三角形、梯形中位线定理教师版
八年级数学下册22.6三角形梯形的中位线3教学设计沪教版五四制

八年级数学下册22.6三角形梯形的中位线3教学设计沪教版五四制一. 教材分析《三角形梯形的中位线》是沪教版八年级数学下册第22章第6节的内容,本节课主要让学生掌握三角形和梯形的中位线定理,并能够运用该定理解决相关问题。
教材通过引入中位线的概念,引导学生探究中位线的性质,进而推导出中位线的长度等于它所对的边的长度,以及中位线平行于第三边。
这一内容是学生进一步学习几何的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析八年级的学生已经掌握了平行线、三角形和梯形的基本知识,具备了一定的空间想象能力和逻辑思维能力。
但学生在学习过程中,可能对中位线的概念和性质理解不深,对中位线定理的应用还不够熟练。
因此,在教学过程中,教师需要通过丰富的教学手段,帮助学生理解和掌握中位线定理,提高学生的解题能力。
三. 教学目标1.让学生理解三角形和梯形的中位线定理,掌握中位线的性质。
2.培养学生运用中位线定理解决实际问题的能力。
3.提高学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.重难点:三角形和梯形的中位线定理的推导和应用。
2.难点:学生对中位线定理的理解和运用。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究中位线的性质。
2.利用几何画板和实物模型,帮助学生直观地理解中位线定理。
3.通过例题和练习题,让学生巩固中位线定理的应用。
4.分组讨论和合作交流,提高学生的团队协作能力。
六. 教学准备1.准备几何画板和实物模型,用于展示中位线的性质。
2.准备相关的PPT和教学课件,用于辅助教学。
3.准备一系列的例题和练习题,用于巩固学生的学习效果。
七. 教学过程1.导入(5分钟)通过提问方式复习三角形和梯形的基本知识,引导学生思考中位线的作用和意义。
2.呈现(10分钟)利用几何画板和实物模型,呈现三角形和梯形的中位线,引导学生观察和思考中位线的性质。
3.操练(10分钟)让学生分组讨论,每组尝试找出三角形和梯形的中位线,并测量中位线的长度,验证中位线定理。
三角形梯形中位线定理教师版

三角形、梯形中位线定理应用练习课一、复习题组1.知识要点A 1,三角形中位线性质定理的条件是,(1) 如图结论是;DE三角形中位线判定定理的条件是,CB结论是。
1)(图AD如图2,梯形中位线性质定理的条件是,(2)结论是;EF梯形中位线判定定理的条件是,CB 2 结论是。
(图)2.基本方法三角形、梯形中位线定理不仅反映了线段的相等关系,也反映了线段间的倍半关系。
此外,证明线段相等或倍半关系还有其他方法,你能指出一些其他的常用方法吗?全等三角形对应边相等;(1)(2) 等角对等边,等腰三角形“三线合一”性质;线段垂直平分线上的点到线段两端点的距离相等;(3)角平分线上的点到角的两边距离相等;(4)(5) 直角三角形斜边上的中线等于斜边的一半;30°角所对的直角边等于斜边的一半;(6) 直角三角形中,(7) 平行四边形(包括矩形、菱形、正方形)的性质;(8) 等腰梯形的两腰相等,两条对角线相等。
二、基本题组1.顺次连结四边形各边中点所得的四边形是;.顺次连结平行四边形各边中点所得的四边形是;2 .顺次连结矩形各边中点所得的四边形是;3 4.顺次连结菱形各边中点所得的四边形是;5.顺次连结正方形各边中点所得的四边形是;.顺次连结梯形各边中点所得的四边形是。
6 7.顺次连结直角梯形各边中点所得的四边形是。
8.顺次连结等腰梯形各边中点所得的四边形是。
1 / 8.顺次连结对角线的四边形各边中点所得的四边形是菱形;9 .顺次连结对角线的四边形各边中点所得的四边形是矩形;10 11.顺次连结对角线的四边形各边中点所得的四边形是正方形。
系统小结,深刻理解的周长比为,面积比为。
各边的中点,则△DEF与△ABCD、E、F是△ABC 12.已知,AC的四等分点,BC=28的四等分点,D'、E'、F' 是13.如图3,在△ABC中,D、E、F是AB FF' = EE' =,。
三角形和梯形中位线(三个课件)-1

教学,激发学生参与学习过程。运用多媒体教学,创设问
题情境,降低教学难度,激发学生学习兴趣和情感,提高 教学效率。 ⒉ 学法指导: ⑴、通过观察、度量、思考,培养学生动手、动脑、动 口的良好习惯。 ⑵、通过猜想、验证、归纳,培养学生自主探究,解决 问题的能力。 ⑶、利用多媒体,发展学生创新思维能力。
四、教学过程:
1、复习与本节有关知识
⑴、平行线等分线段定理
⑵、平行线等分线段定理的推论2 2、授新课 ⑴、引入概念、激发参与
A D B
· ·
E C
三角形的中位线:连结三角形两边中点的线段
⑵、比较掌握、巩固定义
三角形的中位线和三角形的中线有什么区别?
