极差、方差与标准差-边讲边练(含答案)-
方差练习题及答案

方差练习题及答案在统计学中,方差是用于衡量数据变异程度的重要概念。
为了帮助大家更好地理解和应用方差,下面将为大家提供一些方差练习题及答案。
通过练习,相信大家能够加深对方差的理解,并提升自己的统计学能力。
练习题1:某家电公司对一种新推出的电视机型进行了质量测试。
经过抽取一定数量的样本,得到了以下质量检测结果(单位:小时):样本A:120, 150, 140, 135, 130样本B:125, 130, 140, 135, 145样本C:130, 135, 125, 140, 130请计算样本A、样本B和样本C的方差,并分析样本数据的变异情况。
答案:首先,我们需要计算每个样本的平均值。
对于样本A,平均值为(120+150+140+135+130)/5 = 135,样本B的平均值为(125+130+140+135+145)/5 = 135,样本C的平均值为(130+135+125+140+130)/5 = 132。
然后,我们计算每个样本数据与平均值的偏差平方,得到如下结果:样本A的偏差平方:(120-135)²,(150-135)²,(140-135)²,(135-135)²,(130-135)²样本B的偏差平方:(125-135)²,(130-135)²,(140-135)²,(135-135)²,(145-135)²样本C的偏差平方:(130-132)²,(135-132)²,(125-132)²,(140-132)²,(130-132)²将每个样本的偏差平方相加,并求平均值,即可得到方差的计算结果:样本A的方差:((120-135)² + (150-135)² + (140-135)² + (135-135)² + (130-135)²)/5 = 112样本B的方差:((125-135)² + (130-135)² + (140-135)² + (135-135)² + (145-135)²)/5 = 100样本C的方差:((130-132)² + (135-132)² + (125-132)² + (140-132)² + (130-132)²)/5 = 17.6通过对样本数据的方差计算,我们可以看出样本A的方差最大,而样本C的方差最小。
2024年最新方差与标准差测试题及答案(完整版)

师需比较这两人5次数学成绩的( ).
A.平均数;
B.方差;
C.众数;
D.中位数.
三、简答题
1.甲、乙两人在相同条件下各射靶的成绩情况如图所示。
(1)
请填写下表
平均数 方差 中位数 命中9环及以上次数
第2页 共7页
甲7 乙7 (2)
1 5.4 请从下列三个不同的角度对这次测试结果进行分析:
①从平均数和方差相结合看, 分析谁的成绩稳定些;
2
2
么成绩较为整齐的是( )
A.甲班 B.乙班 C.两班一样整齐D.无法确定
4.若一组数据a1,a2,…,an的方差是5,则一组新数据2a1,2a2 ,…,2an的方差是( )
A.5 B.10 C.20 D.50
5.小明与小华本学期都参加了5次数学考试(总分均为100分),数学
老师想判断这两位同学的数学成绩谁更稳定,在作统计分析时,老
3、两人练习百米跑步,甲的成绩为13、12、14、12、12;乙的成 绩为12、11、13、14、12,问谁的成绩好一些?谁的成绩稳定一些 ?(单位为s)
第4页 共7页
4、已知样本甲为a1、a2、a3样本乙为b1、b2、b3,若a1-
b2=a2-b2=a3-
b3
,那么样本甲与样本乙的方差有什么关系,并证明你的结论。
第7页 共7页
第5页 共7页
5、有甲、乙、丙三名射击运动员,要从中选拔一名参加比赛,在选 技赛中每人打10发,环数如下: 甲:10、10、9、10、9、9、9、9、9、9, 乙:10、10、10、9、10、8、8、10、10、8, 丙:10、9、8、10、8、9、10、9、9、9。
根据以上环数谁应参加比赛?
