比2∶1放大,得到△A2B2C2,请画出△A2B2C2;若边AC上任意一点P的坐标为(m,n),则两次变换后对应点P2的坐标为.19. (本题8分)在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m).绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图①中a的值为 ;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定10人能进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛.20. (本题8分)如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦A B于点D.已知:AB=16cm,CD=4cm.(1)求作此残片所在的圆(不写作法,保留作图痕迹);(2)求(1)中所作圆的半径.21.(本题10分)如图,大楼A N上悬挂一条幅AB,小颖在坡面D处测得条幅顶部A的仰角为30°,沿坡面向下走到坡脚E处,然后向大楼方向继续行走10米来到C处,测得条幅的底部B的仰角为45°,此时小颖距大楼底端N处20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DE M=1:),且D、M、E、C、N、B、A在同一平面内,E、C、N在同一条直线上,求条幅的长度。

山东省青岛市即墨市七级中学2023学年九年级数学第一学期期末考试模拟试题含解析

山东省青岛市即墨市七级中学2023学年九年级数学第一学期期末考试模拟试题含解析

2023学年九年级上学期数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每小题3分,共30分)1.如图,以AB 为直径,点O 为圆心的半圆经过点C ,若AC =BC =2,则图中阴影部分的面积是( )A .π4B .1π24+C .π2D .1π22+ 2.为了迎接春节,某厂10月份生产春联50万幅,计划在12月份生产春联120万幅,设11、12月份平均每月增长率为,x 根据题意,可列出方程为( )A .()()2501501120x x +++=B .()()250501501120x x ++++=C .()2501120x +=D .()50160x += 3.对于二次函数y =-(x +1)2+3,下列结论:①其图象开口向下;②其图象的对称轴为直线x =1;③其图象的顶点坐标为(-1,3);④当x>1时,y 随x 的增大而减小.其中正确结论的个数为( )A .1B .2C .3D .44.如图是一根空心方管,则它的主视图是( )A .B .C .D .5.如图,在△ABC 中,D ,E ,F 分别为BC ,AB ,AC 上的点,且EF ∥BC ,FD ∥AB ,则下列各式正确的是( )A . AE CD EB BD = B .EF AE BC DF = C .EF DF BC AB =D .AE BD AB BC= 6.一元二次方程23210x x --=的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .只有一个实数根7.如图,在Rt OAB 中,OA AB =,90OAB ∠=︒,点P 从点O 沿边OA ,AB 匀速运动到点B ,过点P 作PC OB ⊥交OB 于点G ,线段22AB =,OC x =,POC S y =△,则能够反映y 与x 之间函数关系的图象大致是( )A .B .C .D .8.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂第二季度平均每月的增长率为x ,那么x 满足的方程是( )A .()2501182x +=B .()()250501501182x x ++++= C .()()2501501182x x +++= D .()50501182x ++= 9.关于x 的方程x 2﹣mx+6=0有一根是﹣3,那么这个方程的另一个根是( )A .﹣5B .5C .﹣2D .210.若点112233(,),(,),(,)A x y B x y C x y 在反比例函数()0k y k x=<的图象上,且1230y y y >>>,则下列各式正确的是( )A .123x x x <<B .213x x x <<C .132x x x <<D .321x x x <<二、填空题(每小题3分,共24分)11.某品牌手机六月份销售400万部,七月份、八月份销售量连续增长,八月份销售量达到576万部,则该品牌手机这两个月销售量的月平均增长率为_________.12.如图是某小组同学做“频率估计概率”的实验时,绘出的某一实验结果出现的频率折线图,则符合图中这一结果的实验可能是_______(填序号).①抛一枚质地均匀的硬币,落地时结果“正面朝上”;②在“石头,剪刀,布”的游戏中,小明随机出的是剪刀;③四张一样的卡片,分别标有数字1,2,3,4,从中随机取出一张,数字是1.13.四边形ABCD 中,对角线AC 、BD 相交于点O ,给出下列四个条件:①AD ∥BC ;②AD=BC ;③OA=OC ;④OB=OD从中任选两个条件,能使四边形ABCD 为平行四边形的选法有________种14.已知反比例函数y =k x的图象经过点(3,﹣4),则k =_____. 15.一元二次方程(x+1)(x-3)=2x-5根的情况_______.(表述正确即可)16.如图,已知电流在一定时间段内正常通过电子元件“”的概率是,在一定时间段内,A ,B 之间电流能够正常通过的概率为 .17.如图,在正方形铁皮上剪下一个扇形和一个半径为3cm 的圆形,使之恰好围成一个圆锥,则圆锥的高为____.18.如图是某幼儿园的滑梯的简易图,已知滑坡AB 的坡度是1:3 ,滑梯的水平宽是6m ,则高BC 为_______m .