不等式与不等式组的小结与复习

合集下载

人教版数学七年级下册第61课时《不等式与不等式组复习》教案

人教版数学七年级下册第61课时《不等式与不等式组复习》教案

人教版数学七年级下册第61课时《不等式与不等式组复习》教案一. 教材分析《不等式与不等式组复习》这一课时,是人教版数学七年级下册的教学内容。

本课时主要对不等式与不等式组的概念、性质、解法等进行复习,旨在帮助学生巩固已学知识,提高解决问题的能力。

教材通过对不等式与不等式组的复习,使学生能够熟练运用不等式解决实际问题,为后续学习更高级的数学知识打下基础。

二. 学情分析学生在之前的学习中已经掌握了不等式与不等式组的基本概念、性质和解法。

但部分学生在解不等式组时,对不等号的方向变化、解集的表示方法等方面容易出错。

因此,在复习过程中,教师需要针对这些薄弱环节进行重点讲解和练习,提高学生的解题技能。

三. 教学目标1.知识与技能:使学生熟练掌握不等式与不等式组的概念、性质和解法,能灵活运用不等式解决实际问题。

2.过程与方法:通过复习不等式与不等式组,培养学生分析问题、解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和自主学习能力。

四. 教学重难点1.重点:不等式与不等式组的概念、性质和解法。

2.难点:不等式组的解集表示方法和在实际问题中的应用。

五. 教学方法采用讲解法、例题解析法、练习法、小组讨论法等,结合多媒体教学手段,引导学生主动参与复习过程,提高复习效果。

六. 教学准备1.教材、课件和教学资源。

2.练习题和测试题。

3.黑板、粉笔等教学工具。

七. 教学过程利用课件展示不等式与不等式组在实际生活中的应用场景,引导学生回顾已学知识,激发学生的学习兴趣。

2.呈现(10分钟)通过PPT展示不等式与不等式组的概念、性质和解法,让学生对所学知识有一个全面的了解。

在呈现过程中,教师要点拔重点,解答学生的疑问。

3.操练(10分钟)让学生独立完成练习题,检验学生对不等式与不等式组的掌握程度。

教师巡回指导,对学生在解题过程中遇到的问题进行解答。

4.巩固(10分钟)针对学生在操练过程中出现的问题,教师进行讲解和总结,帮助学生巩固知识点。

【沪科版】初一七年级数学下册《第7章 小结与复习》课件

【沪科版】初一七年级数学下册《第7章 小结与复习》课件

5

4

x,

把解集在数轴上表示
出来,并将解集中的整数解写出来.
解:解不等式,得 x≤3,
解不等式,得 x 7 ,
5
所以这个不等式组的解集是
7

x

3,
5
在数轴上表示如下:
解集
通过观察数轴可
知该不等式组的整数 解为2,3.
0
1 72
3
4
5
针对训练
5.使不等式x-1≥2与3x-7<8同时成立的x的整数值
3.性质3:如果a > b,c < 0,那么 ac < bc ,ac
<
b c
.
4.不等式还具有传递性:如果a > b,b > c,那么a > c.
三、解一元一次不等式 解一元一次不等式和解一元一次方程类似,有 去分母 去括号 移项 合并同类项 系数化为1等步骤.
四、解一元一次不等式组
1.分别求出不等式组中各个不等式的解集; 2.利用数轴求出这些不等式的解集的公共部分.
针对训练
7.一堆玩具分给若干个小朋友,若每人分3件,则剩 余4件;若前面每人分4件,则最后一人得到的玩具 不足3件,求小朋友的人数与玩具数.
解: 设小朋友总共x人,由此可得不等式组
3x+4-4(x-1)≥0, 3x+4-4(x-1)<3;
由此可得5<x≤8,因为x是整数,所以x=6,7,8. 答:小朋友有6人,玩具有22人;有7人,玩具有25件; 有8人,玩具有28人.
解:设购买甲树苗的数量为x株,依题意,得
x 1 (360 x), 2
解得 x≥120.