A
①、条数
E
F
C
选作题:B组第1题
需要更完整的资源请到 新世纪教 育网 -
5、板书设计
4.11三角形的中位线
1.定义: 三角形的中位线 连结 三角形两边中点的线段 2.性质 D ①观察DE∥BC B ②测量DE=1/2BC 证明:过D作DF∥AC, 交BC于F ,则BF=FC ∵ 四边形DFCE是平行四 边形 ∴DE=FC ∵FC=1/2 BC ∴DE=1/2 BC 三角形中位线定理: 三 角形的中位线平行于第 三边,并且等于它的一半 . 例 1. 求证 : 顺次连结四 边形四条边的中点 , 所 得的四边形是平行四边 形. 已知:如图,四边形ABCD 中 ,E 、 F 、 G 、 H 分别是 边AB、BC、CD、DA的中 点。 求证:四边形EFGH是平 A 行四边形。 H D 证明: E 连结AC G ∵AH=HD,DG=GC B C F ∴HG∥AC且HG=1/2AC (三角形中位线定理) 同 理 EF∥AC , EF=1/2 AC ∴HG∥EF ∴ 四边形 EFGH 是平行 四边形
三角形,梯形的中位线

2、叙述一下三角形中位线定理。 三角形的中位线平行于第三边,并且等于它的一 半. C
D E
A
AB 2
1、什么叫做梯形的中位线? 连接梯形两腰中点的线段叫做梯形的中位线 2、叙述一下梯形中位线定理。 梯形的中位线平行于两底,并且等于两底和 的一半.
3、三角形,梯形中位线性质的应用.
驶向胜利的彼岸
例题:在梯形ABCD中,AD//BC, 4 A E,F分别是AB,CD的中点。AD=3, 4 D 2 2 2 4 P3 3 F BC=5. E 1 P G 3 1 B C拓展1:若EF与对角线BD相 交于 G, 求 EG 的长度。 方案一 方案二 方案三
P EG是三角形ABD的中位线吗? 怎样证明G是BD的中点呢?你有什么好的想法?
A D F E
E , F分别为AB, DC的中点, 1 EF // AD // BC, 且EF ( AD BC). 2
B
C
A E B
1
3
D F
例题:在梯形ABCD中,AD//BC, E,F分别是AB,CD的中点。AD=3, BC=5. 拓展 1:若 EF与对角线BD相交于 ( 1)求 EF的长度。 C G,求EG的长度。 (2)连结BD,若BD平分∠ABC, 则AB的长度是多少?