三、解答题(共66分)19.(10分)如图,AB 为O 的直径,C 、D 为O 上两点,BC CD =,CF AD ⊥,垂足为F .直线CF 交AB 的延长线于点E ,连接AC .(1)判断EF 与O 的位置关系,并说明理由;(2)求证:2AC AB AF =⋅.20.(6分)平安超市准备进一批书包,每个进价为40元.经市场调查发现,售价为50元时可售出400个;售价每增加1元,销售量将减少10个.超市若准备获得利润6000元,并且使进货量较少,则每个应定价为多少21.(6分)已知△ABC 是等腰三角形,AB=AC .(1)特殊情形:如图1,当DE ∥BC 时,有DB EC .(填“>”,“<”或“=”)(2)发现探究:若将图1中的△ADE 绕点A 顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展运用:如图3,P 是等腰直角三角形ABC 内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC 的度数.22.(8分)某校在向贫困地区捐书活动中全体师生积极捐书.为了解所捐书籍的种类,某同学对部分书籍进行了抽样调查,并根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?请通过计算补全条形统计图;(2)求出图1中表示科普类书籍的扇形圆心角度数;(3)本次活动师生共捐书2000本,请估计有多少本文学类书籍?23.(8分)如图,是由两个等边三角形和一个正方形拼在-起的图形,请仅用无刻度的直尺按要求画图,(1)在图①中画一个60的角,使点C或点E是这个角的顶点,且以CE为这个角的一边:AP CE.(2)在图②画一条直线AP,使得//24.(8分)如图,一面利用墙,用篱笆围成的矩形花圃ABCD的面积为Sm2,垂直于墙的AB边长为xm.(1)若墙可利用的最大长度为8m,篱笆长为18m,花圃中间用一道篱笆隔成两个小矩形.①求S与x之间的函数关系式;②如何围矩形花圃ABCD的面积会最大,并求最大面积.(2)若墙可利用最大长度为50m,篱笆长99m,中间用n道篱笆隔成(n+1)小矩形,当这些小矩形都是正方形且x 为正整数时,请直接写出所有满足条件的x、n的值.25.(10分)如图,某市有一块长为(3a+b)米、宽为(2a+b)米的长方形地,规划部门计划将阴影部分进行绿化,中间将修建一座边长为(a+b)米的正方形雕像.(1)试用含a、b的式子表示绿化部分的面积(结果要化简).(2)若a=3,b=2,请求出绿化部分的面积.26.(10分)用适当的方法解下列一元二次方程(1)x2+2x=3;(2)2x2﹣6x+3=1.参考答案一、选择题(每小题3分,共30分)1、A【分析】先利用圆周角定理得到∠ACB=90°,则可判断△ACB为等腰直角三角形,接着判断△AOC和△BOC都是等腰直角三角形,于是得到S△AOC=S△BOC,然后根据扇形的面积公式计算图中阴影部分的面积.【详解】∵AB为直径,∴∠ACB=90°,∵2,∴△ACB为等腰直角三角形,∴OC⊥AB,∴△AOC和△BOC都是等腰直角三角形,∴S△AOC=S△BOC,OA=22AC=1,∴S阴影部分=S扇形AOC=290?13604ππ⨯=.故选A.【点睛】本题考查了扇形面积的计算:圆面积公式:S=πr 2,(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.求阴影面积常用的方法:①直接用公式法; ②和差法; ③割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.2、C【分析】根据“当月的生产量=上月的生产量⨯(1+增长率)”即可得.【详解】由题意得:11月份的生产量为50(1)x +万幅12月份的生产量为250(1)(1)50(1)x x x ++=+万幅则250(1)120x +=故选:C .【点睛】本题考查了列一元二次方程,读懂题意,正确求出12月份的生产量是解题关键.3、C【解析】由抛物线解析式可确定其开口方向、对称轴、顶点坐标,可判断①②③,再利用增减性可判断④,可求得答案.【详解】∵2(1)3y x =-++,∴抛物线开口向上,对称轴为直线x =−1,顶点坐标为(−1,3),故②不正确,①③正确,∵抛物线开口向上,且对称轴为x =−1,∴当x >−1时,y 随x 的增大而增大,∴当x >1时,y 随x 的增大而增大,故④正确,∴正确的结论有3个,故选:C.【点睛】考查二次函数的图象与性质,掌握二次函数的开口方向、对称轴、顶点坐标的求解方法是解题的关键.4、B【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看是:大正方形里有一个小正方形,∴主视图为:故选:B.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,注意看不到的线画虚线.5、D【分析】根据EF∥BC,FD∥AB,可证得四边形EBDF是平行四边形,利用平行线分线段成比例逐一验证选项即可.【详解】解:∵EF∥BC,FD∥AB,∴四边形EBDF是平行四边形,∴BE=DF,EF=BD,∵EF∥BC,∴AE AFBE FC=,AE EF AFAB BC AC==,∴AE BDAB BC=,故B错误,D正确;∵DF∥AB,∴AF BDFC DC=,DF FCAB AC=,∴AE BDBE DC=,故A错误;∵EF AFBC AC=,DF FCAB AC=,故C错误;故选:D.【点睛】本题考查了平行四边形的的判定,平行线分线段成比例的定理,掌握平行线分线段成比例定理是解题的关键.6、B【分析】直接利用判别式△判断即可.【详解】∵△=()()22431160---=>∴一元二次方程有两个不等的实根故选:B .