答案 一、填空题 1. 乙
(完整版)方差专项练习

极差、方差与标准差专项练习⑴极差极差=最大值-最小值.⑵方差:用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s 2来表示。
⑶标准差:标准差=⑷方差(或标准差)越大,,稳定性越小;反之,方差越小,稳定性越好.一、填空题1、数据-2,-1,3,1,2的方差是_________极差是 _______2、 七个数1,2,5,3,4,a ,3的平均数是3,则a =________,这七个数的方差是________。
3、若一组数据3,一1,a ,-3,3的平均数是a 的则这组数据的标准差是_________。
4、已知,一组数据1, 2,……,n 的平均数是10,方差是2, ①数据1+3, 2+3,……,n+3的平均数是 方差是 , ②数据2×1,2×2,……,2×n 的平均数是 方是 , ③数据2×1+3,2×2+3,……,2×n+3的平均数是 方差是 。
5、数据:2-,1-,0,x ,1的平均数是0,则x = .方差=2S .6、如果样本方差[]242322212)2()2()2()2(41-+-+-+-=x x x x S ,那么这个样本的平均数为 .样本容量为 .7、已知321,,x x x 的平均数=x 10,方差=2S 3,则3212,2,2x x x 的平均数为 ,方差为 .二、选择题:8、样本方差的作用是A 、估计总体的平均水平B 、表示样本的平均水平C 、表示总体的波动大D 、表示样本的波动大小,从而估计总体的波动大小9、一个样本的方差是0,若中位数是a ,那么它的平均数是A 、等于aB 、不等于 aC 、大于 aD 、小于a10、已知样本数据101,98,102,100,99,则这个样本的标准差是 A、0 B、1 C、2 D、211、如果给定数组中每一个数都减去同一非零常数,则数据的A、平均数改变,方差不变B、平均数改变,方差改变C、平均数不变,方差不变D、平均数不变,方差改变三、问答题:1、为了考察甲、乙两种农作物的长势,分别从中抽取了10株苗,测得苗高如下:(单位:mm)甲:9,10,11,12,7,13,10,8,12,8乙:8,13,12,11,10,12,7,7,9,11请你经过计算后回答如下问题:(1)哪种农作物的10株苗长的比较高?(2)哪种农作物的10株苗长的比较整齐?2. 从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)甲:9、10、11、12、7、13、10、8、12、8;乙:8、13、12、11、10、12、7、7、9、11;问:(1)哪种农作物的苗长的比较高?(2)哪种农作物的苗长得比较整齐?3. 段巍和金志强两人参加体育项目训练,近期的5次测试成绩如4.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:甲:7、8、6、8、6、5、9、10、7、4乙:9、5、7、8、7、6、8、6、7、7经过计算,两人射击环数的平均数相同,但S2甲 S2乙,所以确定去参加比赛。
极差、方差及标准差典型例题及习题(2)

典型例题例1计算下列一组数据的极差、方差及标准差(精确到0.01);50,55,96,98,65,100,70,90,85,100.解极差为100-50=50.平均数为.方差为:标准差为.于是,这组数据的极差、方差和标准差分别为50,334.69,18.29.例2若样本,,…,的平均数为10,方差为2,则对于样本,,…,,下列结论正确的是()(A)平均数为10,方差为2 (B)平均数为11,方差为3(C)平均数为11,方差为2 (D)平均数为12,方差为4解由已知条件,得故应选(C)说明此题充分应用了已知条件来进行整体计算,使运算十分简捷.例3 如图,公园里有两条石级路,哪条石级走起来更舒适?(图中数字表示每一级的高度,单位:厘米)解由于15+14+14+16+16+15=90,19+10+17+18+15+11=90,所以两条石级路总高度一样,都是90厘米;由于都是6个台阶,所以台阶的平均高度也一样,都15厘米.上台阶是否舒适,就看台阶的高低起伏情况如何,因此,需要计算两条石级路台阶高度的极差、方差和标准差.左边石级路台阶高度的极差为16-14=2,方差为:,标准差为;右边石级路台阶高度的极差为19-10=9,方差为:,标准差为.