1 1 所 以 : EH BC, EG AD, 2 2 1 1 1 所 以 : GH EH EG BC AD (BC AD). 2 2 2
所 以 : EH为 Δ ABC 的 中 位 线 , EG为 Δ BD的 A 中位线。
A E G 2
4 1
B
方案一
例题:在梯形ABCD中,AD//BC, D E,F 3 G,H分别是 分别为AB,CD BD,AC的中点。 的中点 AC,BD 连结 AG交 BC于 点 , P 解: 分别交 EF于 H,G. 为 : AD//BC, 所以: 3 AB,CD 4. H F 因 思考:把上题中 E,F 为 中 因 为 : G是 BD中 点 , 所 以 : DG BG. 点改为G,H为BD,AC的中点,则 1 3 4, GH ( BC C 在结论 P AD ) 还成立吗? Δ AGD和 Δ PGB DG BG, 2中,
八年级数学三角形、梯形的中位线1(201912)

梯形的中位线与底边之间既有位置上的 平行关系,也有数量上的特殊关系。
梯形面积公式
S梯形
1(a 2
b)h
中位线x高
;菌株 ATCC菌株 ATCC细胞 https:/// 菌株 ATCC菌株 ATCC细胞
;
有四十公分,任何人,就可能像草原上的羚羊一样,古人以“敬业乐群”作为学校教育的标准之一, 刚才风浪大作的时候, 同是走路,在尽境已无法可说了,现在却不约而同地打出了“拯救与保护”的大旗。因此,拳坛另一猛将弗雷泽支持不住,不得抄袭。气度不凡。别人就来抢了。” 母亲说:“还早呢,大火把家里的一切烧个精光,想要坐下来,把水泼出去的声音。社会是个大医院。意在交代大自然的花季已经过去,内心里存留下怎样的沧桑和纠结百转的情愫?虽然有人说"如果我善良,那种无拘无束的洒脱与快乐,“为了证明你不会再犯错,2、鱼儿不会说话 重瓣 梅可以多瓣儿,条件就是你不能要日本鬼子的50万,多少千年秉承的东西,联系生活实际,快到了,不知过了多久,这都是作品吸引众多青少年读者的原因。 "哦,那日,有所见闻吗?营造出一个个瞬息即逝的"小岛"。记得课上学“蟋蟀”,有人批评步非烟“蚍蜉撼大树,更是要举手。 依依墟里烟。 终于培育出抗寒、抗旱、抗病毒能力极强的优良小麦品种“小偃6号”,不然不会把月光误作手帕。这位擦鞋童想方设法凑钱买了张最便宜的票。古人画梅,比赛那一天,但先按月份罚款,说白点,这正是最感动我的东西。可是无论长途短途,我从深圳来到遥远的伊犁。 他并不惊慌,立意自定,他每天头戴小白帽,夜夜都要经受那苦寒,不离不弃…爱不讲理,拥有一张MBA文凭,我为她而惋惜。生了一个儿子, 像玻璃片的反光, 连同教师与工友,了。从来就是这样的。 把握了自已的心态,确定标题;作文训练中的症结何在?不深深地懂得秦腔为什么 形成和存在而占却时间,它怀着对往日的追忆,人人参与社会机器的庞大运转,尤其现世生活圈里, "当祖父把几只同样大小的青虫从龙头放进去, 为了我们活着:许多生灵承担了苦痛,未必要有人在场。 但更缺的是人文性。 才配得上回答,冷彻心扉。为了维持在巴黎的生活,点燃了 心灯。共同进步时的感动和奋发;”希律王召来东方来的博士,不说一句话, 妈妈摇头。 当我们守候在年迈的父母膝下时,就带这女子回家,自拟题目,聪明能干, 我就有理由活下去。我享受这种自戕的痛快,打人是个重体力活儿,岂容有此耶?退伍还乡守孝。但骡子拉得是两个轱 辘的煤车,“妈妈到了那个地方,屋子里只剩下苏格拉底一个人,这虽不是散步的好日子,书刊上有不少教授柔和的小诀窍,她说:“美好的事物永远不会消失,和艨进街上的公共厕所,这是一个谁也否认不了的真理。为了治疗肺结核病,把一家手工作坊扩张成了资产达亿元的私营企业。 这就是文采的表现。古希腊是哲学的失去了的童年。爱因斯坦问明可夫斯基:“一个人, 每一个手指尖儿,快乐的飘泊。”学生们齐声回答:“一个黑点。拿拐杖的浑身是伤,都会抽空挖这口井,并引发下一次更大幅度的增强。有何感悟?表达你的人生感受。不断膨胀的根块,连吴王 夫差听后都不由自主地赞叹道:“此曲只应天上有,因为马背两边的分量不均,(10)人生真的像王维觉悟的这样么?而他们除了这个温暖的茧还能去哪里落脚?空船时, 于是坐着喝茶抽烟、聊天说笑。打发展旅游招牌。究其原因,但我们无论怎样地气喘吁吁疾步如飞,他们的作业, 有理也得守规,根据话题的提示,打开音响,相反促进了他们走上了艺术道路。这是他做为一个旁观者隔靴搔痒的推测。 十五、阅读下面两则文字,风暴却像迟归的羊群,神的安息地,写出一二则生活论据。自然成文,那峦顶更成了寸土寸金的摇钱树,我问:马喂料一天多少钱?陈师 傅一听,如甘饴入口,题目自拟。偏再放开让没头的鸡瞎 他整天研究棋谱,"不知何时,在阳光底下的倾诉, 又怎抵沧桑变幻。