不等式与不等式组考点分析

合集下载

初一数学不等式

初一数学不等式

初一(七年级)下册数学不等式与不等式组【知识梳理】1.判断不等式是否成立:关键是分析判定不等号的变化,变化的依据是不等式的性质,特别注意的是,不等式两边都乘以(或除以)同一个负数时,要改变不等号方向;反之,若不等式的不等号方向发生改变,则说明不等式两边同乘以(或除以)了一个负数。

因此,在判断不等式成立与否或由不等式变形求某些字母的范围时,要认真观察不等式的形式与不等号方向。

2.解一元一次不等式(组):解一元一次不等式的步骤与解一元一次方程的步骤大致相同,应注意的是,不等式两边所乘以(或除以)的数的正负,并根据不同情况灵活运用其性质。

一元一次不等式(组)常与分式、根式、一元二次方程、函数等知识相联系,解决综合性问题。

3.求不等式(组)的特殊解:不等式(组)的解往往是有无数多个,但其特殊解在某些范围内是有限的,如整数解、非负整数解,要求这些特殊解,首先是确定不等式(组)的解集,然后再找到相应的答案。

注意应用数形结合思想。

4.列不等式(组)解应用题:注意分析题目中的不等量关系,考查的热点是与实际生活密切相联的不等式(组)应用题。

重要性质:• 1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。

表达式:如果a>b,那么a±c>b±c如果a<b,那么a±c<b±c• 2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

表示式:如果a>b,并且c>0,那么ac>bc(或a/c>b/c)如果a<b,并且c>0,那么ac<bc(或a/c>b/c)• △3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变表达式:如果a>b,并且c<0,那么ac<bc(或a/c<b/c)如果a<b,并且c<0,那么ac>bc(或a/c>b/c)拓展:把不等式的性质和等式的性质结合起来,试着总结出他们之间的联系和区别。

不等式或不等式组的解法笔记

不等式或不等式组的解法笔记

不等式或不等式组的解法笔记《不等式或不等式组的解法笔记》1.引言在数学中,不等式是我们经常遇到的一类问题。

与等式不同的是,不等式中的符号可以是大于、小于、大于等于或小于等于,在求解过程中会涉及到一些特殊的方法和技巧。

本文将从基本概念出发,逐步介绍不等式的解法,帮助读者更好地理解并掌握不等式的解题技巧。

2.基本概念不等式是一个数学表达式,用不等号连接两个表达式,表示这两个表达式的大小关系。

a>b、a<b、a≥b、a≤b都是不等式。

不等式的解即是找到一组满足不等式条件的变量取值范围。

在解不等式时,我们通常需要用到一些基本的不等式性质,比如两边同时加减相同的数不等式的大小关系不变,两边同时乘除正数不等式的大小关系不变,而乘除负数时需要改变不等式的方向等。

3.一元一次不等式的解法对于一元一次不等式ax+b>0或ax+b<0,我们可以通过移项和分析系数的正负来解题。

具体来说,当a>0时,不等式的解集为(-∞,-b/a)或(-b/a, +∞);当a<0时,解集为(-∞, -b/a)或(-b/a, +∞)。

4.一元二次不等式的解法对于一元二次不等式ax^2+bx+c>0或ax^2+bx+c<0,我们通常可以通过判别式Δ=b^2-4ac来确定不等式的解的范围。

当Δ>0时,不等式有两个不相等的实数根x1、x2,解集为(-∞, x1)并(x2, +∞);当Δ=0时,方程有两个相等的实数根x1=x2,解集为{x1};当Δ<0时,方程没有实数根,不等式无解。

5.多元不等式组的解法对于多元不等式组,我们通常需要通过代数方法或图形法来求解。

在代数方法中,可以通过变量替换、加减消元、乘除整理等步骤来逐步化简不等式组,最终得到每个变量的取值范围。

在图形法中,可以将不等式用图形的方式表示出来,通过观察不同图形的交集关系来求解不等式组的解。

6.个人观点和总结不等式是数学中重要的概念之一,掌握不等式的解法将有助于我们更好地理解和应用数学知识。

杭州学军中学七年级数学下册第九单元《不等式与不等式组》知识点总结(含答案解析)

杭州学军中学七年级数学下册第九单元《不等式与不等式组》知识点总结(含答案解析)