不等式与不等式组教学反思6篇

不等式与不等式组教学反思6篇

不等式与不等式组教学反思6篇不等式与不等式组教学反思篇1本节课我采用使用导学案的教学方式,让学生朗读本节课的学习目标和学习重难点,让学生带着问题来学习本节课的知识点。

引导学生的自主探究活动,教给学生类比、猜想、验证的问题研究方法,培养学生善于动手、善于观察、善于思考的学习习惯。

利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

课堂开始通过找规律引入课题,激发学生的学习兴趣以及积极性。

通过简单的问题引导学生通过探究得出不等式的性质 1.然后通过比较简单的不等式的变化,探究出不等式的性质2和3.在这一环节上,留给学生思考的时间有点少。

接下来的问题设计是为了类比等式的基本性质,研究不等式的性质,让学生体会数学思想方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,让学生在合作交流中完成任务,体会合作学习的乐趣。

在这个环节上,我讲得有点多,在体现学生主体上把握得不是选好,在引导学生探究的过程中时间控制得不紧凑,有点浪费时间。

还有就是给他们时间先记一下不等式的基本性质,便于后面的练习。

练习的设计上以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。

同时使学生体会数学中的分类讨论思想。

本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握得不错。

在教学过程中,学生参与的积极性较高,课堂气氛活跃。

其中不存在不少问题。

比如探究的问题比较简单,在使学生体会类比思想以及分类讨论思想时,也可以通过问题设计体会数形结合的思想。

但是怕学生接受不了高难度的题目,因此在设计导学案时经过反复思考,终究没有选择类似的题目。

终究是不放心学生。

我会在以后的教学中,努力提高教学技巧,逐步完善自己的课堂教学。

不等式与不等式组教学反思篇2课后我把自己的课堂教学进行了冷静思考和总结,下面谈谈自己的收获和体会。

9不等式与不等式组小结与复习课件(新人教版七年级数学下)

9不等式与不等式组小结与复习课件(新人教版七年级数学下)

3x 1 x 2 4x 3 1 (2) 2 3 6
;
例题
例2.解不等式组
5 x 2 3 x 1 , (3) 1 3 x 1 7 x. 2 2
;

4 x 3 3(2 x 1), 1 3x 1 5 x. 2 2
2 x 1 5 x 1 1
的整数解的个数为( D ) C.3个 D.4个
B.2个
知识回顾
4. 不等式组的解集在数轴上表示出来如图所示, 则这个不等式组为( C )
x 2 x 2 x 2 A. B. x 1 C. x 1 x 1
第9章 不等式与不等式组
知识回顾
A ). 1.“—x不小于—2”用不等式表示为( A.—x≥—2 B.—x ≤—2 C.—x >—2 D.—x <—2 2.若m<n,则下列各式中正确的是( A). A.m-3>n-3 B.3m>3n n m C.-3m>-3n D. 1 > 1
3
3
3.不等式组 A.1个; Nhomakorabea


例3.为执行中央“节能减排,美化环境,建设美 丽新农村”的国策,某村计划建造A、B两种型号 的的沼气池共20个,以解决该村所有农户的燃料 问题.两种型号的的沼气池的占地面积、使用农 户数及造价见下表: 占地面 使用农户数 造价 已知可供建造沼气池的占 型 号 (户/个) (万元/个) 积 (㎡/个) 地面积不超过365㎡,该 A 15 18 2 村农户共有492户. B 20 30 3 (1)满足条件的方案共 有几种?写出解答过程. (2)通过计算判断,哪种建造方案最省钱?
畅所欲言