由以上计算可见,左边石级路的极差、方差和标准差都比右边小,所以左边石级路起伏小,走起来舒服些.例4要从甲、乙、丙三位射击运动员中选拔一名参加比赛,在预选赛中,他们每人各打10发子弹,命中的环数如下:甲:10 10 9 10 9 9 9 9 9 9 ;乙:10 10 10 9 10 8 8 10 10 8;丙:10 9 8 10 8 9 10 9 9 9 .根据这次成绩,应该选拔谁去参加比赛?分析本题着重考查对方差的意义及实际运用.解经计算,甲、乙、丙三人命中的总环数分别为93,93,91.所以丙应先遭淘汰.设甲、乙的命中环数分别为和,方差分别是和,则:.∵∴在总成绩相同的条件下,应选择水平发挥较稳定的运动员甲参加比赛.说明丙的总成绩显著,应先遭淘汰,然后利用方差的含义,来考查甲、乙二人成绩的稳定性.例5 小明和小华假期到工厂体验生活,加工直径为100毫米的零件,为了检验他们的产品的质量.从中各随机抽出6件进行测量,测得数据如下:(单位:毫米)小明:99 10 98 100 100 103小华:99 100 102 99 100 100(1)分别计算小明和小华这6件产品的极差、平均数与方差.(2)根据你的计算结果,说明他们两人谁加工的零件更符合要求.解(1)小明:极差=5,平均数=100,方差,小华:极差=3,平均数=100,方差=1.(2)计算结果说明,小明加工的零件极差大,方差也大,小华加工的零件极差小,方差小,所以小华加工的零件更符合要求。
(完整版)方差专项练习

极差、方差与标准差专项练习⑴极差极差=最大值-最小值.⑵方差:用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s 2来表示。
⑶标准差:标准差=⑷方差(或标准差)越大,,稳定性越小;反之,方差越小,稳定性越好.一、填空题1、数据-2,-1,3,1,2的方差是_________极差是 _______2、 七个数1,2,5,3,4,a ,3的平均数是3,则a =________,这七个数的方差是________。
3、若一组数据3,一1,a ,-3,3的平均数是a 的则这组数据的标准差是_________。
4、已知,一组数据1, 2,……,n 的平均数是10,方差是2, ①数据1+3, 2+3,……,n+3的平均数是 方差是 , ②数据2×1,2×2,……,2×n 的平均数是 方是 , ③数据2×1+3,2×2+3,……,2×n+3的平均数是 方差是 。
5、数据:2-,1-,0,x ,1的平均数是0,则x = .方差=2S .6、如果样本方差[]242322212)2()2()2()2(41-+-+-+-=x x x x S ,那么这个样本的平均数为 .样本容量为 .7、已知321,,x x x 的平均数=x 10,方差=2S 3,则3212,2,2x x x 的平均数为 ,方差为 .二、选择题:8、样本方差的作用是A 、估计总体的平均水平B 、表示样本的平均水平C 、表示总体的波动大D 、表示样本的波动大小,从而估计总体的波动大小9、一个样本的方差是0,若中位数是a ,那么它的平均数是A 、等于aB 、不等于 aC 、大于 aD 、小于a10、已知样本数据101,98,102,100,99,则这个样本的标准差是 A、0 B、1 C、2 D、211、如果给定数组中每一个数都减去同一非零常数,则数据的A、平均数改变,方差不变B、平均数改变,方差改变C、平均数不变,方差不变D、平均数不变,方差改变三、问答题:1、为了考察甲、乙两种农作物的长势,分别从中抽取了10株苗,测得苗高如下:(单位:mm)甲:9,10,11,12,7,13,10,8,12,8乙:8,13,12,11,10,12,7,7,9,11请你经过计算后回答如下问题:(1)哪种农作物的10株苗长的比较高?(2)哪种农作物的10株苗长的比较整齐?2. 从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)甲:9、10、11、12、7、13、10、8、12、8;乙:8、13、12、11、10、12、7、7、9、11;问:(1)哪种农作物的苗长的比较高?(2)哪种农作物的苗长得比较整齐?3. 段巍和金志强两人参加体育项目训练,近期的5次测试成绩如4.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:甲:7、8、6、8、6、5、9、10、7、4乙:9、5、7、8、7、6、8、6、7、7经过计算,两人射击环数的平均数相同,但S2甲 S2乙,所以确定去参加比赛。