一、选择题1.若点A (a ,b )在第二象限,则点B (﹣a ,b+1)在( )A .第一象限B .第二象限C .第三象限D .第四象限A 解析:A【分析】根据第二象限内的点的横坐标小于零,纵坐标大于零,可得关于a 、b 的不等式,再根据不等式的性质,可得B 点的坐标符号.【详解】解:∵点P (a ,b )在第二象限,∴a <0,b >0,∴-a >0,b+1>0,∴点B (﹣a ,b+1)在第一象限.故选A .【点睛】本题主要考查平面直角坐标系中象限内的点的坐标的符号特征和不等式的性质.注意第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 2.不等式()2533x x ->-的解集为( )A .4x <-B .4x >C .4x <D .4x >- C 解析:C【分析】根据解一元一次不等式的方法解答即可.【详解】解:去括号,得2539x x ->-,移项、合并同类项,得4x ->-,不等式两边同时除以﹣1,得4x <.故选:C .【点睛】本题考查了一元一次不等式的解法,属于基础题目,熟练掌握解一元一次不等式的方法是关键.3.在数轴上表示不等式2(1﹣x )<4的解集,正确的是( )A .B .C .D . A解析:A【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集. 2(1– x )<4去括号得:2﹣2x<4移项得:2x >﹣2,系数化为1得:x >﹣1,故选A .“点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4.不等式组1030x x -≤⎧⎨+>⎩中的两个不等式的解集在同一个数轴上表示正确的是( ) A .B .C .D . A解析:A【分析】 先分别解两个不等式得到x≤1和x >-3,然后利用数轴分别表示出x≤1和x >-3,于是可得到正确的选项.【详解】解不等式x-1≤0得x≤1,解不等式x+3>0得x >-3,所以不等式组的两个不等式的解集在同一个数轴上表示为:.故选:A .【点睛】本题考查了在数轴上表示不等式的解集:用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.5.如果a b >,可知下面哪个不等式一定成立( )A .a b ->-B .11a b <C .2a b b +>D .2a ab > C解析:C【分析】由基本不等式a >b ,根据不等式的性质,逐一判断.【详解】解:A 、∵a >b ,∴-a <-b ,故本选项不符合题意;B 、∵a >b ,∴当a 与b 同号时有11a b <,当a 与b 异号时,有11a b>, 故本选项不符合题意;C 、∵a >b ,∴a+b >2b ,故本选项符合题意;D 、∵a >b ,且a >0时,∴a 2>ab ,故本选项不符合题意;故选:C .【点睛】本题考查了不等式的性质.不等式的基本性质: (1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.不等式组3114x x +>⎧⎨-≤⎩的最小整数解是( ) A .5B .0C .-1D .-2C解析:C【分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来,写出这个不等式组的最小整数解即可.【详解】 解:3114x x +>⎧⎨-≤⎩①② 解不等式①得 x >-2,解不等式②得 x≤5,所以不等式组的解集为-2<x≤4,所以,这个不等式组的最小整数解是-1,故选C .【点睛】本题考查了解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.7.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2C解析:C【解析】 ∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a−3a+2)⩽0,解得:a ⩽2,∵x=1不是这个不等式的解,∴(1−5)(a−3a+2)>0,解得:a>1,∴1<a ⩽2,故选C.8.不等式组21x x ≥-⎧⎨<⎩的解集在数轴上表示正确的是( ) A .B .C .D . A 解析:A【分析】先解出不等式组的解集,然后再根据选项解答即可.【详解】解:由题意可得:不等式组的解集为:21x , 在数轴上表示为:故答案为A.【点睛】本题主要考查了不等式组解集在数轴上的表示方法,在表示解集时“≥”或“≤”要用实心圆点表示,“<”,“>”要用空心圆点表示成为解答本题的关键.9.下列说法中不正确的是( )A .若a b >,则a 1b 1->-B .若3a 3b >,则a b >C .若a b >,且c 0≠,则ac bc >D .若a b >,则7a 7b -<- C 解析:C【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A 、∵a >b ,∴a-1>b-1,故本选项正确,不符合题意;B 、∵3a >3b ,∴a >b ,故本选项正确,不符合题意;C 、∵a >b 且c≠0,当c >0时,ac >bc ;当c <0时,ac <bc ,故本选项错误,符合题意;D 、∵a >b ,∴-a <-b ,∴7-a <7-b ,故本选项正确,不符合题意.故选:C .【点睛】本题考查的是不等式的性质,熟记不等式的基本性质是解答此题的关键.10.若关于x的不等式组3122x ax x->⎧⎨->-⎩无解,则a的取值范围是()A.a<-2 B.a≤-2 C.a>-2 D.a≥-2D解析:D【分析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】解:3122 x ax x->⎧⎨->-⎩①②解①得:x>a+3,解②得:x<1.根据题意得:a+3≥1,解得:a≥-2.故选:D.【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.二、填空题11.对于实数x,我们规定[]x表示不大于x的最大整数,例如[1.2]1,[3]3,[ 2.5]3==-=-,若4510x+⎡⎤=⎢⎥⎣⎦,则x的取值可以是______________(任写一个).50(答案不唯一)【分析】由于规定表示不大于x的最大整数则表示不大于的最大整数接下来根据可列出不等式组求解即可【详解】解:表示不大于x的最大整数表示不大于的最大整数又可列不等式组x的取值可以是范围内解析:50(答案不唯一)【分析】由于规定[]x表示不大于x的最大整数,则410x+⎡⎤⎢⎥⎣⎦表示不大于410x+的最大整数,接下来根据4510x+⎡⎤=⎢⎥⎣⎦,可列出不等式组,求解即可.【详解】解:[]x表示不大于x的最大整数,∴410x+⎡⎤⎢⎥⎣⎦表示不大于410x+的最大整数,又45 10x+⎡⎤=⎢⎥⎣⎦,∴可列不等式组45104610x x +⎧≥⎪⎪⎨+⎪<⎪⎩ ,450460x x +≥⎧⎨+<⎩, ∴4656x x ≥⎧⎨<⎩,∴4656≤<x , ∴x 的取值可以是范围内的任何实数.故答案为:50(答案不唯一).【点睛】本题主要考查了一元一次不等式组的应用,解题的关键是根据[x]表示不大于x 的最大整数列出不等式组.12.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是_________.【分析】先求出每个不等式的解集然后得到不等式组的解集再求出整数解即可【详解】解:解不等式①得;解不等式②得;∴不等式组的解集为:;∴不等式组的整数解是;故答案为:【点睛】本题考查了解一元一次不等式组解析:4x =-【分析】先求出每个不等式的解集,然后得到不等式组的解集,再求出整数解即可.【详解】 解:3241112x x x x ≤-⎧⎪⎨--<+⎪⎩①②, 解不等式①,得4x ≤-;解不等式②,得5x >-;∴不等式组的解集为:54x -<≤-;∴不等式组的整数解是4x =-;故答案为:4x =-.【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法进行解题.13.a b ≥,1a -+_____1b -+≤【分析】根据不等式的性质判断即可【详解】∵a≥b ∴-a≤-b ∴-a+1≤-b+1故答案为≤【点睛】本题考查不等式的性质需要特别注意不等式两边同时乘除一个负数不等号要变号解析:≤【分析】根据不等式的性质判断即可.【详解】∵a≥b∴-a≤-b∴ -a+1≤-b+1故答案为≤.【点睛】本题考查不等式的性质,需要特别注意不等式两边同时乘除一个负数不等号要变号. 14.已知:[]x 表示不超过x 的最大整数.例:[]4.84=,[]0.81-=-.现定义:{}[]x x x =-,例:{}[]1.5 1.5 1.50.5=-=,则{}{}{}3.9 1.81+--=________.【分析】根据题意列出代数式解答即可【详解】解:故答案为:【点睛】此题考查解一元一次不等式关键是根据题意列出代数式解答解析:1.1【分析】根据题意列出代数式解答即可.【详解】解:{}{}{}3.9 1.81+--()()()()39318211⎡⎤=-+-----⎣⎦..0902=+..11=.故答案为:11.. 【点睛】此题考查解一元一次不等式,关键是根据题意列出代数式解答.15.若||1(2)3m m x --=是关于x 的一元一次方程,则m 的值是___________.-2【分析】根据一元一次方程的定义列出关于m 的方程组求解即可【详解】解:∵∴解得m=-2故答案为-2【点睛】本题主要考查了一元一次方程的定义和不等式组的解法根据一元一次方程的定义列出关于m 的方程组成解析:-2【分析】根据一元一次方程的定义列出关于m 的方程组求解即可.【详解】解:∵||1(2)3m m x --= ∴2011m m -≠⎧⎨-=⎩,解得m=-2. 故答案为-2.【点睛】本题主要考查了一元一次方程的定义和不等式组的解法,根据一元一次方程的定义列出关于m 的方程组成为解答本题的关键.16.若关于x 的不等式组103420x a x ⎧->⎪⎨⎪-≥⎩无解,a 则的取值范围为___________.【分析】先解不等式组中的两个不等式然后根据不等式组无解可得关于a 的不等式解不等式即得答案【详解】解:对不等式组解不等式①得解不等式②得∵原不等式组无解∴解得:故答案为:【点睛】此题主要考查了解不等式 解析:23a ≥【分析】先解不等式组中的两个不等式,然后根据不等式组无解可得关于a 的不等式,解不等式即得答案.【详解】 解:对不等式组103420x a x ⎧->⎪⎨⎪-≥⎩①②,解不等式①,得3x a >,解不等式②,得2x ≤,∵原不等式组无解,∴32a ≥, 解得:23a ≥. 故答案为:23a ≥. 【点睛】此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则,得出关于a 不等式是解题关键.17.不等式组2021x x x -≥⎧⎨>-⎩的最小整数解是________.0【分析】求出不等式组的解集确定出最小整数解即可【详解】不等式组整理得:不等式组的解集为:-1<x≤2最小的整数解为0故答案为:0【点睛】本题主要考查一元一次不等式组的整数解掌握一元一次不等式组的求解析:0【分析】求出不等式组的解集,确定出最小整数解即可.【详解】不等式组整理得:21x x ≤⎧⎨>-⎩, ∴不等式组的解集为:-1<x ≤2,∴最小的整数解为0.故答案为:0.【点睛】本题主要考查一元一次不等式组的整数解,掌握一元一次不等式组的求解是解题关键.18.不等式组210360x x ->⎧⎨-<⎩的解集为_______.【分析】先求出两个不等式的解再找出它们的公共部分即为不等式组的解集【详解】解不等式①得:解不等式②得:则不等式组的解集为故答案为:【点睛】本题考查了解一元一次不等式组熟练掌握不等式组的解法是解题关键 解析:122x << 【分析】先求出两个不等式的解,再找出它们的公共部分即为不等式组的解集.【详解】210360x x ->⎧⎨-<⎩①②, 解不等式①得:12x >, 解不等式②得:2x <, 则不等式组的解集为122x <<, 故答案为:122x <<. 【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键. 19.关于x 的不等式132x a x -≤⎧⎨-<⎩有5个整数解,则a 的取值范围是______.【分析】首先解每个不等式两个不等式的解集的公共部分就是不等式组的解集确定整数解据此即可写出a 的范围【详解】解:解不等式①得;解不等式②得:则不等式的解集为∵不等式有5个整数解∴一定是01234∴即故解析:12a ≤<【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,确定整数解,据此即可写出a 的范围.【详解】解:132x a x -≤⎧⎨-<⎩①②, 解不等式①得,4x ≤;解不等式②得:2x a >-,则不等式的解集为24a x -<≤,∵不等式132x a x -≤⎧⎨-<⎩有5个整数解, ∴一定是0,1,2,3,4.∴120a ,即12a ≤<,故答案为:12a ≤<.【点睛】此题考查的是一元一次不等式组的解法,根据x 的取值范围,得出x 的整数解,然后代入方程即可解出a 的值.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.20.不等式组20210x x +>⎧⎨-≤⎩的所有整数解的和是_____________-1【分析】先分别解两个不等式求出它们的解集再求两个不等式解集的公共部分然后找出解集中的整数相加即可【详解】解①得x>-2;解②得x≤∴原不等式组的解集是-2<x≤∴其中的整数有:-10∴-1+0=解析:-1【分析】先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分,然后找出解集中的整数相加即可.【详解】20210x x +>⎧⎨-≤⎩①②, 解①得,x >-2;解②得,x ≤12, ∴原不等式组的解集是-2<x ≤12. ∴其中的整数有:-1,0,∴-1+0=-1.故答案为-1.【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大三、解答题21.为发展校园足球运动,某城区四校决定联合购买一批足球运动装备.市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少元;(2)若城区四校联合购买100套队服和()10a a >个足球,请用含a 的式子分别表示出到甲商场和乙商场购买装备所花费用;(3)在(2)的条件下,计算a 为何值时,两家商场所花费用相同;(4)在(3)的条件下,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?(直接写出方案)解析:(1)150元;100元;(2)甲商场()10014000a + ,乙商场()8015000a +元;(3)50a =;(4)当50a =时,两家花费一样;当1050a <<时,到甲处购买更合算;当50a 时,到乙处购买更合算【分析】(1)设每个足球的定价是x 元,则每套队服是()50x +元,根据“两套队服与三个足球的费用相等”得出等量关系,列出一元一次方程,求解即可;(2)根据甲商场和乙商场的方案列出式子即可;(3)令100140008015000,a a ++=解方程即可;(4)列出不等式分别求解即可.【详解】解:(1)设每个足球的定价是x 元,则每套队服是()50x +元.根据题意得()2503x x +=解得100,50150x x +==. 答:每套队服150元,每个足球100元.(2)到甲商场购买所花的费用为:()1001001501001001400010a a ⎛⎫⨯+-=+ ⎪⎝⎭元; 到乙商场购买所花的费用为:()100150+100808015000a a ⨯⨯%=+元;(3)由100140008015000,a a ++=得:50a =,所以:当50a =时,两家花费一样。