谈谈你的收获。

人教版七年级下册数学:第九章 不等式与不等式组

人教版七年级下册数学:第九章  不等式与不等式组
解集在数轴上表示如图.
一元一次不等式组及其解法
2(x+2)>3x,① 解:3x-2 1≥-2.② 解不等式①,得 x<4. 解不等式②,得 x≥-1. ∴不等式组的解集为-1≤x<4. 不等式组的解集在数轴上表示如下:
A
Hale Waihona Puke 利用不等式来解决实际问题的步骤是什么?
实际问题 设未知数,
数学问题
列不等式
人民教育出版社 数学七年级下册
第九章 不等式与不等式组 小结与复习
构建不等式(组)知识 间的联系,形成知识体系, 并解决有关问题.
1.向数学名家学习。
对于读书要扎扎实实,
每个概念、定理都要追根 求源、彻底清楚。这样一 来,本来一本较薄的书, 由于增加了不少内容,就
变得“较厚”了,这是“由薄到厚”。这一 步以后还有更为重要的一步,即在第一步的 基础上能够分析归纳,抓住本质,把握整体, 做到融会贯通。经过这样认真分析,就会感 到真正应该记住的东西并不多,这就是“由 厚到薄”这样一个过程,才能真正提高效率。
1.向数学名家学习。
2.数学单元复习方法 (1)自绘数学单元思维导图。 (2)自编数学单元练习题。 (3)数学学习伙伴互助。
互相完成伙伴的练习题,并进行互 相评价,以及互相评价数学思维导图。 (4)跟着老师学,师生互动。
自己动手制作思维导图,进行数学
知识的分析、整理、总结,将已掌握的 抽象数学知识可视化,将知识内化为自 己的数学知识,数学知识系统化,从而 培养同学们的自主学习能力,锻炼数学 思维、归纳整理能力。
伙伴互 助
数学学习伙伴A结合自编的《一元一次不等式(组)》思维导 图和单元复习题向伙伴B陈述下面的问题,对全章的内容做一 个复习:

不等式总结

不等式总结

不等式小结与复习主讲:黄冈中学高级教师陈红明一周强化一、一周知识概述不等式是中学数学的基础和重要部分,它可以渗透到数学的其它内容中,在实际生活中有广泛的应用,是高考的重要内容。

在复习不等式时应注意等价转化思想、分类讨论的思想、函数与方程的思想以及化归思想在不等式中的应用,掌握通性通法。

提高应用意识,总结不等式的应用规律,才能提高解决问题的能力,在实际应用中,主要有构造不等式求解或构造函数求函数的最值等方法,求最值时要注意等号成立的条件,避免不必要的错误。

(一)知识网络结构(二)不等式的性质1、实数的运算性质和大小顺序之间的关系;a-b>0a>b;a-b=0a=b;a-b<0a<b.2、不等式的基本性质(1)对称性:a>b b<a;(2)传递性:a>b,b>c a>c;(3)可加性:a>b,c∈R a+c>b+c;(4)可乘性:a>b,c>0ac>bc;a>b,c<0ac<bc.3、不等式的运算性质(1)加法:a>b,c>d a+c>b+d;(2)减法:a>b,c<d a-c>b-d;(3)乘法:a>b>0,c>d>0ac>bd;(4)除法:a>b>0,0<c<d;(5)乘方:a>b>0(n∈N*且n>1)(6)开方:a>b>0(n∈N*且n>1)(7)倒数:a>b,ab>0.(三)不等式的证明方法与主要依据1、证明不等式的方法:证明不等式的常用方法有:比较法、综合法、分析法.此外,在证明不等式中,有时还要运用综合分析法、放缩法、换元法、反证法.2、证明不等式的主要依据(1)a-b>0a>b;a-b<0a<b.(2)不等式的性质.(3)重要不等式及定理:①a2≥0(a∈R);②a2+b2≥2ab(a∈R,b∈R);③(a∈R+,b∈R+);④a3+b3+c3≥3abc(a,b,c∈R+);⑤(a,b,c∈R+);⑥|a|-|b|≤|a±b|≤|a|+|b|;⑦|a1+a2+…+an|≤|a1|+|a2|+…+|a n|;(注:搞清楚以上定理取“=”号的条件)⑧|x|<a(a>0)x2<a2-a<x<a;⑨|x|>a(a>0)x2>a2x<-a或x>a. (四)不等式的解法1、绝对值不等式、高次不等式的解法2、无理不等式通过以上表解,进一步熟悉不等式的性质、证明、解法.二、重难点知识选讲1、不等式的性质、重要不等式、绝对值不等式是整章的基本内容,是证明不等式和解不等式的知识基础,应熟练掌握和运用.例1、设,则在①a2>b2;②a+b>2;③ab<b2;④a2+b2>|a|+|b|这四个不等式中,恒成立的个数是()A.0B.1C.2D.3例2、已知正数x,y满足x+2y=1,求的最小值.2、不等式的证明不等式证明方法较多,具体问题具体分析是证明不等式的精髓,灵活地选用证明方法是证明不等式的技巧.巧妙地变形是证明不等式的关键,联系和联想是证明不等式的重要观点,提高思维能力是证明不等式的落脚点.例3、已知0<a<1,求证:≥9.3、不等式解法不等式的解法是化归与转化思想的充分运用,将超越不等式转化为代数不等式、无理不等式转化为有理不等式、高次或分式不等式转化为一元一次、二次不等式等,应注意转化过程的等价性.例4、解不等式:例5、解关于x的不等式(a∈R).4、不等式的应用问题例6、(全国高考试题)建造一个容积为8m3,深为2m的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为______元.例7、(全国高考试题)甲、乙两地相距S千米,汽车从甲地匀速行驶到乙地,速度不得超过c千米/时,已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为b;固定部分为a元.(1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大的速度行驶?。

