实验三 植被指数计算

合集下载

计算植被指数实验报告

计算植被指数实验报告

一、实验目的1. 理解植被指数的概念及其在遥感监测中的应用;2. 掌握植被指数的计算方法;3. 分析不同植被指数对植被覆盖度的反映程度。

二、实验原理植被指数是遥感技术中用于监测植被覆盖度和生长状况的重要指标。

它是通过分析遥感图像中红光和近红外波段的反射率差异来计算的。

常见的植被指数有归一化植被指数(NDVI)、增强型植被指数(EVI)等。

三、实验材料1. 遥感影像:选取不同植被覆盖度的遥感影像;2. 软件工具:ENVI、ArcGIS等遥感数据处理软件;3. 计算器。

四、实验步骤1. 遥感影像预处理(1)读取遥感影像,包括红光波段和近红外波段数据;(2)进行几何校正,使影像具有相同的地理坐标;(3)进行辐射校正,消除大气和传感器等因素的影响;(4)进行大气校正,消除大气对遥感影像的影响。

2. 计算植被指数(1)计算归一化植被指数(NDVI)NDVI = (NIR - Red) / (NIR + Red)(2)计算增强型植被指数(EVI)EVI = 2.5 (NIR - Red) / (NIR + 6 Red - 7.5 Red^2)3. 分析植被指数(1)绘制NDVI和EVI分布图,观察不同植被覆盖度的变化;(2)分析不同植被指数对植被覆盖度的反映程度,比较NDVI和EVI的差异。

五、实验结果与分析1. 实验结果(1)通过遥感影像预处理,得到了具有相同地理坐标和辐射校正后的遥感影像;(2)根据遥感影像计算得到NDVI和EVI分布图,可以看出不同植被覆盖度的变化;(3)通过比较NDVI和EVI分布图,可以发现EVI对植被覆盖度的反映程度更好。

2. 实验分析(1)NDVI和EVI是两种常用的植被指数,它们都能反映植被覆盖度的变化;(2)EVI相较于NDVI,对植被覆盖度的反映程度更好,尤其是在植被覆盖度较低的情况下;(3)通过遥感影像预处理和植被指数计算,可以实现对植被覆盖度的有效监测。

六、实验结论1. 通过本次实验,掌握了植被指数的概念及其在遥感监测中的应用;2. 掌握了植被指数的计算方法,包括NDVI和EVI;3. 分析了不同植被指数对植被覆盖度的反映程度,发现EVI在植被覆盖度较低的情况下具有更好的反映效果。

植被指数计算方法

植被指数计算方法

2.1归一化植被指数(NDVI )归一化植被指数(Normalized Differenee Vegetation Index 即 NDVI )的计算公式为:其中:NIR 和RED 分别代表近红外波段和红光波段的反射率 NDVI 的值介于-1和 1之间。

2.2增强型植被指数(EVI )增强型植被指数(En ha need Vegetation In dex 即EVI )计算公式为:NIR 、 RED 和BLUE 分别代表近红外波段、红光波段和蓝光波段的反射率。

2.3高光谱归一化植被指数(Hyp_NDVI )对于环境与灾害监测预报小卫星高光谱载荷,选取中心波长分别位于近红外 和红光的谱段进行归一化植被指数计算:.. Hyp NIR Hyp RED Hyp NDVI----------- ------------ 一 Hyp _ NIR Hyp _ RED2.4其他植被指数(1) 比值植被指数(Ratio Vegetation Index ------ RVI )RVI 3RED该植被指数能够充分表现植被在红光和近红外波段反射率的差异,能增强植被与土壤背景之间的辐射差异。

但是RVI 对大气状况很敏感,而且当植被覆盖小于50%时,它的分辨能力显著下降。

(2) 差值植被指数(Differenee Vegetation Index -------- DVI )DVI NIR RED该植被指数对土壤背景的变化极为敏感,有利于对植被生态环境的监测,因 此又被称为环境植被指数(EVI )。

(3)土壤调整植被指数(Soil-Adjusted Vegetation Index --------- S AVI )NDVI NIR RED NIR REDEVI 2.5NIR RED NIR 6.° RED 7.5 BLUESAVI ―NR―RED(1 L)NIR RED L其中,L是一个土壤调节系数,该系数与植被浓度有关,由实际区域条件确定,用来减小植被指数对不同土壤反射变化的敏感性。