【点睛】本题考查一元二次方程根的情况,注意在求解判别式△时,正负号不要弄错了.7、D【分析】分两种情况:①当P 点在OA 上时,即2≤x≤2时;②当P 点在AB 上时,即2<x≤1时,求出这两种情况下的PC 长,则y=12PC•OC 的函数式可用x 表示出来,对照选项即可判断.【详解】解:∵△AOB 是等腰直角三角形,AB=∴OB=1.①当P 点在OA 上时,即2≤x≤2时,PC=OC=x ,S △POC =y=12PC•OC=12x 2, 是开口向上的抛物线,当x=2时,y=2;OC=x ,则BC=1-x ,PC=BC=1-x ,S △POC =y=12PC•OC=12x (1-x )=-12x 2+2x , 是开口向下的抛物线,当x=1时,y=2.综上所述,D 答案符合运动过程中y 与x 的函数关系式.故选:D .【点睛】本题主要考查了动点问题的函数图象,解决这类问题要先进行全面分析,根据图形变化特征或动点运动的背景变化进行分类讨论,然后动中找静,写出对应的函数式.8、B【分析】由题意根据增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x ,那么可以用x 分别表示五、六月份的产量,进而即可得出方程.【详解】解:设该厂五、六月份平均每月的增长率为x ,那么得五、六月份的产量分别为50(1+x )、50(1+x )2, 根据题意得50+50(1+x )+50(1+x )2=1.故选:B .【点睛】本题考查由实际问题抽象出一元二次方程的增长率问题,注意掌握其一般形式为a (1+x )2=b ,a 为起始时间的有关数量,b 为终止时间的有关数量,x 为增长率.9、C【分析】根据两根之积可得答案.【详解】设方程的另一个根为a ,∵关于x 的方程x 2﹣mx+6=0有一根是﹣3,∴﹣3a =6,解得a =﹣2,故选:C .【点睛】本题主要考查了根与系数的关系,一元二次方程()200ax bx c a ++=≠的根与系数的关系:若方程两个为1x ,2x ,则12b c x x a a=-=,. 10、C 【分析】先判断反比例函数所在象限,再根据反比例函数的性质解答即可. 【详解】解:反比例函数为()0k y k x=<,∴函数图象在第二、四象限,在每个象限内,y 随着x 的增大而增大, 又1230y y y >>>,10x ∴<,230x x >>,132x x x ∴<<.故选C .【点睛】本题考查了反比例函数的图象和性质,属于基本题型,熟练掌握反比例函数的性质是解答的关键.二、填空题(每小题3分,共24分)11、20%【分析】根据增长(降低)率公式()21a x b ±=可列出式子.【详解】设月平均增长率为x.根据题意可得:()24001+576x=. 解得:0.2x =.所以增长率为20%.故答案为:20%.【点睛】本题主要考查了一元二次方程的应用,记住增长率公式很重要.12、②【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的频率,约为0.33者即为正确答案. 【详解】抛一枚硬币,出现正面朝上的频率是12=0.5,故本选项错误; 在“石头,剪刀,布”的游戏中,小明随机出的是剪刀的概率是13 ,故本选项符合题意; 四张一样的卡片,分别标有数字1,2,3,4,从中随机取出一张,数字是1的概率是0.25故答案为②.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.13、1.【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【详解】解:由题意:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形; ③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD 为平行四边形;①③可证明△ADO ≌△CBO ,进而得到AD=CB ,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形;①④可证明△ADO ≌△CBO ,进而得到AD=CB ,可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD 为平行四边形;∴有1种可能使四边形ABCD 为平行四边形.故答案是1.【点睛】此题主要考查了平行四边形的判定,关键是熟练掌握平行四边形的判定定理.14、-1.【分析】直接把点(3,﹣4)代入反比例函数y =k x ,求出k 的值即可. 【详解】解:∵反比例函数y =k x 的图象经过点(3,﹣4), ∴﹣4=3k ,解得k =﹣1. 故答案为:﹣1.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.15、有两个正根【分析】将原方程这里为一元二次方程的一般形式直接解方程或者求判别式与0的关系都可解题.【详解】解:(x+1)(x-3)=2x-5整理得:22325x x x --=-,即 2420x x -+=,配方得:2(2)2x -=, 解得:1223x =+>,2220x =->, ∴该一元二次方程根的情况是有两个正跟;故答案为:有两个正根.【点睛】此题考查解一元二次方程,或者求判别式与根的个数的关系.16、.【解析】根据题意,电流在一定时间段内正常通过电子元件的概率是,即某一个电子元件不正常工作的概率为,则两个元件同时不正常工作的概率为;故在一定时间段内AB 之间电流能够正常通过的概率为1-=.故答案为:.17、315cm【分析】利用已知得出底面圆的半径为3cm ,周长为6cm π,进而得出母线长,再利用勾股定理进行计算即可得出答案.【详解】解:∵半径为3cm 的圆形∴底面圆的半径为3cm∴底面圆的周长为6cm π∴扇形的弧长为906180R ππ⋅⋅= ∴12R cm =,即圆锥的母线长为12cm22123315cm -=.故答案是:315cm【点睛】此题主要考查了圆锥展开图与原图对应情况,以及勾股定理等知识,根据已知得出母线长是解决问题的关键.18、1【分析】根据滑坡的坡度及水平宽,即可求出坡面的铅直高度.