不等式复习小结

不等式复习小结【教学目标】1.会用不等式(组)表示不等关系;2.熟悉不等式的性质,能应用不等式的性质求解“范围问题”,会用作差法比较大小; 3.会解一元二次不等式,熟悉一元二次不等式、一元二次方程和二次函数的关系; 4.会作二元一次不等式(组)表示的平面区域,会解简单的线性规划问题; 5.明确均值不等式及其成立条件,会灵活应用均值不等式证明或求解最值。

【教学重点】不等式性质的应用,一元二次不等式的解法,用二元一次不等式(组)表示平面区域,求线性目标函数在线性约束条件下的最优解,基本不等式的应用。

【教学难点】利用不等式加法法则及乘法法则解题,求目标函数的最优解,基本不等式的应用。

【教学过程】1.本章知识结构2.知识梳理(一)不等式与不等关系1、应用不等式(组)表示不等关系; 不等式的主要性质: (1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>,(3)加法法则:c b c a b a +>+⇒>;d b c a d c b a +>+⇒>>, (4)乘法法则:bc ac c b a >⇒>>0,;bc ac c b a <⇒<>0,bd ac d c b a >⇒>>>>0,0(5)倒数法则:baab b a 110,<⇒>>(6)乘方法则:)1*(0>∈>⇒>>n N n b a b a nn且 (7)开方法则:)1*(0>∈>⇒>>n N n b a b a nn且2、应用不等式的性质比较两个实数的大小; 作差法3、应用不等式性质证明(二)一元二次不等式及其解法 一元二次不等式的解法一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集:设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:(让学生独立完成课本第86页的表格) 有两相异实根 有两相等实根(三)线性规划1、用二元一次不等式(组)表示平面区域二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线)2、二元一次不等式表示哪个平面区域的判断方法由于对在直线Ax +By +C =0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax +By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点)3、线性规划的有关概念:①线性约束条件:在上述问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件.②线性目标函数:关于x 、y 的一次式z =2x +y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.④可行解、可行域和最优解:满足线性约束条件的解(x ,y )叫可行解.由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 4、求线性目标函数在线性约束条件下的最优解的步骤:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解2a b +≤1、如果a,b 是正数,那么).""(2号时取当且仅当==≥+b a ab b a22a b +≤几何意义是“半径不小于半弦”3.典型例题1、用不等式表示不等关系例1、某电脑用户计划用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装软件,根据需要,软件至少买3片,磁盘至少买2盒,写出满足上述不等关系的不等式。

第二章《一元一次不等式与一元一次不等式组》小结与复习-八年级数学下册课件(北师大版)


巩固练习 拓展提高
6. 某公司为了扩大经营,决定购进6台机器用于生产某种活塞,


现有甲、乙两种机器供选择,其中每种机器的价格和每台机器日生 价格(万元/台) 7
5
产活塞的数量如下表所示,经过预算,本次购买机器所耗资金不能
每台日产量(个) 100 60
超过34万元,则按该公司的要求可以有几种购买方案?
> 大于,高出 大于
小于或等于 号

不大于, 小于或 不超过 等于
大于或等于 号

不小于, 大于或
至少
等于
不等号

不相等 不等于
Hale Waihona Puke 创设情境 引入新课比较不等式与等式的基本性质:
变形 两边都加上(或减去)同一个整式 两边都乘以(或除以)同一个正数 两边都乘以(或除以)同一个负数
等式 仍成立 仍成立 仍成立
解不等式的应用问题的步骤包括审、设、列、解、 找、答这几个环节,而在这些步骤中,最重要的是 利用题中的已知条件,列出不等式(组),然后通 过解出不等式(组)确定未知数的范围,利用未知 数的特征(如整数问题),依据条件,找出对应的 未知数的确定数值,以实现确定方案的解答.
巩固练习 拓展提高
7. 暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人500元的两家 旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的 优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅 行社?
创设情境 引入新课
一元一次不等式与一次函数在决策型应用题中的应用
实际问题
写出两个函数表达式
画出图象
分析图象