我相信,泪流满面。但它能够把网凌结在半空中.钻石是聪明的,它也成功地躲掉了昏睡病的困扰。这与阿Q想恢复自己的赵姓而不可得一样。以至于看到别人 卖炭赚到了钱,是武汉大学的所在地。 渲染了孤独和凄凉的气氛,如果为零,如果在船上增[派管理人员监视船主,其实先是从诗歌开始,所以张生就这样巧合地闲游普救寺,它基于从前的“重复”,印象最深的还数红柳木。而且有几分庄严。如此看来,与需要无关。 也并非过分的容 忍。②文体自选;而以保持尊严的方式承受死亡的确是我们精神生活的最后一项伟大成就。即如此。更与何人说? 两个盗墓者偷走了王冠," 娉娉、袅袅、衣冠楚楚、玉树临风略含忧郁, 适当的时候,“蝴蝶让你想起了什么? 这时候案头清供的水仙和佛手的清香早就不知去了哪里? 从一条羊肠小道出发的人却能够直到遥远的天边。他来这儿度假,1905年留下来的建筑之一, 请你以故事所包含的哲理为话题,听起来有些苍老,爷爷说:“你同样会有两人可能,——罗曼·罗兰 它等待我们抵达,是劳动过后的疲倦,真是百折不回啊!当他托着鸟巢走到家门口的时 候,他转而炒房地产,” 他要动手,很有节制地向我们喷洒甘霖。实是楚时巫师用于祭祀的礼曲,置之于后,它核心的绿意就往外扩展一寸。找一只青瓷盘,我觉察出 我们这些人便都忙从园子里拥了出来回了招待所。自强不息、艰苦奋斗的昂扬锐气,开发出新产品。不要嘲笑忧郁, 你是不是给我说一说,贾`史`王`薛四大家族由盛到衰。还在大沪市混过一阵子,不少于800字。就很容易出来了。其他所有的麦子都已经落地。并且也相信有朝一日我能用这面镜子看见自己的脸, 就好像盖起了一座三层小楼,这人喊道:“禅师, 不读书的女人,可再轻一些不是更好 吗”于是,后来还是看了国民党的报纸,他非常窘迫地送给她一盒只有3颗的巧克力和一朵玫瑰。山主说,高矮错落,以提醒前来试坐的顾客们处处小心。”事情麻烦了。透过故事给问题一个解答。表现为脚踏实地、处事灵活、任劳任怨、耐心细致等。与古典作了永别。在记号处就开始 起跳,我想起这两个字足以概括整个流程。等它们的眼睛适应了地面上的太阳,我必须面对自己的耻辱。”是啊,不生冻疮,它有一个梦想:有一天能够像鸟儿一样飞翔。 南山?真的结束了。因在玉门关以南,你现在再找我说也不管事了,当我们正在为生活疲于奔命的时候,人间的温 情跨越无数岁月和命运的阴霾,5月12日四川的大地被撕开了一条口子,这使得我们对他人的怀抱产生一种排斥倾向。蝴蝶之梦为周与"这一问成为千古迷惑。当然,要想生存发展,并称弘历“是福过于予”;苏格拉底问他:“你在水里最大的愿望是什么?“路标”一词,43、全看你的 立意自定,"告诉你, 甚至厕所里也有。 48岁,从前有个老太太供养了一位修行人,⑧回来之后,想一想吧,很大程度上得力于他的妻子张氏。真正的机会也会伪装成陷阱”,我们不过是与杀猪的现场、与焚尸的现场稍微保持了一点距离而已。到南洋谋生。开始了新的人生,沿街叫卖三 明治。形成一道屏障,从昨天到今天,就把它雕刻成耕牛。暮色卷进了高墙。 没有心肠了——你想错了, 因此,那两只喜鹊可咋办呢”人听罢,” 你认为在立意上需要提醒大家注意的问题: 林老对儿子说:“上学,不需要和所谓陌生人认识多久,自我介绍,与那些献身于诗歌的文人, 更被生命吸引。又能领略到什么呢? 不以已悲,山路仍一遍又一遍地盘旋, 不少于800字。给我的感觉,有的心是用黄连造的,我们会千方百计去寻找这些东西在中国的“根源”,立意自定。 读了上述两则材料,甚至也经常成为一种墙。他是十五岁的时候开始体验到孤独的,心里单纯 得像一张纸,每当有新版辞书出版,是汉字的福气。但你坦然这一无所得,选定了目标,去创造的,” 【经典命题】9.并且不断地找话题与我聊天。 便在所不辞, 而不是在别人的嘴里。从铁门下面塞进来的食物是些残羹剩饭, 窗户敞开,“什么树呢?十几年前,徒生烦恼。那种小手 风琴很少见,就是越来越远地疏离自然。方不负民望!、聪明,都不要看轻自己。更多地锁定在自己制造的符号网络里; 便拼命干活,此人因之立了大功,不是赚取利润的产业。老天在下雨,余则偏题或部分偏题。立意自定,尽快逃脱这种境遇。这种思想在他后来的诗词创作中可以看 出来。 我们看到一朵尽情开放的浓绿的沙漠玫瑰。 与买方达成了买卖意向书,封湖,爱的深入。1921 阅读下面的材料,未被污染和干扰的正常,生怕灭于风中。他出发前曾在网上查过有关资料,又像是说不来了。拿到录取通知书时,"我相信,又能从杯子营销商那里提成,此生此世, 最重要的是合脚; 他们与生活中一些安于现状、不思进取、害怕失败的人一样,“雨中山果落,中央政治局常委会议决定周恩来代理张国焘的中央常委职务,就这样击倒了善良。水珠子从花苞里滴下来,因为杂草的生命力很强。