【详解】∵滑坡AB的坡度是1:3,滑坡的水平宽度是6m,∴AC=6m,∴BC= 13×6=1m.故答案为:1.【点睛】本题考查了解直角三角形的应用中的坡度问题,牢记坡度的定义是解题的关键.三、解答题(共66分)19、(1)EF与⊙O相切,理由见解析;(2)证明见解析.【分析】(1)连接OC,由题意可得∠OCA=∠FAC=∠OAC,可得OC∥AF,可得OC⊥EF,即EF是⊙O的切线;(2) 连接BC,根据直径所对圆周角是直角证得△ACF∽△ABC,即可证得结论.【详解】(1)EF与⊙O相切,理由如下:如图,连接OC,∵BC CD,∴∠FAC=∠BAC,∵OC=OA,∴∠OCA=∠OAC,∴∠OCA=∠FAC,∴OC∥AF,又∵EF⊥AF,∴OC⊥EF,∴EF 是⊙O 的切线;(2)连接BC ,∵AB 为直径,∴∠BCA=90°,又∵∠FAC=∠BAC ,∴△ACF ∽△ABC , ∴AC AF AB AC=, ∴2AC AB AF =⋅.【点睛】本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,相似三角形的判定和性质,熟练运用切线的判定和性质是本题的关键.20、60元【分析】设定价为x 元,则利用单个利润×能卖出的书包个数即为利润6000元,列写方程并求解即可.【详解】解:设定价为x 元,根据题意得(x-40)[400-10(x-50)]=60002x -130x+4200=0解得:1x = 60,2x = 70根据题意,进货量要少,所以2x = 60不合题意,舍去.答:售价应定为70元.【点睛】本题考查一元二次方程中利润问题的应用,注意最后的结果有两解,但根据题意需要舍去一个答案.21、(1)=;(2)成立,证明见解析;(3)135°.【分析】试题(1)由DE∥BC,得到DB ECAB AC=,结合AB=AC,得到DB=EC;(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;(3)由旋转构造出△CPB≌△CEA,再用勾股定理计算出PE,然后用勾股定理逆定理判断出△PEA是直角三角形,再简单计算即可.【详解】(1)∵DE∥BC,∴DB EC AB AC=,∵AB=AC,∴DB=EC,故答案为=,(2)成立.证明:由①易知AD=AE,∴由旋转性质可知∠DAB=∠EAC,又∵AD=AE,AB=AC∴△DAB≌△EAC,∴DB=CE,(3)如图,将△CPB绕点C旋转90°得△CEA,连接PE,∴△CPB≌△CEA,∴CE=CP=2,AE=BP=1,∠PCE=90°,∴∠CEP=∠CPE=45°,在Rt△PCE中,由勾股定理可得,PE=22在△PEA中,PE2=(222=8,AE2=12=1,PA2=32=9,∵PE2+AE2=AP2,∴△PEA是直角三角形∴∠PEA=90°,∴∠CEA=135°,又∵△CPB≌△CEA∴∠BPC=∠CEA=135°.【点睛】考点:几何变换综合题;平行线平行线分线段成比例.22、(1)本次抽样调查的书籍有40本;作图见解析(2)108︒(3)估计有700本文学类书籍【分析】(1)根据艺术类图书8本占20%解答;(2)根据科普类书籍占总数的1240,即可解答;(3)利用样本估计总体.【详解】(1)8÷20%=40(本),40-8-14-12=6(本),答:本次抽样调查的书籍有40本.补图如图所示:(2)1236010840⨯︒=︒,答:图1中表示科普类书籍的扇形圆心角度数为108°.(3)14200070040⨯=(本),答:估计有700本文学类书籍.【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体,两图结合是解题的关键.23、(1)见解析;(2)见解析.【分析】(1)连接CF,EF,得到△ECF为等边三角形,即可求解:(2)连接CF,BD,交点即为P点,再连接AP即可.【详解】() 1FCE ∠或FEC ∠即为所求;()2直线AP 即为所求.【点睛】此题主要考查四边形综合的复杂作图,解题的关键是熟知正方形、等边三角形的性质.24、(1)①S=﹣3x 2+18x ;②当x =3米时,S 最大,为27平方米;(2)n =3,x =11;或n =4,x =9,或n =15,x =3,或n =48,x =1【分析】(1)①根据等量关系“花圃的面积=花圃的长×花圃的宽”列出函数关系式,并确定自变量的取值范围; ②通过函数关系式求得S 的最大值;(2)根据等量关系“花圃的长=(n +1)×花圃的宽”写出符合题中条件的x ,n .【详解】(1)①由题意得:S =x ×(18﹣3x )=﹣3x 2+18x ;②由S =﹣3x 2+18x =﹣3(x ﹣3)2+27,∴当x =3米时,S 最大,为27平方米;(2)根据题意可得:(n +2)x +(n +1)x =99,则n =3,x =11;或n =4,x =9,或n =15,x =3,或n =48,x =1.【点睛】此题主要考查二次函数的应用,解题的根据是根据题意找到等量关系列出方程或函数关系进行求解.25、(1)5a 2+3ab ;(2)63.【分析】(1)由长方形面积减去正方形面积表示出绿化面积即可;(2)将a 与b 的值代入计算即可求出值.【详解】解:(1)根据题意得:(3a+b )(2a+b )-(a+b )2=6a 2+5ab+b 2-a 2-2ab-b 2=5a 2+3ab ;(2)当a=3,b=2时,原式=2533324518=63⨯⨯⨯=++.【点睛】本题考查了整式的混合运算,熟练掌握整式混合运算的法则是解本题的关键.26、(1)x 1=﹣3,x 2=1;(2)12x x ==【分析】(1)移项,方程左边分解因式后,利用两数相乘积为1,两因式中至少有一个为1转化为两个一元一次方程来求解;(2)方程二次项系数化为1,常数项移到右边,两边加上一次项系数一半的平方,开方即可求出解.