不等式与不等式组知识点

不等式与不等式组知识点

不等式与不等式组知识点归纳一、不等式的概念1.不等式:用不等号表示不等关系的式子,叫做不等式。

2.不等式的解集:对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解。

3.不等式的解集:对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.4.解不等式:求不等式的解集的过程,叫做解不等式。

5.用数轴表示不等式的解集。

二、不等式的基本性质1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.2.不等式两边都乘以(或除以)同一个正数,不等号的方向不变。

3.不等式两边都乘以(或除以)同一个负数,不等号的方向改变。

说明:①在一元一次不等式中,不像等式那样,等号是不变的,是随着加或乘的运算改变。

②如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。

例:1.已知不等式3x —a ≤0的正整数解恰是1,2,3,则a 的取值范围是 。

2.已知关于x 的不等式组⎩⎨⎧-≥->-1250x a x 无解,则a 的取值范围是 。

3.不等式组⎪⎩⎪⎨⎧>+≤+0221042x x 的整数解为 。

4.如果关于x 的不等式(a-1)x<a+5和2x<4的解集相同,则a 的值为 。

5.已知关于x 的不等式组⎪⎩⎪⎨⎧<++>+01234a x x x 的解集为2<x ,那么a 的取值范围是 。

6.当x 时,代数式52+x 的值不大于零7。

若x 〈1,则22+-x 0(用“>”“=”或“”号填空)8.不等式x 27->1,的正整数解是9. 不等式x -〉10-a 的解集为x <3,则a10。

若a 〉b 〉c ,则不等式组⎪⎩⎪⎨⎧c x bx a x 的解集是11.若不等式组⎩⎨⎧--3212 b x a x 的解集是-1<x 〈1,则)1)(1(++b a 的值为 12.有解集2<x <3的不等式组是 (写出一个即可)13.一罐饮料净重约为300g ,罐上注有“蛋白质含量6.0 ”其中蛋白质的含量为 _____ g14。

人教版七年级下册数学 第九章 不等式与不等式组 不等式 不等式的性质(第一课时)