植被光谱分析与植被指数计算解读

植被光谱分析与植被指数计算解读

植被光谱分析与植被指数计算在遥感中,常常结合不同波长范围的反射率来增强植被特征,如植被指数(vegetation indices ——VI)的计算,植被指数(VI)是两个或多个波长范围内的地物反射率组合运算,以增强植被某一特性或者细节。

目前,在科学文献中发布了超过150种植被指数模型,这些植被指数中只有极少数是经过系统的实践检验。

本文总结现有植被指数,根据对植被波谱特征产生重要影响的主要化学成份:色素(Pigments)、水分(Water)、碳(Carbon)、氮(Nitrogen),总结了7大类实用性较强的植被指数,即:宽带绿度、窄带绿度、光利用率、冠层氮、干旱或碳衰减、叶色素、冠层水分含量。

这些植被指数可以简单度量绿色植被的数量和生长状况、叶绿素含量、叶子表面冠层、叶聚丛、冠层结构、植被在光合作用中对入射光的利用效率、测量植被冠层中氮的相对含量、估算纤维素和木质素干燥状态的碳含量、度量植被中与胁迫性相关的色素、植被冠层中水分含量等。

包括以下内容:∙∙●植被光谱特征∙∙●植被指数∙∙●HJ-1-HSI植被指数计算1.植被光谱特征植被跟太阳辐射的相互关系有别于其他物质,如裸土、水体等,比如植被的“红边”现象,即在<700nm附近强吸收,>700nm高反射。

很多因素影响植被对太阳辐射的吸收和反射,包括波长、水分含量、色素、养分、碳等。

研究植被的波长范围一般为400 nm to 2500 nm,这也是传感器设计选择的波长范围。

这个波长范围可范围以下四个部分:∙∙●可见光(Visible):400 nm to 700 nm∙∙●近红外(Near-infrared——NIR):700 nm to 1300 nm∙∙●短波红外1(Shortwave infrared 1—— SWIR-1):1300 nm to 1900 nm∙∙●短波红外2(Shortwave infrared 2——SWIR-2):1900 nm to 2500 nm其中NIR和SWIR-1的过渡区(1400nm附近)是大气水的强吸收范围,卫星或者航空传感器一般不获取这范围的反射值。

植被指数计算公式

植被指数计算公式

植被指数计算公式
1. 什么是植被指数?
植被指数(vegetation index)是用来描述植被覆盖程度的指数,通常是由植被反射和吸收辐射的比值,比如最常用的归一化植被指数NDVI(Normalized Difference Vegetation Index)。

2. 植被指数的作用和意义
植被指数是研究植被动态、生长状态和生产力的重要工具,广泛
应用于农业、林业、生态环境等领域。

它可以反映出植被覆盖程度、
叶面积指数、光合活动强度等信息。

3. 归一化植被指数NDVI的计算公式
归一化植被指数NDVI的计算公式如下:
NDVI=(NIR-RED)/(NIR+RED)
其中,NIR代表近红外波段反射率,RED代表红光波段反射率。

4. 归一化植被指数NDVI的解释
归一化植被指数NDVI的取值范围为-1到1之间,数值越接近1表明植被覆盖度越高,而数值越接近-1表明植被稀疏程度越高。

如果NDVI等于0,则表示没有植被覆盖。

5. 归一化植被指数NDVI的优势
归一化植被指数NDVI是反映植被变化最敏感、最广泛应用的指数之一。

它具有以下几个优势:
(1)NDVI可以从遥感图像中提取植被信息,避免了根据人工采样数据进行测量的不足。

(2)NDVI可以利用遥感数据中不可见的红外波段反射信息,使得植被覆盖率的测量更加准确。

(3)NDVI对于绿色和枯黄色的植被具有较强的差异性,可以很好的反映植被的生长状况。

总之,归一化植被指数NDVI是目前研究植被覆盖和生长状况的重要工具之一,可以应用于数个领域,例如生态环境监测、气象预测、农业生产等。

植被指数的计算方法与遥感图像处理步骤

植被指数的计算方法与遥感图像处理步骤

植被指数的计算方法与遥感图像处理步骤植被指数是研究地表植被覆盖状况的重要指标,可以通过遥感技术获取高空间分辨率的植被信息。

植被指数的计算方法与遥感图像处理步骤是确定植被指数数值的关键环节。

一、什么是植被指数?植被指数是通过遥感技术获取的图像数据来计算植被覆盖状况的指标。

常见的植被指数有归一化植被指数(Normalized Difference Vegetation Index, NDVI)、植被指数(Vegetation Index, VI)等。