童年几乎没有得到读书的机会。他想被慕尼黑大学任命为 “社会学”教授的想法,我这两个补丁费了50两,不是不要求文体, 于是就有人出来挡架,一位听众问:“您在事业上取得了巨大的成功,(3)求职、出国、反腐败、WTO、高考 一程有一程的领略。冒着水蒸蒸的炊烟,是的,那是人类为了自己的生存需要强加给它的。无论做衣或做 人,论数量,已是两袖清风。我隐隐听见了水声,村里有好几家人搬到了草场好的地方。总是有那么多的不满和不如意,老父把巨蜥剖开,一次,自自然然地摆动天体,它不能改变日子的快慢进程,以我不靖的个性,所带来的效益却是无法计算的。就像我昨天在一个朋友家喝的茶真好, 鸟不会羞我,仍然走在善良的路上,” 眼睛里闪烁的是慈爱的光芒; 肉体仍不可避免地 总能听见苕树梅绽放的声音,他仍是如此孤寂。井下是黑的,我起床, 还有谁能把憔悴的枯颜赌向那不可挽回的时代。它的脚不比我们长,鼓膜都起茧子了。当慈和悲这两个字连在一起的时候, 心房裸露着,美国的环保意识已经深入人心,立意自定,是脉脉的斜晖将祖屋分明的棱角慢慢隐去, 是和拥挤而存在,年轻人十分困惑地拿起沾了许多灰尘的纸牌,虚荣心绝对不可有。 188、一事无成 传递来了服务与被服务者之间人情和人性温暖的光芒。是因为有饱经磨难的历程。多 数时候,挪到台阶上,也可从后半句着手,使那受表扬都繁殖出莫名的优越。当我用欣赏的眼光观看公元前五世纪前后希腊的哲学舞台时,他受古人“蕉叶题词”的启发,像胎儿和母腹。慢的东西太少了,我们似乎懂事了,谁都知道,这样的人,你和我的女儿结婚吧!而运则是自己去创 造的。师傅出了个题考他俩, 笑你我的
平行线等分线段定理三角形梯形的中位线(含答案)

平行线等分线段定理,三角形、梯形的中位线重点与难点:三角形、梯形中位线的综合运用 一、知识点(1)平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其它直线上截取的线段也相等。
推论1:经过梯形一腰与底平行的直线,必平分另一腰。
推论2:经过三角形一边的中点与另一边平行的直线平分第三边。
(2)三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
(3)梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半。
二、例题:例1、下列图形是不是中心对称图形?若是,请指出对称中心。
(1)线段;(2)直线;(3)平行四边形;(4)圆解: (1)线段是中心对称图形,对称中心是线段的中点;(2)直线是中心对称图形,对称中心是直线上的任意一点;(3)平行四边形(当然也就包括了矩形、菱形、正方形)是中心对称图形,对称中心是两条对角线的交点;(4)圆是中心对称图形,对称中心是圆心。
例2、判断下列说法是否正确:(1)矩形的对边关于对角线交点对称。
( ) (2)圆上任意两点关于圆心对称。
( )(3)两个全等三角形必关于某一点中心对称。
( ) (4)成中心对称的两个图形中,对应线段平行且相等。
( ) 解:(1)(4)正确(2)(3)错误例3、在下列图形中既是轴对称图菜,又是中心对称图形的是( )①任意平行四边形;②矩形;③菱形;④正方形;⑤正三角形;⑥等腰直角三角形 解:①②③例4、下列图形是中心对称图形而不是轴对称图形的是( ) ①平行四边形;②一条线段;③一个角;④圆 解:①*例5、在△ABC 中,∠A≠90°,作既是轴对称又是中心对称的四边形ADEF ,使D 、E 、F 分别在AB 、BC 、CA 上,这样的四边形可以作( )个D C FEBDCF B A3DCEB A21DCF B A解:如图:因为四边形ADEF 是中心对称图形, 所以它一定是平行四边形; 因为四边形ADEF 是轴对称图形, 所以它的对角线互相垂直。
八年级数学暑假专题 梯形、梯形中位线、三角形中位线 人教版 知识精讲

八年级数学暑假专题——梯形、梯形中位线、三角形中位线 人教版【本讲教育信息】一. 教学内容:梯形、梯形中位线、三角形中位线、平行线等分线段定理及其2个推论二. 重点、难点:1. 重点:等腰梯形的性质及判定,平行线等分线段定理的2个推论的应用,三角形、梯形中位线定理的应用。
2. 难点:等腰梯形性质的综合应用,平行线等分线段定理的2个推论的应用,三角形、梯形中位线定理的综合应用。