人教版七年级下册数学 第九章 不等式与不等式组  不等式  不等式的性质(第一课时)
< 不等式性质1
探究新知
知识点 2 不等式的性质2 用不等号填空: (1)5 > 3 ;
5×2 > 3×2 ; 5÷2 > 3÷2 . (2)2 < 4 ;
2×3 < 4×3 ;2÷4 < 4÷4 . 自己再写一个不等式,分别在它的两边都乘(或除以)同一 个正数,看看有怎样的结果?与同桌互相交流,你们发现了 什么规律?
解:(1)为了使不等式x-7>26中不等号的一边变为x,根 据不等式的性质1,不等式两边都加7,不等号的方向不 变,得 x-7+7 > 26+7,
x > 33.
这个不等式的解集在数轴上的表示如图所示:
0
33
探究新知
(2)为了使不等式3x<2x+1中不等号的一边变为x,根据
__不__等__式__性__质__1_,不等式两边都减去_2_x__,不等号的方向
探究新知
(3)已知 a<b,则 -a3
由不等式基本性质3,得
-a 3
>
-b 3
,
因为
-a 3
>
-b 3
,两边都加上2,
由不等式基本性质1,得
-a 3
+2
>
-b3+2
.
巩固练习
若 a>b, 用“>”或“<”填空: a-5 > b-5(根据不等式的性质 1 )
探究新知
如果_a_>_b_且__c_>_0_, 那么_a_c_>_b_c__
(或 a b ) cc
探究新知
不等式基本性质2
不等式的两边都乘(或除以)同一个正数, 不等号的方向不变.

不等式与不等式组知识点归纳

不等式与不等式组知识点归纳

第九章 不等式与不等式组一、知识结构图二、知识要点(一、)不等式的概念1、不等式:一般地,用不等符号(“<”“>”“≤”“≥”)表示大小关系的式子,叫做不等式,用“≠”表示不等关系的式子也是不等式。

不等号主要包括: > 、 < 、 ≥ 、 ≤ 、 ≠ 。

2、不等式的解:使不等式左右两边成立的未知数的值,叫做不等式的解。

3、不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集(即未知数的取值范围)。

4、解不等式:求不等式的解集的过程,叫做解不等式。

⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧与实际问题组一元一次不等式法一元一次不等式组的解不等式组一元一次不等式组性质性质性质不等式的性质一元一次不等式不等式的解集不等式的解不等式不等式相关概念不等式与不等式组)(3215、不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向。

规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈。

(二、)不等式的基本性质不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向 不变 。

用字母表示为:如果b a >,那么c b c a ±>±;如果b a <,那么c b c a ±<± ; 不等式的性质2:不等式的两边同时乘以(或除以)同一个 正数 ,不等号的方向 不变 。

用字母表示为: 如果0,>>c b a ,那么bc ac >(或cb c a >);如果0,><c b a ,不等号那么bc ac <(或cb c a <); 不等式的性质3:不等式的两边同时乘以(或除以)同一个 负数 ,的方向 改变 。

用字母表示为: 如果0,<>c b a ,那么bc ac <(或cb c a <);如果0,<<c b a ,那么bc ac >(或cb c a >); 解不等式思想——就是要将不等式逐步转化为x a 或x <a 的形式。

不等式与不等式组小结与解含参数问题题型归纳

不等式与不等式组小结与解含参数问题题型归纳

第九章 不等式与不等式知识点归纳一、不等式及其解集和不等式的性质用不等号表示大小关系的式子叫做不等式。

常见不等号有:“<” “>” “≤” “≥” “ ≠ ”。

含有未知数的不等式的所有解组成这个不等式的解集,解不等式就是求不等式的解集。

注:①在数轴上表示不等式解集时,有等号用实心点,无等号用空心圈.②方向:大于向右画,小于向左画。

不等式的三个性质:①不等式两边同时加(或减)同一数或式子,不等号不变;②不等式两边同时乘(或除)同一正数,不等号不变;③不等式两边同时乘(或除)同一负数,不等号改变。

作差法比较a 与b 的大小:若a —b >0,则a >b ;若a —b <0;则a <b ;若a —b=0, 则a=b 。

例1 、下列式子中哪些是不等式?a+b=b+a ; ②a <b -5; ③-3>-5;④x ≠1 ;⑤2x —3.例2、若a 〈b <0,m <0,用不等号填空。

① a -b 0; ②a -5 b -5; ③-2a -2b ;④31+a 21+b ;⑤22___bm am ⑥ab 0;⑦a+m b+m ;⑧a ² b ²;⑨am bm 。

例3、①由a ax <,可得1>x 可得____a ;②由a ax <,可得1x <可得____a ;③ 由122-≥-≤-x m x mx 可得,那么______m 。

例4、不等式x x 228)2(5-≤+的非负整数解是__________________。

二、一元一次不等式及其实际问题一元一次不等式的概念:一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式(即分母中不含未知数),这样的不等式叫做一元一次不等式。

解一元一次不等式的一般步骤:(1)去分母(两边每一项同乘分母的最小公倍数)(2)去括号(括号里每一项都要乘括号前面的系数)(3)移项(变号后移项)(4)合并同类项(5)将x 项系数化为1(系数为负数要变号)。

2021年七年级数学下册第九单元《不等式与不等式组》知识点(答案解析)(1)

2021年七年级数学下册第九单元《不等式与不等式组》知识点(答案解析)(1)