【详解】解:(1)移项得:x 2+2x ﹣3=1,分解因式得:(x +3)(x ﹣1)=1,可得x +3=1或x ﹣1=1,解得:x 1=﹣3,x 2=1;(2)方程变形得:x 2﹣3x =﹣32, 配方得:x 2﹣3x +94=﹣32+94,即(x ﹣32)2=34,解得:12x x == 【点睛】 此题考查了解一元二次方程-因式分解法及配方法,熟练掌握各种解法是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新九年级数学上期末模拟试卷及答案一、选择题1.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .2.下列图形中既是轴对称图形又是中心对称图形的是( )A .正三角形B .平行四边形C .正五边形D .正六边形3.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .4 4.已知y 关于x 的函数表达式是24y ax x a =--,下列结论不正确的是( )A .若1a =-,函数的最大值是5B .若1a =,当2x ≥时,y 随x 的增大而增大C .无论a 为何值时,函数图象一定经过点(1,4)-D .无论a 为何值时,函数图象与x 轴都有两个交点5.如图,抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;③3a +c >0;④当y >0时,x 的取值范围是-1≤x <3;⑤当x <0时,y 随x 增大而增大.其中结论正确的个数是( )A .4个B .3个C .2个D .1个 6.若将抛物线y=x 2平移,得到新抛物线2(3)y x =+,则下列平移方法中,正确的是( )A .向左平移3个单位B .向右平移3个单位C .向上平移3个单位D .向下平移3个单位7.如图,⊙O 是△ABC 的外接圆,∠B=60°,⊙O 的半径为4,则AC 的长等于( )A .43B .63C .23D .8 8.下列图标中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 9.“射击运动员射击一次,命中靶心”这个事件是( )A .确定事件B .必然事件C .不可能事件D .不确定事件10.已知二次函数y =ax 2+bx+c 中,y 与x 的部分对应值如下:x1.1 1.2 1.3 1.4 1.5 1.6 y ﹣1.59 ﹣1.16 ﹣0.71 ﹣0.24 0.25 0.76则一元二次方程ax 2+bx+c =0的一个解x 满足条件( )A .1.2<x <1.3B .1.3<x <1.4C .1.4<x <1.5D .1.5<x <1.6 11.关于y=2(x ﹣3)2+2的图象,下列叙述正确的是( ) A .顶点坐标为(﹣3,2)B .对称轴为直线y=3C .当x≥3时,y 随x 增大而增大D .当x≥3时,y 随x 增大而减小 12.设,a b 是方程2320170x x +-=的两个实数根,则22a a b +-的值为( )A .2017B .2018C .2019D .2020 二、填空题13.已知二次函数y =3x 2+2x ,当﹣1≤x ≤0时,函数值y 的取值范围是_____.14.一个扇形的圆心角为135°,弧长为3πcm ,则此扇形的面积是_____cm 2.15.廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是______米精确到1米16.四边形ABCD 内接于⊙O ,∠A =125°,则∠C 的度数为_____°.17.一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),则x 1﹣x 2=_____.18.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为_____.19.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣6x﹣16,AB为半圆的直径,则这个“果圆”被y轴截得的线段CD的长为_____.20.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.三、解答题21.某童装店购进一批20元/件的童装,由销售经验知,每天的销售量y(件)与销售单价x(元)之间存在如图的一次函数关系.(1)求y与x之间的函数关系;(2)当销售单价定为多少时,每天可获得最大利润,最大利润是多少?22.如图,⊙O是△ABC的外接圆,AB是直径,OD⊥AC,垂足为D点,直线OD与⊙O 相交于E,F两点,P是⊙O外一点,P在直线OD上,连接P A,PB,PC,且满足∠PCA =∠ABC(1)求证:P A=PC;(2)求证:P A是⊙O的切线;(3)若BC=8,32ABDF,求DE的长.23.某商场今年“十一”期间举行购物摸奖活动,摸奖箱里有四个标号分别为1,2,3,4的质地,大小都相同的小球,任意摸出一个小球,记下小球标号后,放回箱里并摇匀,再摸出一个小球,再记下小球标号.商场规定:两次摸出的小球之和为“8”或“6”时才算中奖.请结合“树形图法”或“列表法”,求出顾客小彦参加此次摸奖活动时中奖的概率.24.为改善生态环境,建设美丽乡村,某村规划将一块长18米,宽10米的矩形场地建设成绿化广场,如图,内部修建三条宽相等的小路,其中一条路与广场的长平行,另两条路与广场的宽平行,其余区域种植绿化,使绿化区域的面积为广场总面积的80%.(1)求该广场绿化区域的面积;(2)求广场中间小路的宽.25.如图,已知AB为⊙O的直径,点C、D在⊙O上,CD=BD,E、F是线段AC、AB 的延长线上的点,并且EF与⊙O相切于点D.(1)求证:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:根据中心对称的定义,结合所给图形即可作出判断.