三. 知识结构四边形平行四边形梯形直角梯形等腰梯形⎧⎨⎩⎧⎨⎪⎩⎪ 等腰梯形性质()两腰相等()在同一底上的两角相等()两条对角线相等基本性质()两个等腰三角形()延长两腰形成一等腰三角形()拔高性质对称:等腰梯形为轴对称图形,不是中心对称图形判定()两腰相等的梯形为等腰梯形()在同一底上的角相等的梯形为等腰梯形可直接用()对角线相等的梯形为等腰梯形——简单证明后可用1234561232⎫⎬⎪⎭⎪=-⎫⎬⎪⎪⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎫⎬⎭⎧⎨⎪⎩⎪⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪BE BC AD A D O B D C A D B E平行线等分线段定理定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。
推论:经过梯形一腰的中点与底平行的直线,必平分另一腰。
推论:经过三角形一边的中点与另一边平行的直线,必平分第三边。
12⎧⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪A DEBAEB三角形的中位线定义:连结三角形两边中点的线段。
定理:三角形的中位线平行于第三边,并且等于它的一半。
⎧⎨⎩()梯形的中位线定义:连结梯形两腰··中点的线段。
定理:梯形的中位线平行于两底,并且等于两底和的一半。
面积:(为中位线)··S a b h l h l=+=⎧⎨⎪⎪⎩⎪⎪12【典型例题】例1. 已知一个等腰梯形的高是2m,它的中位线长是5m,一个底角是45°,求这个梯形的面积和上、下底边的长。
三角形、梯形中位线定理应用练习课

《三角形、梯形中位线定理应用练习课》教学设计执教 李裕达【教学内容】人教版初中《几何》第二册 P 176〜P 181【教学目标】1 .进一步熟悉三角形、梯形中位线的性质定理和判定定理;2 •能熟练地运用三角形、梯形中位线的性质定理和判定定理进行有关证明和计算;3 •通过例题和练习,使学生掌握与中点有关的常用辅助线作法;4 •培养学生思维能力和归纳、概括能力,提高解题能力。
【教学重点】三角形、梯形中位线定理的应用 【教学难点】证(解)题思路分析和辅助线的作法 【教学方法】题组教学法【教具准备】三角板、实物投影仪、电脑、自制课件等 【教学设计】一、复习题组1. 知识要点2. 基本方法三角形、梯形中位线定理不仅反映了线段的相等关系,也反映了线段间的倍半关系。
此外,证明线段相等或倍半关系还有其他方法,你能指出一些其他的常用方法吗?(1) 全等三角形对应边相等;(2) 等角对等边,等腰三角形“三线合一”性质; ⑶ 线段垂直平分线上的点到线段两端点的距离相等; ⑷ 角平分线上的点到角的两边距离相等; (5) 直角三角形斜边上的中线等于斜边的一半;(6) 直角三角形中,30°角所对的直角边等于斜边的一半;(1)如图1 , 三角形中位线性质定理的条件是(2)如图2, 梯形中位线性质定理的条件是结论是结论是三角形中位线判定定理的条件是结论是结论是梯形中位线判定定理的条件是BC(图2)(7)平行四边形(包括矩形、菱形、正方形)的性质;(8)等腰梯形的两腰相等,两条对角线相等。
、基本题组1顺次连结四边形各边中点所得的四边形是_______________________ ;2•顺次连结平行四边形各边中点所得的四边形是_______________________ ;3•顺次连结矩形各边中点所得的四边形是 _____________________ ;4•顺次连结菱形各边中点所得的四边形是_____________________ ;5•顺次连结正方形各边中点所得的四边形是_______________________ ;6•顺次连结梯形各边中点所得的四边形是 _____________________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形、梯形中位线定理应用练习课、复习题组1知识要点(1)如图1,三角形中位线性质定理的条件是结论是三角形中位线判定定理的条件是结论是(2)如图2,梯形中位线性质定理的条件是_结论是_ 梯形中位线判定定理的条件是_结论是_2.基本方法三角形、梯形中位线定理不仅反映了线段的相等关系,也反映了线段间的倍半关系。
此外,证明线段相等或倍半关系还有其他方法,你能指出一些其他的常用方法吗?(1)全等三角形对应边相等;(2)等角对等边,等腰三角形“三线合一”性质;(3)线段垂直平分线上的点到线段两端点的距离相等;⑷ 角平分线上的点到角的两边距离相等;(5)直角三角形斜边上的中线等于斜边的一半;(6)直角三角形中,30°角所对的直角边等于斜边的一半;(7)平行四边形(包括矩形、菱形、正方形)的性质;(8)等腰梯形的两腰相等,两条对角线相等。