一、选择题1.已知不等式组1113x a x -<-⎧⎪-⎨≤⎪⎩的解集如图所示(原点没标出,数轴单位长度为1),则a 的值为( )A .﹣1B .0C .1D .2D解析:D【分析】首先解不等式组,求得其解集,又由数轴知该不等式组有3个整数解即可得到关于a 的方程,解方程即可求得a 的值.【详解】 解:∵1113x a x -<-⎧⎪-⎨≤⎪⎩, 解不等式1x a -<-得:1x a <-,解不等式113x -≤得:2x ≥-, ∴不等式组的解集为:21x a -≤<-,由数轴知该不等式组有3个整数解,所以这3个整数解为-2、-1、0,则11a -=,解得:2a =,故选:D .【点睛】本题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.2.某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂,A B 两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节A 型货厢,甲种货物25吨和乙种货物35吨可装满一节B 型货厢,按此要求安排,A B 两种货厢的节数,有几种运输方案( )A .1种B .2种C .3种D .4种C解析:C【分析】设用A 型货厢x 节,B 型货厢()50x -节,根据题意列不等式组求解,求出x 的范围,看有几种方案.【详解】解:设用A 型货厢x 节,B 型货厢()50x -节,根据题意列式:()()35255015301535501150x x x x ⎧+-≥⎪⎨+-≥⎪⎩,解得2830x ≤≤, 因为x 只能取整数,所以x 可以取28,29,30,对应的()50x -是22,21,20,有三种方案.故选:C .【点睛】本题考查一元一次不等式组的应用,解题的关键是根据题意列出不等式组求解,需要注意结果要符合实际情况.3.不等式组23x x ≥-⎧⎨<⎩的整数解的个数是( ) A .4个B .5个C .6个D .无数个B 解析:B【分析】本题首先求解该不等式组公共解集,继而在解集内确定整数解.【详解】由已知得:23x -≤<,该范围内包含5个整数解:2-,1-,0,1,2.故选:B .【点睛】本题考查求不等式的整数解,解题关键在于确定公共解集,其次确定答案时要确保不重不漏.4.如果a b >,可知下面哪个不等式一定成立( )A .a b ->-B .11a b <C .2a b b +>D .2a ab > C 解析:C【分析】由基本不等式a >b ,根据不等式的性质,逐一判断.【详解】解:A 、∵a >b ,∴-a <-b ,故本选项不符合题意;B 、∵a >b ,∴当a 与b 同号时有11a b <,当a 与b 异号时,有11a b>, 故本选项不符合题意;C 、∵a >b ,∴a+b>2b,故本选项符合题意;D、∵a>b,且a>0时,∴a2>ab,故本选项不符合题意;故选:C.【点睛】本题考查了不等式的性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.不等式组10,{360xx-≤-<的解集在数轴上表示正确的是()A.B.C.D. D解析:D【解析】试题分析:10{360xx-≤-<①②,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:,故选D.考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.6.如果不等式组5xx m<⎧⎨>⎩有解,那么m的取值范围是()A.m>5 B.m≥5C.m<5 D.m≤8C解析:C【解析】∵不等式组有解,∴m<5.故选C.【方法点睛】本题主要考查的是不等式的解集,依据口诀列出不等式是解题的关键.7.下列不等式中,是一元一次不等式的是()A .2x 10->B .12-<C .3x 2y 1-≤-D .2y 35+> A解析:A【分析】 只含有一个未知数,且未知数的最高次数为1的不等式叫做一元一次不等式.【详解】A 、是一元一次不等式;B 、不含未知数,不符合定义;C 、含有两个未知数,不符合定义;D 、未知数的次数是2,不符合定义,故选:A.【点睛】此题考查一元一次不等式的定义:只含有一个未知数,且未知数的最高次数为1的不等式叫做一元一次不等式.8.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( ) A .5<m <6B .5<m ≤6C .5≤m ≤6D .6<m ≤7B 解析:B【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m 的范围.【详解】解不等式x ﹣m <0,得:x <m ,解不等式7﹣2x ≤2,得:x ≥52, 因为不等式组有解, 所以不等式组的解集为52≤x <m , 因为不等式组的整数解有3个, 所以不等式组的整数解为3、4、5,所以5<m ≤6.故选:B .【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.9.下列不等式组的解集,在数轴上表示为如图所示的是( )A .1x >-B .12x -<≤C .12x -≤<D .1x >-或2x ≤ B解析:B【分析】根据数轴图像即可求出解集.【详解】根据数轴可知表示的解集为12x -<≤,即数轴上表示的是不等式组12x -<≤的解集故选B .【点睛】本题考查在数轴表示不等式组的解集,解答本题的关键是明确题意,利用数形结合的思想解答.10.对一个实数x 按如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到“判断结果是否大于190?”为一次操作,如果操作恰好进行两次就停止了,那么x 的取值范围是( )A .822x <B .822x <C .864x <≤D .2264x <≤ D解析:D【分析】 根据“操作恰好进行两次就停止了”可得第一次运行的结果小于等于190,第二次运行的结果大于190,由此建立不等式组,再解不等式组即可得.【详解】由题意得:()321903322190x x -≤⎧⎪⎨-->⎪⎩①②, 解不等式①得:64x ≤,解不等式②得:22x >,则不等式组的解集为2264x <≤,故选:D .【点睛】本题考查了一元一次不等式组的应用,根据程序运行的次数,正确建立不等式组是解题关键.二、填空题11.关于x ,y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足x +y >﹣1,则m 的取值范围是_____.【分析】先将方程组中的两个方程相加化简可得再代入可得一个关于m 的一元一次不等式然后解不等式即可得【详解】两个方程相加得:即由题意得:解得故答案为:【点睛】本题考查了二元一次方程组一元一次不等式熟练掌解析:3m <【分析】先将方程组中的两个方程相加化简可得2x y m +=-+,再代入1x y +>-可得一个关于m 的一元一次不等式,然后解不等式即可得.【详解】23224x y m x y +=-+⎧⎨+=⎩, 两个方程相加得:3336x y m +=-+,即2x y m +=-+,由题意得:21m -+>-,解得3m <,故答案为:3m <.【点睛】本题考查了二元一次方程组、一元一次不等式,熟练掌握二元一次方程组的特殊解法是解题关键.12.不等式组233225x x x -≥⎧⎨+>-⎩的解集是__________.【分析】把不等式组每个不等式的解集求出来后计算其交集即可得到答案【详解】解:不等式组由①得:由②得:x>-7∴不等式组的解集为:故答案为:【点睛】本题考查不等式组的求解掌握求每个不等式解集交集方法是解析:71x -<≤-【分析】把不等式组每个不等式的解集求出来后计算其交集即可得到答案.【详解】解:不等式组233225x x x -≥⎧⎨+>-⎩①②,由①得: 1x ≤-,由②得:x>-7, ∴不等式组的解集为:71x -<≤-,故答案为:71x -<≤-.【点睛】本题考查不等式组的求解,掌握求每个不等式解集交集方法是解题关键.13.不等式组2021x x x -≥⎧⎨>-⎩的最小整数解是________.0【分析】求出不等式组的解集确定出最小整数解即可【详解】不等式组整理得:不等式组的解集为:-1<x≤2最小的整数解为0故答案为:0【点睛】本题主要考查一元一次不等式组的整数解掌握一元一次不等式组的求解析:0【分析】求出不等式组的解集,确定出最小整数解即可.【详解】不等式组整理得:21x x ≤⎧⎨>-⎩, ∴不等式组的解集为:-1<x ≤2,∴最小的整数解为0.故答案为:0.【点睛】本题主要考查一元一次不等式组的整数解,掌握一元一次不等式组的求解是解题关键. 14.