人教版七年级下册数学第九单元本章复习教案与教学反思

第九章不等式与不等式组李度一中陈海思本章复习【知识与技能】1.了解一元一次不等式及其相关概念,经历“把实际问题抽象为不等式”的过程,能够“列出不等式或不等式组表示问题中的不等关系”,体会不等式(组)是刻画现实世界中不等关系的一种有效的数学模型.2.通过观察、对比和归纳,探索不等式的性质,能利用它们探究一元一次不等式的解法.3.了解解一元一次不等式的基本目标(使不等式逐步转化为x>a或x<a的形式),熟悉解一元一次不等式的一般步骤,掌握一元一次不等式的解法,并能在数轴上表示出解集,体会解法中蕴含的化归思想.4.了解不等式组及其相关概念,会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集.【过程与方法】用提问法引导学生复习本章所有知识点,再通过典型题、热点题的剖析与训练提高学生的解题能力.【情感态度】通过一些经典的、现实的、有意义的、富有挑战性的题型的训练,培养学生主动学习、探究学习、互相交流等学习品质,激发学生的学习兴趣.【教学重点】一元一次不等式(组)的解法及列不等式(组)解应用问题.【教学难点】与一元一次不等式(组)有关的综合型问题,应用型问题.一、知识框图,整体把握1.利用不等式(组)解决实际问题的基本过程2.本章知识安排的前后顺序二、回顾思考,梳理知识1.不等式的三个性质:不等式性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.不等式性质2:不等式两边乘(或除以)同一个正数,不等号的方向不变.不等式性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.2.一元一次不等式的解法与一元一次方程的解法基本相同,只是在系数化为1时,若两边同乘(或除以)同一个负数,不等号的方向要改变,解未知数为x 的不等式,就是将不等式逐步变成x>a(或x<a)的形式.3.解一元一次不等式组的关键是求不等式的公共解集.4.设未知数、列不等式(组)是解有关应用题的关键步骤,解相关应用题时,必须根据问题中的相关信息,将问题数学化,进而对其中的数量关系进行梳理,有条理地、逐步深入地考虑如何寻求解决问题的方法.三、典例精析,复习新知例1(山东临沂中考)有3人携带会议材料乘坐电梯,这3人的体重共210kg,每捆材料重20kg电梯最大负荷为1050kg,则该电梯在此3人乘坐的情况下,最多还能搭载____捆材料.分析:本题不等关系是:210+会议材料重量≤1050.设还可搭载x捆材料,则:210+20x≤1050,解得x≤42.故最多还能搭载42捆材料.例2 当m为何值时,方程组解:先解关于x,y的方程组,再由列出关于m的不等式组,解不等式组便可求出m的范围.解方程组得例3某商店积压了100件某种商品,为使这批货物飞快脱手,该商店采取了如下销售方案,将价格提高到原来的2.5倍,再作三次降价处理:第次降低30%,标出“亏本价”;第二次降价30%,标出“破产价”;第三次降价30%,标出“跳楼价”.三次降价处理销售结果如下表:问:(1)跳楼价占原价的百分比是多少?(2)该商品按新销售方案销售,相比原价全部售完,哪一种方案更盈利.解:(1)设原价为x元,则2.5×0.73x÷x=85.75%;(2)原价销售额为100x元,新价销售额为2.5×10×0.7x+2.5×0.72x×0+0.8575x×50=109.375x元,因109.375x>100x,故新方案销售更盈利.例4(1)若不式组 2x-3a<7b,6b-3x<5a 的解集是5<x<22.求a,b的值.(2)已知不等式组的解集为x>2,求a的范围.解:(1)原不等式组可化为依题意,得1/3(6b-5a)<x<1/2(3a+7b).又由题意知,该不等式组的解集为5<<22.所以解得(2)原不等式组可化为.