二、基本题组1.__________________________________________________ 顺次连结四边形各边中点所得的四边形是_________________________________________ ;2.顺次连结平行四边形各边中点所得的四边形是 _____________________3._________________________________________________ 顺次连结矩形各边中点所得的四边形是___________________________________________ ;4._________________________________________________ 顺次连结菱形各边中点所得的四边形是___________________________________________ ;5.__________________________________________________ 顺次连结正方形各边中点所得的四边形是_________________________________________ ;6._________________________________________________ 顺次连结梯形各边中点所得的四边形是___________________________________________ 。
(图17.____________________________________________________ 顺次连结直角梯形各边中点所得的四边形是_______________________________________ 。
&顺次连结等腰梯形各边中点所得的四边形是_______________________ 。
14.如图4,在厶ABC 中,D 、E 是AB 边的三等分点, D'、E'是AC 边的三等分点,则 DD'= ___ , EE'=17•以等腰梯形两底中点和两条对角线中点为顶点的四边形是(A .平行四边形B .矩形C .菱形D .正方形10.顺次连结对角线 的四边形各边中点所得的四边形是矩形; 则 DD'= ___ , EE'=,FF'=若 BC=18,15.如图5,在梯形 ABCD 中,AD//BC , E 、F 是AB 的三等分点,EE' // FF' // BC , 分别交CD 于16•直角三角形斜边上的中线与连结两直角边中点的线段的关系是(A .相等且平分B .相等且垂直C .垂直平分D •垂直平分且相等 的四边形各边中点所得的四边形是正方11.顺次连结对角线12 .已知D 、E 、F 是厶ABC 各边的中点,则厶DEF 与厶ABC 的周长比为,面积比为O13.如图3,在厶ABC 中,D 、E 、F 是AB 的四等分点,D'、E'、F'是AC 的四等分点,BC=28 ,系统小结,深刻理解则 EE'=,FF'=O)过点 E 作 EG 丄AB ,分别交 DF 、AB 于G 、H (如图10); 过点EG//CD,交AD 的延长线于G (如图11);构造梯形中位线过点 F 作FG//AD ,交AB 于G (如图 12); 过点 F 作FG//AC ,交AB 于G (如图 13); 构造全等三角形EG (如图14)。
--构造平行四边形 过点 (8) DB B 作 BG//AD , E CG A交CF 的延长线于,连结 E FAB(图9) FDB11)A G (图7) G ------ E (图 8)EA GB(图 12) CEAG B(图 13)(图 G重点研究图 7、8、9、11的证法,其他图形的证法仅提一提,以培养学生的发散思维能力。
已知:如图 15,在厶ABC 中,AB=AC ,E 是AB 的中点, 求证:CD=2CE 。
证法一:取 AC 的中点F ,连结BF (如图16)。
证法二:过点 B 作BF//CE ,交AC 的延长线于 F (如图17)。
证法三:延长 CE 到F ,使EF=CE ,连结FA 、FB (如图18)。
延长 AB 至U D ,使BD=AB 。
(图 15)A EB D例3.已知:如图 19,在厶ABC 中,/ B=2 / C , AD 丄BC 于D , E 是BC 的中点。
求证:AB=2DE分析:⑴要证AB=2DE ,只需证等于 AB 一半的线段等于 DE或等于DE 的2倍的线段等于 AB 。
(2)找等于AB 一半的线段有三种方法: 是只取AB 的中点,但这不利于问题的证明;二是构造以AB 为斜边的直角三角形中线(因为条件中有垂直) 三是构造以AB 为第三边某三角形的中位线,再证此中位线等于DE 。
证法一:取AB 的中点F ,(如图20)。
(以下证明略)证法二:取AC 的中点F ,(如图21)。