21.3极差、方差与标准差同步练习.doc

21.3极差、方差与标准差同步练习【基础知识训练】•1.用一纽数据中的________ 來反应这组数据的变化范围,用这种方法得到的差称为极差.2.(2006,芜湖市)一纽.数据5,8,x, 10, 4的平均数是2x,则这纽数据的•方差是__________ .3.(2006,长春市)5名同学目测同一本教科书的宽度时,产生的误差如下(单位:cm):2,-2, -1, 1, 0,则这组数据的极差为___________ cm.4.若样本1, 2, 3, x的平均数为5,又样本1, 2, 3, x・,y的平均数为6,则样本1, 2,3,x, y的极差是________ ,方差是_______ ,标准差是_______ .5.已知一纽数据0, 1, 2, 3, 4的方差为2,则数据20., 21, 22, 23, 24的方差为_______________ ,标准差为________ .6•计算一组数据:8, 9, 10, 11, 12的方差为()A. 1B. 2C. 3D. 47.甲、乙二人在相同情况下,各射靶10次,两人命中环数的平均数L I.= X^=7,方差S甲J3, Sz?=1.2,则射击成绩较稳定的是()A.甲B.乙,C.—样D.不能确定【创新能力应用】8.一组数据-8, -4, 5, 6, 7, 7, 8, 9的极差是_____________ ,方差是______ ,标准差是_______ .9.若样本xi,X2,……•,Xn的平均数为x=5,方差S2=0.025,则样本4X〔,4X2,……,4x n的平均数;二_____ ,方差S'?二 _____ .10.甲、乙两八年级学生在一学期里多次检测中,其数学成绩的平均分相等,但他们成绩的方差不等,那么止确评价他们的数学学习情况的是()A.学习水平一样B•成绩虽然--样,但方差大的学生学习潜力大C.虽然平均成绩一样,但方差小的学习成绩稳定D.方差较小的学习成绩不稳定,忽高忽低11.某县种鸡场为研究不同种鸡的产蛋量,各选十只产蛋母鸡,它们十天的产蛋量如下表, 试问12.在某旅游景区丄山的一条小路上,有一些断断续续的台阶,如图是其中的甲、乙段台阶路的示意图.请你用所学过的有关统计知识(平均数,中位数,方差和极差)冋答下列问题:(1) 两段台阶路有哪些相同点和不同点? (2) 哪段台阶路走起來更舒服?为什么?(-3)为方便游客行走,需要重新整修上山的小路,对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.下图中的数字表示第一级台阶的高度(单位:cm ),.并且数15, 16, 16, 14, 14, 152的方差S 甲2=-,数据11, 15, 18,313. 对一组数据65, 67, 69, 70, 71, 73, 75,用计算器求该组数据的方差和标准差 (1)其计算过程止确的顺序为()%1 按键I 2ndF |, |STAl1,显示 @;%1 按键:嵋,|DATA |,因,|DATA |……囤,|DATA |输入所有数据;显示讪回,同……@; %1 按键显示 13.162277 66|,%1 按键冈,0,显示回;A.①®③④.B.②①③④C.③①②④D. ©©②④(2)计算器显示的方差是 _______ ,标准差是 _________ •【三新精英园】14. 甲、乙两班举行电脑汉字输入速度比赛,备选10名学生参加,各班参赛学生每分钟输入汉字个数统计如下表输入汉字 (个) 132 133 134 135 136 137 众数 中位数 平均数 (X ) 方差(S.2)甲班学生 (人)1 0 1 52 1 135 135 1351.6乙班学生 (人)0 1 41 2 2请填写上表中乙班学生的相关数据,再根据所学的统计学知识,从不同方面评价甲、乙 两班学生的比赛成绩.(至少从两个方面进行评价)35 9的方差荷盲 甲路段 乙路段答案:I.鼠大值与最小值的差2. 6.8 3. 4 4. 13, 26, ^26 5. 2,近6. B7. B8. 17, 31.2, 5.69. 20, 0.4 10. CII.S甲2=0.84, S乙Jo.61, S/>sj,可以估计,乙种•鸡比甲种鸡产蛋量稳定12- (1 ) •:兀甲=15,兀乙=15,・•・相同点:两面台阶路高度的平均数相同.不同点:两而台阶路高度的中位数,方差和极差均不相同.(2)甲路线走起来更舒服一些,因为它的台队高度的方差小.(3)每个台队高度均为15cm (原平均数),使得方差为013.(1) A, (2) 10, 3」614.众数是134,中位数134.5,平均数135,方差1.8,评价:①从众数看,甲班每分钟输入135字的人数最多,乙班每分钟输入134字的人数最多,②从中位数看,甲班每分钟输入135字及以上的人数比乙班人数多,③从方差看,S 甲〈sr,甲班成绩波动小较稳定.。