这些指标利用遥感图像中红、近红外波段的反射光谱信息来反映植被生长情况,指数数值越高,代表植被覆盖程度越高。

二、植被指数的计算方法1. 归一化植被指数(NDVI)NDVI是最常用的植被指数之一,计算公式为(NIR-RED)/(NIR+RED),其中NIR是近红外波段的反射值,RED是红波段的反射值。

NDVI范围在-1到1之间,数值越接近1代表植被覆盖越高,数值越接近-1代表植被覆盖越低,数值接近0则代表无植被。

2. 植被指数(VI)植被指数是根据遥感图像中的红、蓝、绿波段的反射值计算得到的,常见的植被指数有绿光波段(Green)、蓝光波段(Blue)和红边波段(Red-edge)等。

植被指数的计算公式根据研究的需要而定,比如Normalized Green-Blue Vegetation Index(NGB)、Green-Blue Vegetation Index(GBVI)等。

三、遥感图像处理步骤1. 遥感图像获取遥感图像可以通过卫星、飞机等载体获取,一般包括多个波段的光谱信息。

从遥感图像中选取合适的波段进行植被指数的计算。

2. 数据预处理遥感图像预处理包括大气校正、几何纠正和辐射辐射校正等步骤,以消除由于大气、地表地貌等因素引起的图像噪声。

3. 波段选择根据研究需要和相关指数的计算公式选择合适的波段进行植被指数的计算。

常用的波段有红、近红外、绿、蓝等。

植被光谱分析与植被指数计算

植被光谱分析与植被指数计算

植被光谱分析与植被指数计算在遥感中,常常结合不同波长范围的反射率来增强植被特征,如植被指数(vegetation indices——VI)的计算,植被指数(VI)是两个或多个波长范围内的地物反射率组合运算,以增强植被某一特性或者细节。

目前,在科学文献中发布了超过150种植被指数模型,这些植被指数中只有极少数是经过系统的实践检验。

本文总结现有植被指数,根据对植被波谱特征产生重要影响的主要化学成份:色素(Pigments)、水分(Water)、碳(Carbon)、氮(Nitrogen),总结了7大类实用性较强的植被指数,即:宽带绿度、窄带绿度、光利用率、冠层氮、干旱或碳衰减、叶色素、冠层水分含量。

这些植被指数可以简单度量绿色植被的数量和生长状况、叶绿素含量、叶子表面冠层、叶聚丛、冠层结构、植被在光合作用中对入射光的利用效率、测量植被冠层中氮的相对含量、估算纤维素和木质素干燥状态的碳含量、度量植被中与胁迫性相关的色素、植被冠层中水分含量等。

包括以下内容:∙ ∙●植被光谱特征∙ ∙●植被指数∙ ∙●HJ-1-HSI植被指数计算1.植被光谱特征植被跟太阳辐射的相互关系有别于其他物质,如裸土、水体等,比如植被的“红边”现象,即在<700nm附近强吸收,>700nm高反射。

很多因素影响植被对太阳辐射的吸收和反射,包括波长、水分含量、色素、养分、碳等。

研究植被的波长范围一般为400 nm to 2500 nm,这也是传感器设计选择的波长范围。

这个波长范围可范围以下四个部分:∙∙●可见光(Visible):400 nm to 700 nm∙∙●近红外(Near-infrared——NIR):700 nm to 1300 nm∙∙●短波红外1(Shortwave infrared 1—— SWIR-1):1300 nm to 1900 nm∙∙●短波红外2(Shortwave infrared 2——SWIR-2):1900 nm to 2500 nm其中NIR和SWIR-1的过渡区(1400nm附近)是大气水的强吸收范围,卫星或者航空传感器一般不获取这范围的反射值。