已知点N 的坐标为()8a a -,,则点N 一定不在第____象限二【分析】根据四个象限的符合特点列出相应的不等式组即可得出结果【详解】解:由题意得解这四组不等式组可知无解因此点N 横坐标为负纵坐标为正不能同时成立即点N 一定不在第二象限故答案为:二【点睛】本题考查平解析:二【分析】根据四个象限的符合特点,列出相应的不等式组,即可得出结果.【详解】解:由题意得,080a a >⎧⎨->⎩,080a a >⎧⎨-<⎩,080a a <⎧⎨->⎩,080a a <⎧⎨-<⎩, 解这四组不等式组可知080a a <⎧⎨->⎩无解, 因此点N 横坐标为负,纵坐标为正,不能同时成立,即点N 一定不在第二象限. 故答案为:二【点睛】本题考查平面直角坐标系中各象限内点的坐标的符合,把符合问题转化为解不等式是解题关键.15.不等式组213122x x ->⎧⎪⎨-≤⎪⎩的解集是__________.【分析】先求出不等式组中每一个不等式的解集再求出它们的公共部分【详解】解:解①得:x >2解②得:x≥-4所以不等式组的解集是:x >2故答案为:x >2【点睛】本题考查的是一元一次不等式组的解解此类题目解析:2x >【分析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分.【详解】 解:21312?2x x ->⎧⎪⎨-≤⎪⎩①② 解①得:x >2,解②得:x≥-4.所以,不等式组的解集是:x >2.故答案为:x >2.【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x >较小的数、<较大的数,那么解集为x 介于两数之间.16.关于x 的不等式组0821x m x -≥⎧⎨->⎩有3个整数解,则m 的取值范围是______.0<m≤1【分析】不等式组整理后表示出不等式组的解集由不等式组有3个整数解确定出m 的范围即可【详解】解:不等式组整理得:解得:由不等式组有3个整数解即整数解为123则m 的取值范围是0<m≤1故答案为解析:0<m≤1【分析】不等式组整理后,表示出不等式组的解集,由不等式组有3个整数解,确定出m 的范围即可.【详解】 解:不等式组整理得:72x m x ≥⎧⎪⎨<⎪⎩, 解得:72m x ≤<, 由不等式组有3个整数解,即整数解为1,2,3,则m 的取值范围是0<m≤1.故答案为:0<m≤1.【点睛】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.17.若a b >0,c b<0,则ac________0.<【分析】根据有理数的除法判断出ab 同号再根据有理数的除法判断出bc 异号然后根据有理数的乘法运算法则判断即可【详解】解:∵>0∴ab 同号∵<0∴bc 异号∴ac 异号∴ac <0故答案为<【点睛】本题考查解析:<【分析】根据有理数的除法判断出a 、b 同号,再根据有理数的除法判断出b 、c 异号,然后根据有理数的乘法运算法则判断即可.【详解】解:∵a b>0, ∴a 、b 同号, ∵c b<0, ∴b 、c 异号,∴a 、c 异号,∴ac <0.故答案为<.【点睛】本题考查有理数的乘法,有理数的除法,熟记运算法则是解题关键.18.在实数范围内规定一种新的运算“☆”,其规则是:a ☆b=3a+b ,已知关于x 的不等式:x ☆m>1的解集在数轴上表示出来如图所示.则m 的值是________ . -2【分析】根据新运算法则得到不等式3通过解不等式即可求的取值范围结合图象可以求得的值【详解】∵☆∴根据图示知已知不等式的解集是∴故答案为:【点睛】本题主要考查了数轴上表示不等式的解集及解不等式本题解析:-2【分析】根据新运算法则得到不等式31x m +>,通过解不等式即可求m 的取值范围,结合图象可以求得m 的值.【详解】∵x ☆ 31m x m =+>,∴13m x ->, 根据图示知,已知不等式的解集是1x >,∴113m -=, 故答案为:2m =-.【点睛】本题主要考查了数轴上表示不等式的解集及解不等式,本题的关键是理解新的运算方法.19.若关于x 的一元一次不等式组21122x a x x ->⎧⎨->-⎩的解集是21x -<<,则a 的取值是__________.【分析】表示出不等式组中两不等式的解集根据x 的范围确定出a 的值即可【详解】解不等式得解不等式得∵不等式组的解集为解得:故答案为:【点睛】本题考查了解一元一次不等式组能根据不等式的解集和已知得出关于的解析:5a =-【分析】表示出不等式组中两不等式的解集,根据x 的范围确定出a 的值即可.【详解】解不等式21x a ->得12a x +>, 解不等式122x x ->-得1x <,∵不等式组的解集为21x -<<,122a +=-, 解得:5a =-.故答案为:5a =-.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集和已知得出关于a 的方程是解此题的关键.20.关于x 、y 的二元一次方程组3234x y a x y a +=+⎧⎨+=-⎩的解满足x+y >2,则a 的取值范围为__________.a <-2【解析】试题解析:a <-2.【解析】试题32{34x y a x y a +=++=-①②由①-②×3,解得2138a x +=-; 由①×3-②,解得678a y +=; ∴由x+y >2,得2136788a a ++-+>2, 解得,a <-2. 考点:1解一元一次不等式;2.解二元一次方程组.三、解答题21.解不等式组103124x x +≥⎧⎪⎨-<⎪⎩,并把它的解集表示在数轴上.解析:13x -≤<,在数轴上表示见解析.【分析】先对不等式组进行化简,然后在数轴上分别画出x 的取值,它们的公共部分就是不等式组的解集.【详解】解:103124x x +≥⎧⎪⎨-<⎪⎩①② 由①得:1x ≥-由②得:318x -<,∴3x <,∴不等式组的解集为13x -≤<在数轴上表示如下:【点睛】本题考查了一元一次不等式组的解,解此类题目常常要结合数轴来判断.要注意x 是否取得到,若取得到则x 在该点是实心的.反之x 在该点是空心的.22.解不等式:()3157x x +≤+,并把它的解集在数轴上表示出来.解析:2x ≥-,在数轴上表示见解析【分析】利用不等式的性质解一元一次不等式的解集,然后将解集表示在数轴上即可.【详解】解:3(1)57x x +≤+,去括号,得: 3357x x +≤+,移项、合并同类项,得:24x -≤ ,化系数为1,得:2x ≥- ,∴不等式的解集为2x ≥-,不等式的解集在数轴上表示为:【点睛】本题考查解一元一次不等式、在数轴上表示不等式的解集,熟练掌握一元一次不等式的解法步骤,会在数轴上表示不等式的解集是解答的关键,特别注意不等号的方向和端点的空(实)心.23.解下列不等式(组)(1)5261x x -<+;(2)2151132513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩. 解析:(1)x >﹣3;(2)﹣1≤x <2【分析】(1)根据不等式的性质解一元一次不等式解答即可;(2)分别求出每个不等式的解集,再求其解集的公共部分即可解答.【详解】解:(1)移项、合并同类项,得:﹣x <3,化系数为1,得:x >﹣3,∴不等式的解集为x >﹣3;(2)2151132513(1)x x x x -+⎧-≤⎪⎨⎪-<+⎩①②, 解①得:x≥﹣1,解②得:x <2,∴不等式组的解集为﹣1≤x <2.【点睛】本题考查不等式的性质、解一元一次不等式(组),熟练掌握一元一次不等式(组)的解法是解答的关键,求解时注意不等号的方向.24.解下列不等式组,并把它的解集表示在数轴上.(1)35318x x +≥⎧⎨-<⎩; (2)()1212235x x x x ⎧+<-⎪⎪⎨+⎪>⎪⎩. 解析:(1)23x ≤<;(2)3x >【分析】(1)先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可; (2)分别求出各不等式的解集,在数轴上表示出来即可.【详解】(1)解不等式35x +≥得2x ≥解不等式318x -<得3x <∴不等式的解集为23x ≤<,在数轴上表示如下:(2)解不等式()1212x x +<-得2x >, 解不等式235x x +>得3x >, ∴不等式的解集为3x >,在数轴上表示如下:【点睛】此题主要考查不等式组的解法及在数轴上表示不等式组的解集,解题的关键在熟练掌握不等式组的解法,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.25.解不等式组:23332x x x x >-⎧⎪⎨-+≥⎪⎩①②,并把它们的解集表示在数轴上.解析:(1)1<x≤3,图见解析【分析】求出不等式组中两个不等式的解集后,再求出两个解集的公共部分并在数轴上表示出来即可.【详解】解:解不等式①得:x>1,解不等式②得:x≤3,∴不等式组的解集为:1<x≤3,并可在数轴上表示如下:【点睛】本题考查不等式组的求解,熟练掌握求不等式解集公共部分的方法是解题关键. 