极差.方差与标准差(知识点讲解)

极差.方差与标准差(知识点讲解)极差、方差与标准差一、本节知识导学本节以自主探索为主,并初步体验:对图的观察和分析是科学研究的重要方法。
通过例题发现极差(最大值-最小值)的作用:用来表示数据高低起伏的变化大小;同时也希望同学们通过深入思考发现极差的不足之处:极差只能反应一组数据中两个极端值之间的差异情况,对其他数据的波动情况不敏感。
因此有必要重新找一个对整组数据的波动情况更敏感的指标, 构造方差前请同学们注意以下几个方面: 1.为什么要用“每次成绩”和“平均成绩”相减。
2.为什么要“平方”。
3.为什么“求平均数”比“求和”更好。
同时请同学们意识到:比较两组数据的方差有一个前提条件是,两组数据要一样多。
对于方差的学习,重点在于方差公式的导出和对于方差概念的理解,而不是数字的计算,应充分利用计算器和计算机去完成繁杂的计算。
对于方差与标准差之间除了计算公式不一样,数量单位也不一样但通过求算术平方根运算又可以将他们联系在一起。
二、例题1.不通过计算,比较图中(1)(2)两组数据的平均值和标准差分析:平均值是反映一组数据的平均水平,标准差是反映一组数据与其平均值的离散程度。
本例不通过计算,从折线图来估算标准差,应先估算平均值的大小。
解:从图(1)(2)中可以看出,两组数据的平均值相等。
(图(1)中数据与图(2)中前10个数据相等, 且图(2)中后几个数据不影响平均值)。
图(1)的标准差比图(2)的标准差大。
(因为图(1)中各数据与其平均值离散程度大,图(2)中前10个数据与其平均值的离散程度与图(1)相同,而后几个数据与其平均值的离散程度小。
因此整体上说图(2)所有数据与其平均值的离散程度小于图(1)。
)2.求下列数据的方差(小数点后保留两位):5,7,9,9,10,11,13,14。
分析:要求方差,必须先求平均数。
解:= (5+7+9+9+10+11+13+14)=9.75方差s 2= =7.69[(5-9.75)2+(7-9.75)2+……+(14-9.75) 2]3.求下列一组数据的极差、方差和标准差(小数点后保留两位):50,55,96,98,65,100,70,90,85,100分析:由于标准差是方差的变形所以一般情况下先求方差解:极差为100-50=50平均数为=(50+55+96+98+65+100+70+90+85+100)=80.9方差为:s 2= =334.69 标准差为:s=[(50-80.9)2+(55-80.9)2+……+(100-80.9) 2]=18.294.在某次数学竞赛中,甲、乙两班的成绩如下已经算出两班的平均数都是80分,请你根据已有的统计知识分析两个班的成绩。
八年级数学下册第21章数据的整理与初步处理21.3极差方差与标准差习题课件华东师大版

1×0.544 6=0.108 92≈0.11.
5
S乙2 甲0, 的极差为11.94-11.01=0.93,乙的极差为0.
1.(2012·达州中考)2011年达州市各县(市、区)的户籍人口统 计表如下:
则达州市各县(市、区)人口数的极差和中位数分别是( )
(A)145万人 130万人
(B)103万人 130万人
S甲2 S…乙2 .……………………7分 答:乙山上的杨梅产量较稳定.
看平均数,还要比较方 差的大小.
………………………………………………………………8分
【规律总结】
计算方差时的规律
【跟踪训练】
4.(2012·盐城中考)甲、乙、丙、丁四人进行射击测试,每人10
次射击的平均成绩恰好都是9.4环,方差分别是 S甲2 0.90,S乙2 1.22,
S丙2 0.43,S丁2 1.68.在本次射击测试中,成绩最稳定的是( )
(A)甲
(B)乙
(C)丙
(D)丁
【解析】选C.成绩的稳定性决定于方差的大小,方差越小的越稳
定,故选C.
5.已知一个样本1,3,2,5,4,则这个样本的标准差为________.