详解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.2.D解析:D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A. 是轴对称图形,不是中心对称图形,故错误;B. 不是轴对称图形,是中心对称图形,故错误;C. 是轴对称图形,不是中心对称图形,故错误;D. 是轴对称图形,也是中心对称图形,故正确.故答案选:D.【点睛】本题考查的知识点是中心对称图形,轴对称图形,解题的关键是熟练的掌握中心对称图形,轴对称图形.3.B解析:B【解析】【分析】取EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,设OF=x,则OM=4-x,MF=2,然后在Rt△MOF中利用勾股定理求得OF的长即可.【详解】如图:EF的中点M,作MN⊥AD于点M,取MN上的球心O,连接OF,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN 是矩形,∴MN=CD=4,设OF=x ,则ON=OF ,∴OM=MN-ON=4-x ,MF=2,在直角三角形OMF 中,OM 2+MF 2=OF 2,即:(4-x )2+22=x 2,解得:x=2.5,故选B .【点睛】本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.4.D解析:D【解析】【分析】将a 的值代入函数表达式,根据二次函数的图象与性质可判断A 、B ,将x=1代入函数表达式可判断C ,当a=0时,y=-4x 是一次函数,与x 轴只有一个交点,可判断D 错误.【详解】当1a =-时,()224125=--+=-++y x x x ,∴当2x =-时,函数取得最大值5,故A 正确;当1a =时,()224125y x x x =--=--,∴函数图象开口向上,对称轴为2x =,∴当2x ≥时,y 随x 的增大而增大,故B 正确;当x=1时,44=--=-y a a ,∴无论a 为何值,函数图象一定经过(1,-4),故C 正确;当a=0时,y=-4x ,此时函数为一次函数,与x 轴只有一个交点,故D 错误;故选D.【点睛】本题考查了二次函数的图象与性质,以及一次函数与x 轴的交点问题,熟练掌握二次函数的性质是解题的关键. 5.B解析:B【解析】【分析】【详解】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x =1,而点(﹣1,0)关于直线x =1的对称点的坐标为(3,0),∴方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3,所以②正确;∵x =﹣2b a=1,即b =﹣2a ,而x =﹣1时,y =0,即a ﹣b +c =0,∴a +2a +c =0,所以③错误; ∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x =1,∴当x <1时,y 随x 增大而增大,所以⑤正确. 故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.6.A解析:A【解析】【分析】先确定抛物线y=x 2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0),然后利用顶点的平移情况确定抛物线的平移情况.【详解】解:抛物线y=x 2的顶点坐标为(0,0),抛物线y=(x+3)2的顶点坐标为(-3,0), 因为点(0,0)向左平移3个单位长度后得到(-3,0),所以把抛物线y=x 2向左平移3个单位得到抛物线y=(x+3)2.故选:A .【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.A解析:A【解析】【分析】【详解】解:连接OA ,OC ,过点O 作OD ⊥AC 于点D ,∵∠AOC=2∠B,且∠AOD=∠COD=12∠AOC,∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°,∴33,∴3.故选A.【点睛】本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.8.D解析:D【解析】试题分析:根据轴对称图形和中心对称图形的概念,可知:A既不是轴对称图形,也不是中心对称图形,故不正确;B不是轴对称图形,但是中心对称图形,故不正确;C是轴对称图形,但不是中心对称图形,故不正确;D即是轴对称图形,也是中心对称图形,故正确.故选D.考点:轴对称图形和中心对称图形识别9.D解析:D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D.考点:随机事件.10.C解析:C【解析】【分析】仔细看表,可发现y的值-0.24和0.25最接近0,再看对应的x的值即可得.【详解】解:由表可以看出,当x取1.4与1.5之间的某个数时,y=0,即这个数是ax2+bx+c=0的一个根.ax 2+bx+c=0的一个解x 的取值范围为1.4<x <1.5.故选C .【点睛】本题考查了同学们的估算能力,对题目的正确估算是建立在对二次函数图象和一元二次方程关系正确理解的基础上的.11.C解析:C【解析】∵ y=2(x ﹣3)2+2的图象开口向上,顶点坐标为(3,2),对称轴为直线x=3, ∴当3x ≥时,y 随x 的增大而增大.∴选项A 、B 、D 中的说法都是错误的,只有选项C 中的说法是正确的.故选C.12.D解析:D【解析】【分析】首先根据根与系数的关系,求出a+b=-3;然后根据a 是方程2320170x x +-=的实数根,可得2320170a a +-=,据此求出232017a a +=,利用根与系数关系得:+a b =-3,22a a b +- 变形为(2a 3a +)-(+a b ),代入即可得到答案.