方差、极差、标准差

合集下载

方差标准差极差

方差标准差极差

方差标准差极差嘿,朋友们!今天咱来聊聊方差、标准差和极差这几个有意思的概念。

你想想啊,这世界上的事儿就跟天气似的,有时候阳光明媚,有时候又阴雨绵绵。

数据也是这样,它们可不是规规矩矩排好队的乖宝宝,而是各有各的脾气呢!方差呢,就像是给这些数据的“调皮程度”打个分。

它能告诉我们这些数据到底是乖乖听话呢,还是到处乱跑撒欢儿。

比如说,咱班同学的考试成绩,如果方差小,那就说明大家成绩都差不多,很稳定嘛;要是方差大,那可就热闹了,有的高得离谱,有的低得可怜,差距老大了!这就好像一群小朋友在操场上玩,有的安安静静地坐着,有的满场疯跑,这场景是不是一下子就出来啦?标准差呢,其实就是方差的“好兄弟”。

它呀,就像是把方差这个分数给“标准化”了一下,让我们更好理解和比较。

它就像是给这些数据穿上了一双尺码合适的鞋子,让我们能更清楚地看到它们到底是怎么个走法。

再来说说极差。

极差可简单啦,就是最大数和最小数的差距。

这就好比一场比赛里,第一名和最后一名的差距。

要是极差小,那说明大家水平都挺接近的;要是极差大,那可就是两极分化严重咯!你说要是一场跑步比赛,第一名都快到终点了,最后一名还在半道上慢悠悠地晃荡,这差距得多大呀!咱举个实际例子吧,比如说咱统计一个月里每天的气温。

如果方差小,那说明这个月天气挺稳定的,每天温度都差不多;要是方差大,那可能就是忽冷忽热,一会儿穿短袖,一会儿就得裹棉袄了。

标准差呢,就更直观地告诉我们这种波动有多大。

而极差呢,就是这个月里最高温和最低温的差距,一下子就能让我们知道这个月的天气跨度有多大。

这三个家伙在很多地方都可有用啦!比如在科学研究里,研究人员得靠它们来分析数据,看看有没有啥规律;在商业上,老板们也得用它们来看看自己的生意咋样,是越来越好呢,还是得赶紧想办法改进。

所以啊,可别小瞧了方差、标准差和极差这三个家伙,它们就像是数据世界里的小精灵,帮我们更好地理解和处理那些乱七八糟的数据呢!它们让我们能从一堆看似混乱的数据中找到头绪,发现其中的奥秘。

极差、方差、标准差

极差、方差、标准差

课程解读一、学习目标:1. 掌握极差、方差、标准差的概念。

2. 理解极差、方差、标准差均可反映一组数据的稳定性大小。

二、重点、难点:重点:掌握极差、方差和标准差的概念,理解极差、方差、标准差是刻画数据离散程度的几个统计量;会求一组数据的极差、方差、标准差,并会判断这组数据的稳定性。

难点:理解数据的离散程度与三个“差”之间的关系。

三、考点分析:近几年来,与统计相关的知识以解答题的形式出现且逐年增多,从试题内容上看,由原来简单的求平均数、中位数、众数、方差等到要求用所学统计知识分析和处理数据,解决实际问题,试题考查从知识立意转向能力立意,选取与实际生活有关的问题,关注社会热点,题型越来越新颖。

知识梳理一、极差定义:一组数据中的最大数据与最小数据的差叫这组数据的极差. 表达式:极差=最大值-最小值 总结:1. 极差是刻画数据离散程度的最简单的统计量2. 特点是计算简单3. 极差利用了一组数据两端的信息,但不能反映出中间数据的分散状况注意:极差反映一组数据两个极端值之间的差异情况,仅由两个数据评判一组数据是不科学的,还要了解其他的统计量。

二、方差的概念:在一组数据1x ,2x ,…,n x 中,各数据与它们的平均数x 的差的平方的平均数,叫做这组数据的方差.通常用“2s ”表示,即:()()()[]2222121xx x x x x n s n -++-+-= .方差的计算: (1)基本公式:()()()[]2222121x x x x x x ns n -++-+-=.(2)简化计算公式(I ):])[(12222212x n x x x n s n -+++=.也可写成2222212)(1x x x x n s n -+++=.此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方. (3)简化计算公式(II ):]')'''[(12222212x n x x x n s n -+++=.当一组数据中的数据较大时,可以依照简化平均数的计算方法,将每个数据同时减去一个与它们的平均数接近的常数a ,得到一组新数据a x x -=11',a x x -=22',…,a x x n n -=',那么,])'''[(12222212x n x x x n s n'-+++=,也可写成2222212)(1x x x x n s n '-'++'+'= .此公式的记忆方法是:方差等于新数据平方的平均数减去新数据平均数的平方. (4)新数据法:原数据1x ,2x ,…,n x 的方差与新数据a x x -=11',a x x -=22',…,a x x n n -='的方差相等,也就是说,根据方差的基本公式,求得1'x ,2'x ,…,n x '的方差就等于原数据的方差.三、标准差的概念和计算方差的算术平方根叫做这组数据的标准差,用“s ”表示,即:])()()[(1222212x x x x x x n s s n -++-+-== .方差和标准差都是用来描述一组数据波动情况的特征数,常用来比较两组数据的波动大小,我们所研究的仅是这两组数据的个数相等,平均数相等或比较接近时的情况.方差较大的数据波动较大,方差较小的数据波动较小.典型例题知识点一:极差例1.(1)一组数据:473、865、368、774、539、474的极差是 ,一组数据1736、1350、-2114、-1736的极差是 。