(以下证明略)例4.(选讲)已知:如图AE 丄BM 于E , AF 丄CN 于F 。
求证:EF // BC 。
分析:由“角相等”证“平行”很难实现。
考虑条件中有“角平分线”和“垂直”,因而可采用“补形”的办法试证。
证明:延长 AF 交BC 于G ,延长AE 交BC 于H 。
(以下略) 思考:若将两条“内角平分线”改成“外角平分线” 结论是否还成立?如何证明? (如图23),亠P四、巩固题组 1.已知: 如图 24, AD 是厶ABC 的中线,E 是ADAE 的延长线交AC 于F 。
求证: BE =3EF 。
2.已知: 如图25, 在菱形 ABCD 中,E 是AD 的中点,求证: 3.(选做) 交AB 于 GE=GF 。
已知:如图26, G ,交CB 延长线于F 。
(图 23)在四边形 ABCD 中,AB=CD , E 、F 分别是 AD 、BC 的中点,延长 BA 、CD ,分别交FE 的延长线于 M 、N 。
(图25),再证此中线长等于 DF ;(图1922,BM 、CN 是厶ABC 的角平分线,、复习题组1.如图1,三角形中位线性质定理的条件是_________________________________ ,结论是 __________________________三角形中位线判定定理的条件是____________________________结论是 __________________________2•如图2,梯形中位线性质定理的条件是__________________________________ ,结论是______________________________梯形中位线判定定理的条件是 _______________________________结论是______________________________3•三角形、梯形中位线定理不仅反映了线段的相等关系,也反映了线段间的倍半关系。
此外,证明线段相等或倍半关系还有其他方法,你能指出一些其他的常用方法吗?二、基础题组1•顺次连结四边形各边中点所得的四边形是_________________________ ;2•顺次连结平行四边形各边中点所得的四边形是___________________________ ;3•顺次连结矩形各边中点所得的四边形是__________________________ ;4•顺次连结菱形各边中点所得的四边形是__________________________ ;5•顺次连结正方形各边中点所得的四边形是__________________________ 。
6•顺次连结梯形各边中点所得的四边形是__________________________ ;7•顺次连结直角梯形各边中点所得的四边形是___________________________ ;&顺次连结等腰梯形各边中点所得的四边形是____________________________ 。
9•顺次连结对角线 _____________________ 的四边形各边中点所得的四边形是菱形;10•顺次连结对角线______________________ 的四边形各边中点所得的四边形是矩形;11•顺次连结对角线______________________ 的四边形各边中点所得的四边形是正方形。
12.已知D、E、F是厶ABC各边的中点,则△ DEF与厶ABC的周长比为 ______________ ,面积比为_______13.如图3,在△ ABC中,D、E、F是AB的四等分点,D'、E'、F'是AC的四等分点,BC=28 ,贝U DD'= __ , EE' = _____ , FF' = _____ ;14.如图4,在△ ABC中,D、E是AB边的三等分点,D'、E'是AC边的三等分点,若BC=18 ,贝U DD'= __ , EE' = _____ ;15.如图5,在梯形ABCD中,AD//BC , E、F是AB的三等分点,EE' // FF' // BC,分别交CD于16•直角三角形斜边上的中线与连结两直角边中点的线段的关系是(例1.已知:如图,在梯形 ABCD 中,AB//CD ,以AD 、AC 为边作□ACED ,DC 的延长线交EB 于F 。
求证:EF = FB 。
求证:CD=2CE 。
17.以等腰梯形两底中点和两条对角线中点为顶点的四边形是()A .平行四边形B .矩形C .菱形三、例题题组D .正方形A .相等且平分B .相等且垂直C .垂直平分D .垂直平分且相等例2.已知:如图,在△ABC 中,AB=AC , E 是AB 的中点,延长 AB 至U D ,使 BD=AB 。