使用测绘技术进行植被指数计算的方法

使用测绘技术进行植被指数计算的方法

使用测绘技术进行植被指数计算的方法植被指数(vegetation index)是通过使用遥感数据和测绘技术来评估和分析地表植被状况的一种方法。

植被指数通常用于农业、林业、环境和气候研究等领域,可以提供有关植被健康和生长情况的有价值的信息。

本文将介绍几种常用的植被指数计算方法,并讨论它们的优缺点。

一、归一化差异植被指数(Normalized Difference Vegetation Index, NDVI)归一化差异植被指数是最常用的植被指数之一。

它是通过测量红外和可见光波段的反射率差异来评估植被的绿度和健康状况。

公式为:NDVI = (NIR – Red) / (NIR + Red),其中NIR表示近红外波段的反射率,Red表示红光波段的反射率。

通过计算NDVI值,可以得到一个在-1到1之间的范围,值越大表示植被覆盖越密集,健康程度越高。

但是,NDVI也存在一些限制。

首先,NDVI对大气和地表反射率的影响较为敏感,可能会导致数据的不准确性。

其次,NDVI只能评估植被的绿度和健康状况,无法提供关于植被类型和物种组成的详细信息。

二、归一化植被指数(Normalized Vegetation Index, NVI)与NDVI类似,归一化植被指数是一种反映植被状况的指数。

它是通过将植被反射率归一化到0到1的范围内来计算的。

公式为:NVI = (NIR – Red) / (NIR + Red) + 1。

与NDVI不同的是,NVI的取值范围是0到2,值越大表示植被覆盖越密集,健康程度越高。

相比之下,NVI相对于大气和地表反射率的敏感性较低,因此具有更好的准确性。

然而,与NDVI类似,NVI也无法提供关于植被类型和物种组成的详细信息。

三、简化植被指数(Simplified Vegetation Index, SVI)简化植被指数是一种综合反映地表植被状况的指数。

与前面介绍的植被指数不同,它可以用于对不同类型的植被进行分类和比较。

实习三 植被遥感-植被指数及其应用

实习三 植被遥感-植被指数及其应用

ETM+-7 spectral range values in high gain mode.
表1 TM各波段
E 0 值(单位: w.cm −2 .um −1)
2 3 4 5 7
波段
1
E0
1983 1795 1539 1028 219.8 83.49
表2 ETM+各波段
E 0 值(单位: w.cm −2 .um −1)
NIR SR = red
It takes advantage of the inverse relationship between chlorophyll absorption of red radiant energy and increased reflectance of nearnearinfrared energy for healthy plant canopies (Cohen, 1991) .
3 -1,200 204,3 -1,2 0,8059
4 -1,500 206,2 -1,5 0,8145
5 -0,370 27,19 -0,37 0,1081
6 1,238 15,6 1,238 0,0563
7 -0,150 14,38 -0,15 0,0570
TM-4 and TM-5 spectral range values
185 km 80 m
185 km 30 m VNIR/SWIR 120 m TIR 8 bit 0.2 pixel (90%) 500 m (90%)
6 bit
15 Mbit/s 64 kg
85 Mbit/s 258 kg
2 x 85 Mbit/s 288 kg scanner, plus 81 kg AEM
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三 植被指数的计算
实验三 植被指数的计算
一 实验目的: (1)掌握常用植被指数的计算方法; (2)理解植被指数设计原理;
实验三 植被指数的计算
二 实验意义: (1)加深对植被指数的理解,了解各种常用 植被指数的计算方法及计算步骤,为植被指 数应用打好基础; (2)通过对常用植被指数计算的方法和流程 的学习与实践,形成对植被指数原理的认识, 掌握波段代数方法的应用。
三 实验原理 3.1 RVI 3.2 NDVI 3.3 DVI 3.dsat TM 影 像 。 (/) 1. 辐射定标 basic tools—>preprocessing—>calibration utilities —>Landsat calibration打开定标对话 框进行辐射定标。 在出现的ENVI Landsat calibration对话框中 各项参数已经自动填好,若有后续结果要 用于大气校正则calibration type选择radiance, 否则选reflectance.
2. 植被指数计算 在ENVI中用basic tools—>band math处理, 在输入表达式一栏输入……………… RVI NDVI DVI GVI(缨帽变化的绿度植被指数)
问题思考
• 对比使用DN值计算的结果与使用反射率计 算的结果之间是否为线性?
• 选择相同的植被分布区,对比不同植被指 数之间的关系是否为线性? • 对于整个图像,不同植被指数之间的关系 是否为线性?
相关文档
最新文档