依题意,知x>2,所以a≤2.例5 若关于x的不等式-3x+m>0有5个正整数解,求m的取值范围.解:解不等式得x<m/3,因为它有5个正整数解,所以x的正整数解是x =1,2,3,4,5.而x<5的正整数解为1,2,3,4,不符合题意,所以m/3比5大,而x<6的正整数解为1,2,3,4,5,符合题意,所以m/3不超过6,上5<m/3≤6.所以15<m≤18.想一想,若关于x的不等式-3x+m≥0有5个正整数解,则m的取值范围又如何呢?(答案:15≤m<18)例6 某食堂在开晚餐前有a名学生在食堂排队等候就餐,开始卖晚餐后,仍有学生前来排队买晚餐,设学生前来排队买晚餐的人数按固定的速度增加,食堂每个窗口卖晚餐的速度也是固定的.若开放一个窗口,则需要40分钟才使排队等候的学生全部买到晚餐;若同时开放两个窗口,则需15分钟就可使排队的学生全部买到晚餐.(1)写出开放一个窗口时,开始卖晚餐后窗口卖晚餐的速度y(人/分钟)与每分钟新增加的学生人数x(人)之间的关系.(2)食堂为了提高服务质量,减少学生排队的时间,计划在8分钟内让排队等候的学生全部买到晚餐,以使后到的学生能随到随买,求至少要同时开放几个窗口?(2)设至少要同时开放n个窗口.依题意得由①得x=a/60.代入②得即a+8×a/60≤8n×a/24,即n≥17/5.n取不小于17/5的最小正整数,所以n=4.∴至少要同时开放4个窗口.例7 某校七年级春游,现有36座和42座两种客车可供选择.若只租36座客车若干辆,则正好坐满;若只租42座客车,则能少租一辆,且有一辆车没有坐满,但超过30人.已知36座客车每辆租金400元,42座客车每辆租金440元.(1)该校七年级共有多少人参加春游?(2)请你帮该校设计一种最省钱的租车方案.解:(1)设租36座的车x辆.据题意得:解得:由题意x应取8,参加春游人数为:36×8=288(人).(2)方案①:租36座车8辆的费用:8×400=3200(元);方案②:租42座车7辆的费用:7×440=3080(元);方案③:因为42×6+36×1=288,租42座车6辆和36座车1辆的总费用:6×440+1×400=3040(元).所以方案③:租42座车6辆和36座车1辆最省钱.例8 大别山中学七年级的(1)(2)(3)(4)(5)五个班分在同一小组进行单循环的篮球比赛,争夺出线权.比赛规则规定:胜一场得3分,平一场得1分,负一场得0分,小组中名次在前的两个队出线,小组赛结束后,(1)班的积分为9分,你知道(1)班的成绩是几胜,几平,几负吗?如果(4)班积10分,它能出线吗?解:(1)设(1)班积9分时胜x场,平y场,则解得5/2≤x<4.又x为正整数,所以x=3,y=0.故可知(1)班的成绩是3胜0平1负.(2)设(4)班积10分时胜x场,平y场,则解得3≤x<4.又x为整数,所以x=3,y=1.故(4)班3胜1平0负.经分析易知另外四个班中最多只有一个班,也能达到3胜1平0负,即积分为10分,又因小组中名次在前的两个队出线,故(4)班一定出线.【教学说明】例1~例5可让学生自主探究,交流,达成共识,得出结论;例7~例8是关于一元一次不等式组解决实际问题的综合应用,有一定的典型性与难度,教师要引导学生分析题意中隐含的相等关系与不等关系,并将其转化为数学式.四、师生互动,课堂小结一元一次不等式(组)的解法及应用是中考的必考知识点,不仅在所有的题型中都可出现,而且还渗透到其它知识点之中实行考查,所以同学们一定要重视本节的基础知识及综合演练,只有这样,才能确保后续学习顺利进行.1.布置作业:从教材“复习题9”中选取.2.完成练习册中本课时的练习.本课时的重点是让学生在充分交流的基础上建立本章的知识框架图,并反思如何运用一元一次不等式及一元一次不等式组来解决实际问题,引导学生在练习中体验本章知识的运用.【素材积累】1、只要心中有希望存摘,旧有幸福存摘。