【解析】样本的平均数 x 1 3 1 4 2 5 3,
【规范解答】 (1)甲山上4棵树的产量分别为: 50千克、36千克、40千克、34千克, ∴甲山产量的样本平均数为: x 50 36 40 34… …40(…千…克…);…………………1分
4
乙山上4棵树的产量分别为: 36千克、40千克、48千克、36千克,
∴乙山产量的样本平均数为: x 36 40 48 36… …40…(千…克…);……………………2分
方差与标准差 【例2】(8分)王大伯几年前承办了甲、乙两片荒山,各栽100棵 杨梅树,成活98%,现已挂果,经济效益初步显现,为了分析收成情 况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如 折线统计图所示. (1)分别计算甲、乙两山样本的平均数,并估算出甲、乙两山杨 梅的产量总和;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极差、方差与标准差学习目标1.理解极差、方差、标准差可以用来表示一组数据的波动情况,•知道三个统计量各自的长处与不足.2.学会用极差、方差与标准差来处理数据.3.会用计算器(计算机)求方差和标准差.知识网络背景材料1.反映一组数据集中程度的指标有哪些?2.如何反映一组数据的离散程度?反映一组数据离散程度的量有哪些?3.什么是极差?什么是方差?什么是标准差?方差与标准差的关系是什么?预习反馈1.极差是,它反映了.2.方差是标准差的,如果一组数据的方差是3,那么它的标准差是.知识要点详解1.表示一组数据离散程度的指标(1)极差用一组数据中的最大数据减去最小的数据所得到的差来反映这组数据的变化范围,这个差就称为极差.(2)方差①定义一组数据中各数据与这组数据的平均数的差的平方和的平均数叫做这组数据的方差.②方差的意义方差是反映一组数据波动大小的量,它表示的是一组数据偏离平均值的情况上.方差越大,数据组的波动就越大.③方差的计算公式数据x1,x2,x3, …n的方差是S2=1(x1-x)2+(x2-x)2+(x3-x)2+…+(x)n注意:①上面的计算公式是一般情况下计算方差的办法;②当数据组中的数据个数比较少且绝对值比较小时,又可以采用下面的公式来计算方差:[(x122232+…2)x2]S2=1n③如果数据组中的每一个数比较接近于常数a时,•也可以采用下面的公式计算方差:1[(x`12`22`32+…`2)x`2](其中x1`、x2`、x3`……`分别n等于x1、x2、x3……,•x`是数据组x1`、x2`、x3`……`的平均数)(3)标准差方差的算术平方根叫做标准差.标准差和方差一样,也是反映一组数据波动大小的指标.同样,标准差越大,数据组的波动就越大.触类旁通1.求数据组9、10、11、12的方差.2.若小明参加体育项目训练近期的5次测试成绩为13、14、13、12、13.求测试成绩的极差、标准差和方差.典型例题例1 计算下面两组数据的方差(1)-1 2 -2 3 -1(2)40 38 42 45 41 39分析:第(1)组数据的绝对值比较小,可以利用公式②计算方差;第(2)•题中的数据比较接近于40,可以利用公式③计算方差.解:(1)平均数为:(-1+2-2+3-1)÷5=0.2,方差为:1[(-1)2+22+(-2)2+(-1)2+32-5×0.22]=3.76.5(2)原数据组中的每一个数都减去40,得:0 -2 2 5 1 -1新数据组的平均数为:16(0-2+2+5+1-1)=56.方差是:16 [02+(-2)2+22+52+12+(-1)-6×(56)2]≈5.14例2 八(1)班在一次单元测验中的数学成绩如下:83 74 81 50 87 92 75 94 87 92 83 77 74 70 80 9178 66 92 89 93 89 87 86 78 89 75 86 78 49 86 7592 79 90 75 72 99 80 76 88 84 79 80 82 84 85 9983 90 82 88 70 90 79 88 63 73 91 63 68请你计算出该班数学成绩的平均分、方差与标准差.分析:这里的数据比较多,我们可以采用计算器或计算机来计算平均数、方差、标准差.