【详解】解:∵a 、b 是方程2320170x x +-=的两个实数根,∴+a b =-3;又∵2320170a a +-=,∴232017a a +=,∴22a a b +-=(2a 3a +)-(+a b )=2017-(-3)=2020即22a a b +-的值为2020.故选:D .【点睛】本题考查了根与系数的关系与一元二次方程的解,把22a a b +-化成(2a 3a +)-(+a b )是解题的关键.二、填空题13.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴根据二次函数的性质即可求解【详解】∵y=3x2+2x =3(x+)2﹣∴函数的对称轴为x =﹣∴当﹣1≤x≤0时函数有最小值﹣当x=﹣1时有最大解析:﹣13≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x=3(x+13)2﹣13,∴函数的对称轴为x=﹣13,∴当﹣1≤x≤0时,函数有最小值﹣13,当x=﹣1时,有最大值1,∴y的取值范围是﹣13≤y≤1,故答案为﹣13≤y≤1.【点睛】本题考查二次函数的性质、一般式和顶点式之间的转化,解题的关键是熟练掌握二次函数的性质.14.【解析】分析:先求出扇形对应的圆的半径再根据扇形的面积公式求出面积即可详解:设扇形的半径为Rcm∵扇形的圆心角为135°弧长为3πcm∴=3π解得:R=4所以此扇形的面积为=6π(cm2)故答案为6解析:6π【解析】分析:先求出扇形对应的圆的半径,再根据扇形的面积公式求出面积即可.详解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴135180Rπ⨯=3π,解得:R=4,所以此扇形的面积为21354180π⨯=6π(cm2),故答案为6π.点睛:本题考查了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.15.85【解析】由于两盏EF距离水面都是8m因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值故有-140x2+10=8即x2=80x1=45x2=-45所以两盏警示灯之间的水平解析:【解析】由于两盏E、F距离水面都是8m,因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值.故有,即,,.所以两盏警示灯之间的水平距离为:16.【解析】【分析】根据圆内接四边形的对角互补的性质进行计算即可【详解】解:∵四边形ABCD内接于⊙O∴∠A+∠C=180°∵∠A=125°∴∠C=55°故答案为:55【点睛】本题考查了圆内接四边形的性解析:【解析】【分析】根据圆内接四边形的对角互补的性质进行计算即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∵∠A=125°,∴∠C=55°,故答案为:55.【点睛】本题考查了圆内接四边形的性质,理解圆内接四边形的对角互补的性质是解答本题的关键. 17.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x的值直接计算【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1x2(x1<x2)∴x1+x2=2x1x2=﹣3则x1﹣x2=﹣(x1+解析:-4【解析】【分析】利用根与系数的关系求出所求即可.此题也可解出x的值,直接计算.【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1、x2(x1<x2),∴x1+x2=2,x1x2=﹣3,则x1﹣x2=﹣=﹣=﹣4.故答案为﹣4. 【点睛】本题考查了根与系数的关系,弄清根与系数的关系是解答本题的关键.18.﹣3【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0再解关于k 的方程然后根据一元二次方程的定义确定k 的值即可【详解】把x=2代入kx2+(k2﹣2)x解析:﹣3【解析】【分析】把x=2代入kx 2+(k 2﹣2)x+2k+4=0得4k+2k 2﹣4+2k+4=0,再解关于k 的方程,然后根据一元二次方程的定义确定k 的值即可.【详解】把x=2代入kx 2+(k 2﹣2)x+2k+4=0得4k+2k 2﹣4+2k+4=0, 整理得k 2+3k=0,解得k 1=0,k 2=﹣3, 因为k≠0, 所以k 的值为﹣3. 故答案为:﹣3.【点睛】本题考查了一元二次方程的定义以及一元二次方程的解,能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.19.20【解析】【分析】抛物线的解析式为y=x2-6x-16可以求出AB=10;在Rt△COM 中可以求出CO=4;则:CD=CO+OD=4+16=20【详解】抛物线的解析式为y=x2-6x-16则D (0解析:20 【解析】 【分析】抛物线的解析式为y=x 2-6x-16,可以求出AB=10;在Rt △COM 中可以求出CO=4;则:CD=CO+OD=4+16=20. 【详解】抛物线的解析式为y=x 2-6x-16, 则D (0,-16)令y=0,解得:x=-2或8,函数的对称轴x=-2ba=3,即M (3,0), 则A (-2,0)、B (8,0),则AB=10,圆的半径为12AB=5, 在Rt △COM 中,OM=5,OM=3,则:CO=4,则:CD=CO+OD=4+16=20.故答案是:20.【点睛】考查的是抛物线与x轴的交点,涉及到圆的垂径定理.20.【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得【详解】解:所有可能的结果如下表:男1 男2 女1 女2 男1 (男1男2)(男1女1解析:2 3【解析】【分析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得.