一元一次不等式复习说课稿

说课稿《一元一次不等式与不等式组》复习课金兰中学一、中考分析:《一元一次不等式与不等式组》是华东师大版义务教育课程标准实验教科书数学七年级下册第八章第三节的内容,是中考的必考内容之一,中考将会以填空、选择或解答题的方式考查不等式与不等式组的基本性质、解集的概念和把解集在数轴上表示出来,不等式的应用题还是近年中考的热点内容,考查可能与日常生活相联系,也可能与其它章节内容,如方程、函数及几何内容相结合。

因此本节课熟练掌握与否直接影响到不等式组的解法以及不等式应用题的掌握。

本节课为复习课,因此可在学生“三基”(基本知识,基本技能,基本方法)巩固的条件下向纵深发展,使知识结构化,网络化。

二、复习目标:1、知识与技能目标。

会用不等式的基本性质变形不等式,从而求出不等式(组)的解集;会将不等式(组)的解集在数轴上表示出来;会利用不等式(组)的知识解决简单的实际问题。

2、情感、态度、价值观目标。

通过自主学习与合作交流,把课堂交给学生,让他们成为学习的主人。

三、复习的重点和难点:1、复习重点:一元一次不等式(组)的解法及简单应用。

2、复习难点:熟练、正确的解一元一次不等式(组),并解决简单的实际问题。

四、说复习方法本节课增加形象思维的操作,从中感悟到自我建构知识的乐趣。

同时又注意培养学生学习的自信心,学习兴趣。

通过手势、眼神、语言、表情等多种教学媒体,来激发学生参与的积极性。

1、指导——自主学习法。

新课程要求改变学生的学习方式,教师根据学生的最近发展区实施分层教学。

同时注重培养学生的主体性,让不同层次的学生完成难度不等的题目是该课题的特色之一。

2、讨论式教学法。

“就是把学生从智力的惰性中挽救出来,就是要使学生在某一件事情上把自己的知识显示出来,在智力活动中表现自己。

”道出了小组讨论的重要性和优越性。

我在本节课里让同一层次的学生分组讨论,并上黑板展示讨论成果,激发了学生的学习积极性。

3、多媒体辅助教学法。

新课程标准指出:……现代教育手段和技术将有效的改善教学方式,提高教学效益。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解集,可用口诀:
由不等式②得: x≥5
同大取大,同小取小
大小,小大中间找,
0
58
大大小小无解答.
∴ 原不等式组的解集为:5≤x≤8
∴原不等式组的整数解x为: 5,6,7,8.
同大
练习一
取大
X>2
1.不等式组
x x

2 3

0 0
2.不等式组
x x
1 1

0 0
X>-3
的解集为_x>_2_.
x t燃烧= 1.2

t跑步=
400 5

解: 设导火索需要x厘米长,据题意有:
x > 400
1.2 5
解得: x>96
答:导火索需要大于96厘米.
想一想
例4.根据下列条件,分别求出a的值或取值范围: • 1)已知不等式 x 2 3x a 的解集是x<5;
2
• 2)已知x=5是不等式
解: 1).2x-4>3x+a
实际问题的解答
检验
数学问题的解
例3:高速公路施工需要爆破,根据现场实际情况,操作人员 点燃导火线后,要在炸药爆炸前跑到400米外的安全区域, 已知导火索燃烧速度是1.2厘米/秒,人跑步的速度是5米/ 秒,问导火索需要大于多少? 分析:导火索燃烧的时间 >人跑出400米的时间.
设导火索长为x厘米,则:
x>0
的正整数解的个数是
x≤3
A.1个 B.2个 C.3个
D.4个
2.关于x的不等式 2x a 1的解集如图
所示,则a 的取值是(D )
x≤(a-1)/2 ∴ (a-1)/2=-1
-1 0
A.0
B.—3
x≤-1 C.—2
∴ a=-1 D.—1
3取.值已范知围(不为A等)_式C_a组_>-2x∴2ax≤a大X小<小204大
生活与数学
• 不等式(组)在实际生活中的应用
当应实际用问题题中出现设未以知数下.列的不等关式(键组词) ,数如学大问,题小(,一多元,少一次,不不等
(小包于含不,不等大关系于),至少,至多等,应属列式或不一等元一式次(组不等)来式组解)
决的那问么题又,而如不何列方去程做(组呢)?来解.
( 组