注意操作方法要正确.答案:该班数学成绩的平均分约为82.3,方差约为101.5,标准差约为10.1.例 3 为了考察两种优质玉米良种的生长情况,在相同时间里把它们种在同一块实验田里,经过一段时间后,分别抽取了其中10株幼苗,测得苗高如下(单位:厘米):甲:12 8 7 13 9 10 11 9 12 11乙:11 9 12 7 13 8 7 10 12 9分析:要判断哪种玉米长得整齐,显然就是看哪种玉米高度波动较小,•因此我们可计算方差来解决这个问题.解:甲种玉米的平均高度:(12+8+7+13+9+10+11+9+12+11)÷10=10.2(厘米);•乙种玉米的平均高度是:(11+9+12+7+13+8+7+10+12+9)÷10=9.8(厘米).(122+82+72+132+92+102+112+92+122+112-10×10.22) S甲2=110=3.36(112+92+122+72+132+82+72+102+122+92-10×9.82) S乙2=110=4.16S甲2<S乙2,所以甲种玉米的幼苗长得比较整齐.变式练习1.小明和小刚要去参加一项比赛,近5次他们的测验成绩如下:你认为该选谁去?2.计算数据组:25 23 27 26 24 22 24 28 23 21的方差.3.为了从甲、乙两名学生中选拔一人参加电脑知识竞赛,•在相同条件下对他们的电脑知识进行了10次测验,成绩如下:(单位:分)甲:76 84 90 86 81 87 86 82 85 83 乙:82 84 85 89 79 80 91 89 74 79回答下列问题:(1)甲学生成绩的众数是(分),乙学生成绩的中位数是(分);(2)若甲学生成绩的平均数是x甲,•乙学生成绩的平均数是x乙,•则x甲与x乙的大小关系是:;(3)经计算知:S甲2=13.2,S乙2=26.36,这表明;(用简明的文字语言表述)(4)若测验分数在85分(含85分)以上为优秀,则甲的优秀率为;•乙的优秀率为.误区警示解析1.混用极差与方差.例1数据A:1 6 4 3 4;数据B:2 6 6 2 3.哪一组数据更稳定?错解:数据组A的极差是6-1=5,数据组B的极差是6-2=4,所以数据组B更稳定.错因分析:极差只能描述一组数据的波动范围,并不能准确地描述一组数据的波动情况,方差才能够描述出一组数据的波动情况.所以计算出方差,根据方差大,波动就大来作出判断.正解:∵2=2.64,2=3.36,∴2<2.所以数据组A更稳定.2.将标准差当作方差的平方根.例2 判断语句是否正确标准差的平方等于方差,方差是标准差的平方根.错解:正确.错因分析:没有正确掌握标准差的概念,先有方差,再有标准差.标准差是方差的算术平方根,而非平方根.正解:错误.活学活用甲、乙两台包装机同时分装质量为400g的奶粉,•从它们各自分装的奶粉中随机抽取了10袋,测得它们的实际质量(单位:克)如下:甲:401 400 408 406 410 409 400 393 394 394乙:403 404 396 399 402 401 405 397 402 399试问:哪台包装机包装的奶粉质量比较稳定?历年考题回顾例1 (2005年常州)小明同学参加某体育项目训练,近期的五次测试成绩得分情况如图所示:试分别求出五次成绩的平均数和方差.分析:观察折线图,知道小明同学五次测试成绩如:10 13 12 14 16,根据平均数和方差的计算公式分别计算出平均数和方差.答案:五次成绩的平均数是13分,方差是4.例2(2005福建)张老师为了从平时在班级里数学成绩比较优秀的王军、•张成两位同学中选拔一人参加“全国初中数学联赛”,对两位同学进行了辅导,•并在辅导期间进行了10次测验,两位同学测验成绩记录如下:王军10次成绩分别是:•68 •8078 79 81 77 78 84 83 92;张成10次成绩分别是:86 80 75 83 85 77 •79 •80 •8075.利用提供的数据,解答下列问题:(1)填写完成下表:(2)张老师从测验成绩记录表中,求得王军10次测验成绩的方差S王2=33.2,•请你帮助张老师计算张成10次测验成绩的方差S张2;(3)请你根据上面的信息,运用所学的统计知识,帮助张老师做出选择,并简要说明理由.