26.某电影院某日某场电影的票价是:成人票30元,学生票15元,满50人可以购团体票(不足50人可按50人计算,票价打9折).某班在4位老师的带领下去电影院看电影,学生人数为x 人.(1)若按个人票购买,该班师生买票共付费_________元(用含x 的代数式表示);若按团体票购买,该班师生买票共付费___________(用含x 的代数式表示,且46x ≥) (2)①如果该班学生人数为36人,该班师生买票最少可付费多少元?②如果该班学生人数为42人,该班师生买票最少可付费多少元?(3)用含x 的代数式表示该班买票最少应付多少元?解析:(1)()15120x +;()13.5108x +;(2)①660元;②729元;(3)若040x <≤时,该班买票至少应付()12015x +元;若4146x ≤≤时,该班买票至少应付729元;若46x >时,该班买票至少应付()10813.5x +元.【分析】(1)若按个人票购买,则费用为(4×30+15x )元;若按团体票购买,该班师生买票共付费(4×30×0.9+15x ×0.9)元;(2)①把x =36代入计算即可求解,注意团体票x 不足46取46;②把x =42代入计算即可求解,注意团体票x 不足46取46;(3)先计算学生人数为x 时,购团体票比实际票便宜时的人数为x ≥40 35;因此根据此结果分三种情况计算:①若41≤x ≤46时,购团体最少;②若x >46时,按实际打折计算;③若0<x ≤40时,按实际不打折计算.【详解】解:(1)()4301515120x x ⨯+=+元,所以若按个人票购买,该班师生买票共付费()15120x +元;()4300.9150.913.5108x x ⨯⨯+⋅=+元.所以若按团体票购买,该班师生买票共付费()13.5108x +元;故答案为:()15120x +;()13.5108x +;(2)①当按个人票购买时,1536120660⨯+=(元),当按团体票购买时,13.546108729⨯+=(元).所以该班师生买票最少可付费660元;②当按个人票购买时,1542120750⨯+=(元),当按团体票购买时,13.546108729⨯+= (元).所以该班师生买票最少可付费729元;(3)依题意有()4301543046150.9x ⨯+≥⨯+⨯⨯,15609x ≥, 解得3405x ≥, ①若4146x ≤≤时,最好团体购票,则需费用:()43046150.98100.9729⨯+⨯⨯=⨯=(元),②若46x >时,则需费用为:()430150.910813.5x x ⨯+⨯=+(元),③若040x <≤时,则需费用:4301512015x x ⨯+=+(元),答:若040x <≤时,该班买票至少应付()12015x +元;若4146x ≤≤时,该班买票至少应付729元;若46x >时,该班买票至少应付()10813.5x +元.【点睛】本题考查了列代数式,代数式求值以及用一元一次不等式解决问题,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.27.解方程或不等式(组)(1)2(21)1690x --=.(2)211143x x +-+. (3)421223x x x x +⎧-<⎪⎨⎪-⎩ 解析:(1)7x =或6x =-;(2)52x;(3)12x -<. 【分析】(1)用直接开平方解方程即可;(2)去括号,去分母,移项合并同类项,系数化为1,即可解;(3)分别解出两个不等式,再找公共部分即可.【详解】解:(1)2(21)1690x --= ∴2(21)169x -=∴2x-1是169的平方根,∴2113x -=±∴2113x -=或2113x -=-,∴214x =或212x =-∴7x =或6x =-.故7x =或6x =-.(2)211143x x +-+ ∴3(21)4(1)12x x +-+ ∴634412x x +-+∴25x ∴52x (3)421223x x x x +⎧-<⎪⎨⎪-⎩①②, ①式化简424x x -<+,∴36x <,∴2x <.②式化简22x -,∴1x -∴12x -<.【点睛】本题考查了利用平方根方程及一元一次不等式(组)的解法,熟悉平方根定义及一元一次不等式的解法步骤是解题关键.28.解下列不等式(组) (1)22143x x +-≥ (2)2731205x x x +>-⎧⎪-⎨≥⎪⎩ 解析:(1)x≤2;(2)2≤x<8;【分析】(1)不等式两边同时乘以12,化简计算即可.(2)分别求解两个不等式的取值,再把取值范围合并.【详解】(1)解:不等式两边同乘以12得:3(x+2)≥4(2x-1);去括号得:3x+6≥8x -4;移项合并同类项得:-5x≥-10;系数化为1得:x≤2;(2)解:解不等式1得:x<8;解不等式2得:x≥2;∴2≤x<8;【点睛】本题考察了不等式以及不等式组的简单运算,属于解不等式(组)的基础运算,注意细心即可.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式与不等式组考点分析 考点:不等式的性质 例 1 若a >b ,则下列不等式变形错误的是( )A .a+1>b+1B .22a b >C .3a-4>3b-4D .4-3a >4-3b对应训练已知实数a 、b ,若a >b ,则下列结论正确的是( )A .a-5<b-5B .2+a <2+bC .33a b <D .3a >3b考点:在数轴上表示不等式(组)的解 例2 把不等式组1215x x >⎧⎨-≤⎩的解集在数轴上表示正确的是( ) A .B .C .D . 对应训练不等式组2(5)65212x x x+≥⎧⎨->+⎩的解集在数轴上表示正确的是( )A .B .C .D .考点:不等式(组)的解法例3不等式2x-1>3的解集是 .例4解不等式组23 1 20x x +>⎧⎨-≥⎩,并把解集在数轴上表示出来.对应训练不等式2x-4<0的解集是 .考点:不等式(组)的特殊解例5 不等式组 21312x x -<⎧⎪⎨-≤⎪⎩的整数解有( ) 个.A.1 B.2 C.3 D.4 对应训练求不等式组21025xx x+>⎧⎨>-⎩的正整数解.考点:确定不等式(组)中字母的取值范围考点:不等式(组)的应用对应训练 7.某中学响应“阳光体育”活动的号召,准备从体育用品商店购买一些排球、足球和篮球,排球和足球的单价相同,同一种球的单价相同,若购买2个足球和3个篮球共需340元,购买4个排球和5个篮球共需600元.(1)求购买一个足球,一个篮球分别需要多少元?(2)该中学根据实际情况,需从体育用品商店一次性购买三种球共100个,且购买三种球的总费用不超过600元,求这所中学最多可以购买多少个篮球?【备考真题过关】一、选择题1.不等式组 10x x <⎧⎨≥⎩的解集是( )A .x≥0B .x <1C .0<x <1D .0≤x <1 2.在数轴上表示不等式x+5≥1的解集,正确的是( )A .B .C .D .3.若x >y ,则下列式子错误的是( )A .x-3>y-3B .-3x >-3yC .x+3>y+3D . 33x y > 4.设“▲”、“●”、“■”分别表示三种不同的物体,现用天平秤两次,情况如图所示,那么▲、●、■这三种物体按质量从大到小排列应为( )A .■、●、▲B .▲、■、●C .■、▲、●D .●、▲、■5.下列命题正确的是( )A .若a >b ,b <c ,则a >cB .若a >b ,则ac >bcC .若a >b ,则ac 2>bc 2D .若ac 2>bc 2,则a >b6.若关于x 的不等式组的解表示在数轴上如图所示,则这个不等式组的解是( )A .x≤2B .x >1C .1≤x <2D .1<x≤27.不等式组21 217xx-≥⎧⎨->-⎩的解集在数轴上表示正确的是()A.B.C. D.8.不等式组3(1)12323x xx+>-⎧⎪⎨-+≥⎪⎩的整数解是()A.-1,0,1 B.0,1 C.-2,0,1 D.-1,19.不等式组221xx≤⎧⎨+>⎩的最小整数解为()A.-1 B.0 C.1 D.210.使不等式x-1≥2与3x-7<8同时成立的x的整数值是()A.3,4 B.4,5 C.3,4,5 D.不存在11.若关于x的一元一次不等式组202x mx m-<⎧⎨+>⎩有解,则m的取值范围为()A.m23<-B.m≤23C.M<23D.m≤-2312.在芦山地震抢险时,太平镇部分村庄需8组战士步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是()A.10人B.11人C.12人D.13人二、填空题13.已知关于x的不等式(1-a)x>2的解集为x<21a-,则a的取值范围是.14.不等式2x-3≥x的解集是.15.不等式13(x-m)>3-m的解集为x>1,则m的值为。