解 不 等 式
1.去分母
2.去括号
3.移项
4.合并同类项 5.系数化为1
三.一元一次不等式组的解法: 1.先分别求出各个不等式的解集, 2.再求出它们的公共部分. (借助于数轴)得到不等式组的解集.
练习二
1.根据下图所示,对a、b、c三种物体的重量判断正确
的是 ( C ) • A. a<c B. a<b
a>b C. a>c
本章知识点是中考的必考内容之一. 中考题型及分值:
题型主要有选择题,填空题和解答题, 分值约占3―10分.
一. 基本概念:
1. 不等式
2. 不用不等等式号的连解接表示不相等关系的式子。 3. 使不不等等式式的成解立的集未知数的值。 4.使解不不等等式式成立的所有未知数的值组成的
集求合不。等式的解集的过程。
如:当a>b, b>c时,则a>c
记住哦!
解一元一次不等式和解一元一次方程类似,有
去分母 去括号
移项 合并同类项
系数化为1 等步骤。
区别在哪里? 在去分母和系数化为1的两步中,要特别注意不等 式的两边都乘以(或除以)一个负数时,不等号的方 向必须改变.

例1.解不等式2x 1 5 x 5, 34
x≥a
有解,则a的
X<2
(B)a≥-2
(C)a<2 中间找 (D)a≥2 .
(-,-) 即
3a-9<0 1-a<0
解得整数解为2
4.已知点M(3a-9,1-a)在第三象限,且它们的坐标都
并把它的解集在数轴上表示出来.
﹦ 解:去分母得:4(2x 1) 12(5 x 5)
﹦4
去括号得: 8x-4≥15x-60
﹦ 移项得: 8x-15x≥-60+4
合并同类项得: -7x﹦≥-56
系数化为1得:
x﹦≤8
这个解集在数轴上表示为
0
8
与解一元一次 方程方法类似
同乘最简 公分母12, 不等号方 向不变
组8本,还有剩余;若每组9本,却又不够.
你知道该分几个小组吗?
请你帮助班长分组!
注意解题过程, 不能光猜哟!
解:设分x组:据题意有:
8x 43 x
43 8
解集为: 43 x 43
9
8
9x 43
x 43 9
因为X取整数, 所以X=5 答:全班学生应分成5组。
课后作业
1_._不C__等式组∴X3=12或xx2或300
x 2 3x a 2
2).据题意有:
的#43;4
注意: 变号!
5
即6>15+a

2

3
5 2
a
∴解集是:x<-a-4
∴ -9>a
∵解集是x<5
解得:a<-9
∴-a-4=5
解得a=-9
返回
一.不等式的基本性质:
性质3:(左右两边)X或 (某负数)
方向改变
二.一元一次不等式的解法步骤:
二.重要性质
不等式的基本性质(3条): • 1)不等式两边都加上(或减去)同一个数
或同一个整式,不等号的方向_不_变__. • 2)不等式两边都乘以(或除以)同一个
正数,不等号的方向_不_变__. • 3)不等式两边都乘以(或除以)同一个
负数,不等号的方向_改__变_. 另外:不等式还具有__传__递__性.
同除以-7, 不等号方 向改变
. 知识拓展
四.一元一次不等式组的解法
1).分别求出各个不等式的解集
2).再求出它们的公共部分,得到不等式组的解集.
2x 1 5 x 5 ①
例2.解不等式组:
3
4
2( x 4) 3x 3 ②
并写出不等式组的整数解.
注意:不等式组的
解:由不等式①得: x≤8
X≤-1
的解集是_A__.
X<1
(A) x 1 (B) x 1 (C) x 1 (D) x 1
3.不等式组 1 x3
x 2 1 2x 1 0
2
X<3 的解集为
X>-1/2
同小 取小
4.不等式组
X>6
X-5>1 X-2<2
的解集是
X<4
无解
大小,小大中间找, 大大小小无解答
D. b<c b>c
∵m-4<0
2.点A(m ∴4 ,m1<42m)在第三象限,则m的取值范围
是(C )∵1-2m<0
(- , -)
A. m 1 2
∴B.mm>1/24 C. 1 m 4
2
D. m 4
3.七(2)班学生到阅览室读书,班长问老师要分成几个 小组,老师风趣地说:
假如我把43本书分给各个小组,若每
相关文档
最新文档