【详解】解:所有可能的结果如下表:男1男2女1女2男1(男1,男2)(男1,女1)(男1,女2)男2(男2,男1)(男2,女1)(男2,女2)女1(女1,男1)(女1,男2)(女1,女2)女2(女2,男1)(女2,男2)(女2,女1)的结果有8种,所以其概率为挑选的两位教师恰好是一男一女的概率为812=23,故答案为23.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.三、解答题21.(1)y=﹣10x+700;(2)销售单价为45元时,每天可获得最大利润,最大利润为6250元【解析】【分析】(1)由一次函数的图象可知过(30,400)和(40,300),利用待定系数法可求得y与x的关系式;(2)利用x可表示出p,再利用二次函数的性质可求得p的最大值.【详解】(1)设一次函数解析式为y=kx+b(k≠0),由图象可知一次函数的过(30,400)和(40,300),代入解析式可得30400 40300k bk b+=⎧⎨+=⎩,解得:10700kb=-⎧⎨=⎩,∴y与x的函数关系式为y=﹣10x+700;(2)设利润为p元,由(1)可知每天的销售量为y千克,∴p=y(x﹣20)=(﹣10x+700)(x﹣20)=﹣10x2+900x﹣14000=﹣10(x﹣45)2+6250.∵﹣10<0,∴p=﹣10(x﹣45)2+6250是开口向下的抛物线,∴当x=45时,p有最大值,最大值为6250元,即销售单价为45元时,每天可获得最大利润,最大利润为6250元.【点睛】本题考查了二次函数的应用,求得每天的销售量y与x的函数关系式是解答本题的关键,注意二次函数最值的求法.22.(1)详见解析;(2)详见解析;(3)DE=8.【解析】【分析】(1)根据垂径定理可得AD=CD,得PD是AC的垂直平分线,可判断出P A=PC;(2)由PC=P A得出∠P AC=∠PCA,再判断出∠ACB=90°,得出∠CAB+∠CBA=90°,再判断出∠PCA+∠CAB=90°,得出∠CAB+∠P AC=90°,即可得出结论;(2)根据AB和DF的比设AB=3a,DF=2a,先根据三角形中位线可得OD=4,从而得结论.【详解】(1)证明∵OD⊥AC,∴AD=CD,∴PD是AC的垂直平分线,∴P A=PC,(2)证明:由(1)知:P A=PC,∴∠P AC=∠PCA.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°.又∵∠PCA=∠ABC,∴∠PCA+∠CAB=90°,∴∠CAB+∠P AC=90°,即AB⊥P A,∴P A是⊙O的切线;(3)解:∵AD=CD,OA=OB,∴OD∥BC,OD=12BC=182⨯=4,∵32 ABDF=,设AB=3a,DF=2a,∵AB=EF,∴DE=3a﹣2a=a,∴OD=4=32a﹣a,a=8,∴DE=8.【点睛】本题考查的是圆的综合,难度适中,需要熟练掌握线段中垂线的性质、圆的切线的求法以及三角形中位线的相关性质.23.“树状图法”或“列表法”见解析,1 4【解析】【分析】列举出所有情况,让两次摸出的小球的标号之和为“8”或“6”的情况数除以总情况数即为所求的概率.【详解】解:解法一:列树状图得:共有16种结果,且每种结果的可能性相同,因为6=2+4=3+3=4+2,8=4+4,所以两次摸出的小球之和为“8”或“6”的有4种,所以小彦中奖的概率为41 164=.解法二:列表得:共有16种结果,且每种结果的可能性相同,因为6=2+4=3+3=4+2,8=4+4,所以两次摸出的小球之和为“8”或“6”的有4种,所以小彦中奖的概率为41 164=.【点睛】此题考查的是用列表法或用树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.24.(1)该广场绿化区域的面积为144平方米;(2)广场中间小路的宽为1米.【解析】【分析】(1)根据该广场绿化区域的面积=广场的长×广场的宽×80%,即可求出结论;(2)设广场中间小路的宽为x米,根据矩形的面积公式(将绿化区域合成矩形),即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:(1)18×10×80%=144(平方米).答:该广场绿化区域的面积为144平方米.(2)设广场中间小路的宽为x米,依题意,得:(18﹣2x)(10﹣x)=144,整理,得:x2﹣19x+18=0,解得:x1=1,x2=18(不合题意,舍去).答:广场中间小路的宽为1米.【点睛】本题考查的知识点是一元二次方程的应用,找准题目中的等量关系式是解此题的关键.25.(1)见解析:(2)CE=1.【解析】【分析】(1)连接AD,如图,先证明CD BD=得到∠1=∠2,再根据圆周角定理得到∠ADB=90°,根据切线的性质得到OD⊥EF,然后证明∠1=∠4得到结论;(2)连接BC交OD于F,如图,根据圆周角定理得到∠ACB=90°,再根据垂径定理,由CD BD=得到OD⊥BC,则CF=BF,所以OF=12AC=32,从而得到DF=1,然后证明四边形CEDF为矩形得CE=1.【详解】(1)证明:连接AD,如图,∵CD=BD,∴CD BD=,∴∠1=∠2,∵AB为直径,∴∠ADB=90°,∴∠1+∠ABD=90°,∵EF为切线,∴OD⊥EF,∴∠3+∠4=90°,∵OD=OB,∴∠3=∠OBD,∴∠1=∠4,∴∠A=2∠BDF;(2)解:连接BC交OD于F,如图,∵AB为直径,∴∠ACB=90°,∵CD BD=,∴OD⊥BC,∴CF=BF,∴OF=12AC=32,∴DF=52﹣32=1,∵∠ACB=90°,OD⊥BC,OD⊥EF,∴四边形CEDF为矩形,∴CE=DF=1.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和勾股定理.。

相关文档
最新文档