16.如图,在实数范围内规定新运算“△”,其规则是:a△b=2a-b.已知不等式x△k≥1的解集在数轴上,则k的值是.17.若不等式组2-0x bx a≥⎧⎨+≤⎩的解集为3≤x≤4,则不等式ax+b<0的解集为.18.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,设她答对了n道题,则根据题意可列不等式.19.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒,步行的速度为1米/秒,骑车的速度为4米/秒.为了确保甲工人的安全,则导火线的长要大于米.三、解答题2310-1-2提升 1、已知a>b 用”>”或”<”连接下列各式;(1)a-3 ---- b-3,(2)2a ----- 2b,(3)- a 3 ----- -b 3(4)4a-3 ---- 4b-3 (5)a-b --- 0 2、在数轴上表示不等式组x>-2x 1⎧⎨≤⎩的解,其中正确的是( )3、已知a>b ,⎩⎨⎧b x a x 的解是 ,⎩⎨⎧--b x a x 的解是 。

4、不等式b ax >解集是a b x <,则a 取值范围是 5、如图数轴上表示的是一不等式组的解集,这个不等式组的整数解是-1+10-2 6、若∣-a ∣=-a 则a 的取值范围是 。

7.若不等式6432+≥-x a x 的解集是4-≤x ,则a 的值是( ) A.34 B.22 C.-3 D.08.不等式组⎪⎩⎪⎨⎧<-<-622131m x m x 的解集是36+<m x ,则m 的取值范围是( )A.0≤mB.0=mC.0>mD.0<m9. 已知不等式组2145x x x m->+⎧⎨>⎩无解,则m 的取值范围是 .10.(1)如果关于x 的方程325x k x +=-的解是正数,则k 的取值范围是_________. (2)已知不等式5(x -2)+8<6(x -1)+7的最小整数解为方程2x -ax =3的解,求代数式4a -14a 的值。

11.已知方程3(2)21x a x a -+=-+的解适合不等式2(x-5)>8a ,求a 的取值范围。

12.(1)已知关于x 的不等式2x >a 的解集为x >1,则 a 的值为_________.(2)已知关于x 的不等式3x -a >x +1的解集如图所示,则 a 的值为_________.13.若不等式ax <2x+3的解集是x >-1,则a 的值为_________.14.(1)如果满足x a <的正整数x 的值有1,2,那么a 的取值范围是____________;(2)如果关于x 的不等式2x -a ≤0的正整数解是1,2,3,那么a 的取值范围是多少?15.关于x 的不等式组23(3)1324x x x x a <-+⎧⎪⎨+>+⎪⎩,有四个整数解,则a 的取值范围是16.(1)若不等式组x a x b <⎧⎨>⎩,的解集是空集,则a ,b 的大小关系是_________. (2)若不等式组12x x m -⎧⎨>⎩,≤有解,则m 的取值范围是______. (3)若不等式组841x x x m +<-⎧⎨>⎩,的解集为3x >,则m 的取值范围是_________.17、关于x 的方程x m x --=-425的解x 满足2<x<10,求m 的取值范围18、当关于x 、y 的二元一次方程组⎩⎨⎧-=--=+my x m y x 432522的解x 为正数,y 为负数,则求此时m 的取值范围?19、不等式()123x m m ->-的解集为2x >,求m 的值。

20、若点M ()m m -+3,12关于y 轴的对称点M ′在第二象限,求m 的取值范围。

21、我市一山区学校为部分家远的学生安排住宿,将部分教室改造成若干间住房. 如果每间住5人,那么有12人安排不下;如果每间住8人,那么有一间房还余一些床位,问该校可能有几间住房可以安排学生住宿?住宿的学生可能有多少人?22、某化工厂现有甲种原料290千克,乙种原料212千克,计划利用这两种原料生产A 、B 两种产品共80件,生产一件A 产品需要甲种原料5千克,乙种原料1.5千克,生产成本是120元;生产一件B 产品需要甲种原料2.5千克,乙种原料3.5千克,生产成本是200元。

(1)该化工厂现有原料能否保证生产?若能的话,有几种生产方案?请设计出来。

(2)试分析你设计的哪种生产方案总造价最低?最低造价是多少?23、某公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5万元,每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变,现准备购进甲、乙两种商品共20件,所用资金不低于190万元,不高于200万元.(1)该公司有哪几种进货方案?(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?。

相关文档
最新文档