分析:从题中数据不难得出众数和中位数,计算张成10次测验成绩的方差可以先将这10个数据都减去80计算方差.张老师应该选择成绩稳定的同学去,所以比较它们方差的大小.答案:(1)王军成绩的众数是78,张成成绩的中位数是80;(2)S张2=13;(3)•张老师应该选择张成去.因为张成10次成绩的方差较小,也就是说他的成绩波动小,•所以应该选择他去.例3 (2005年沪州)一组数据:2,-2,0,4的方差是.分析:这里的数据都比较小,所以可以用公式②计算方差,不过要先计算平均数.答案:5点石成金在中考中,重点考查本节的知识点是方差,所以掌握方差的计算办法(记住方差计算公式)是关键,•在明白方差意义的基础上能够运用方差解决一些简单的实际问题.全真模拟1.三明中学初三(1)班篮球队有10名队员,在一次投篮训练中,这10•名队员各投篮50次的进球情况如下表:针对这次训练,请解答下列问题:(1)求这10名队员进球数的平均数、中位数和众数;(2)求这支球队整体投篮命中率;(投篮命中率=进球数投篮次数×100%)(3)若队员小华的投篮命中率为40%,•请你分析一下小华在这支球队中的投篮水平.2.某职业中学为选派一名学生参加全市实践活动技能竞赛,A、B•两位同学在学校实习基地现场进行加工直径为20的零件的测试,他俩各加工的10•个零件的相关数据依次如下图表所示(单位:)(其中虚线表示A同学,实线表示B同学)根据测试得到的有关数据,试解答下列问题:(1)考虑平均数与完全符合要求的个数,你认为的成绩好些?(2)计算出2的大小,考虑平均数与方差,说明谁的成绩好些;(3)考虑图中折线走势及竞赛中加工零件个数远远超过10个的实际情况,你认为派谁去参赛较合适?说明你的理由.3.甲、乙两班举行汉字输入比赛,•参赛学生每分钟输入汉字的个数经统计计算后,填入下表:班级参加人数中位数方差平均字数甲 55 149 191 135乙 55 151 110 135分析此表得出如下结论:()(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字150个为优秀)(3)甲班学生成绩的波动情况比乙班成绩波动大.A.(1)(2) B.(1)(2)(3) C.(2)(3)D.(1)(3)答案:预习反馈1.数据中最大数据与最小数据的差,一组数据的波动范围;2.平方,触类旁通1.解:计算每个数据与10的差,分别是:-1、0、1、2,(-1+0+1+2)=0.5.计算新数据组的平均数:14计算方差:S2=1[(-1)2+02+12+22-4×0.52]=1.2542.解:极差:14-12=2.(13+14+13+12+13)=13α=15方差:S2=1[(13-13)2+(14-13)2+(13-13)2+(12-13)52+(13-13)2]=0.4标准差:变式练习1.解:我们一般采用方差来判断数据组,小明成绩的方差是0.4,小刚成绩的方差是4,显然小刚的成绩不够稳定,应该小明去.[点拨]我们常常使用方差来判断一组数据是否稳定,方差越大,数据波动就越大.2.解:(1)原数据组的每一个数都减去25得:0 -2 2 1 -1 -3 -1 3 -2 -4.(2)新数据组的平均数是(0-2+21-1-31+3-2-4)÷100.7.(3)方差为:S2=1[02+(-2)2+22+12+(-1)2+(-3)2+10(-1)2+3+(-2)2+(-4)2-10×(-0.7)2]=4.41.3.解:(1)86,83;(2)x甲<x乙[点拨]:∵x甲=84,x乙=83.2,∴x甲<x乙.(3)∵S甲2<S乙2,∴甲的成绩更稳定;(4)50%,40%.活学活用1.解:S甲2=38.05,S乙2=7.96.因为S甲2>S乙2,所以乙包装机包装的奶粉质量比较稳定.全真模拟1.(1)22,19,19和15,(2)44%,(3)从表格中的数据看,命中率在40%以上的有4人,所以它在这支球队中从命中率的角度看是中等偏上的.2.(1)经计算A的平均数为20,B的平均数不足20,但A符合要求的有2个,B•符合要求的有4个,所以B的成绩好些.(2)2=0.008225,2=0.026,所以B的成绩要好些.(3)通过图表和上面的计算,B同学的成绩要稳定得多,所以应选B去参加比赛.3.B。