八年级数学极差-方差-标准差(新编201912)

八年级数学极差-方差-标准差(新编201912)
复习回忆:
1.何谓一组数据的极差? 极差反映了这组数据哪方面的特征?
答 一组数据中的最大值减去最小 值所得的差叫做这组数据的极差,极 差反映的是这组数据的变化范围或变 化幅度.
为什么说新加坡是“四季温差不大”,而 北京是“四季分明”呢?
方差与标准差
小明和小兵两人参加体育项目训练, 近期的五次测试成绩如下表所示.
了堂嫂。他们拜天地,拜高堂,夫妻对拜,空气中弥漫着鞭炮炸开花的呛味,非常好闻。另一头,大爷将两碗宽心面下好了,由本家嫂子用红漆木盘端给两位新人。宽心面,嫩香腆润,每碗一整根,代表一心一意,蕴含美好的寄托。这时,“传菜”的伙计捎话过来,客人已经遵照安排入
座,大爷将手勺一挥,宣布开席! ?宴席有条不紊地进行着。从天刚破晓到日上中天,大爷在“砧板”的配合下,忙而不乱,一口炒锅在手,或翻或转,动作流畅自然。做完最后一道“四喜丸子”,他长舒一口气,额头沁出细密的汗珠,脸膛泛红,让人感觉很温暖。 ?送走宾客,伯父安
。 修改:删去“一直”或删去“始终”。 B.通过这次小提琴比赛,使她的自信心增强了。 修改:删去“通过”或删去“使”。 C.到了退休年龄的他,精力和身体都还很健壮。 修改:将“健壮”改为“充沛” 。 D.我们要利用一切人类的优秀成果,为祖国建设服务。 修改:将“
一切”放到“人类的”后面。 200.阅读下面一段文字,修改其中语病。(标明序号并写出修改后的句子)(3分) ①写日记的一个好处是能留下自己成长过程中的点点滴滴。②我保持写日记的习惯已经近八年,③这厚厚的一摞日记是我的财富。④偶尔翻看以前的日记,⑤我感慨很多。
情的折射。 ④几乎每个村子里都有一名做乡宴的“大师傅”,我们村也有,是我的伯祖父,也就是我的大爷。二堂哥建春结婚的时候,那十六桌酒席宴就出自他老人家之手。他是长辈,本应到外村请“大师傅”来伺厨的,他不允,说还是由自己做才放心。家人拗不过他,只好答应。 ⑤

数理统计平均数、中位数、众数,极差、标准差、方差

数理统计平均数、中位数、众数,极差、标准差、方差

平均数、中位数和众数的知识归纳与梳理:(一)平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。

即x=(x1+x2+……+xn)÷n中位数:将一组数据按大小顺序排列,处在最中间位置的一个数或最中间的两个数的平均数叫做这组数据的中位数。

众数:在一组数据中出现次数最多的数叫做这组数据的众数。

平均数:一组数据的平均值平均水平平均数是描述一组数据的一种常用指标,反映了这组数据中各数据的平均大小。

平均数的大小与一组数据里的每个数据都有关系,其中任何数据的变动都会引起平均数的相应变动平均数一般的计算方法为:用一组数据的总和除以这组数据的个数.平均数的优点。

反映一组数的总体情况比中位数、众数更为可靠、稳定.平均数的缺点。

平均数需要整批数据中的每一个数据都加人计算,因此,在数据有个别缺失的情况下,则无法准确计算,计算的工作量也较大。

平均数易受极端数据的影响,从而使人对平均数产生怀疑。

中位数:在有序排列的一组数据中最居中的那个数据中等水平中位数是描述数据的另一种指标,如果将一组数按从小到大排列那么中位数的左边和右边恰有一样多的数据。

中位数仅与数据的大小排列位置有关,某些数据的变动对它的中位数没有影响.中位数是将数据按大小顺序依次排列(相等的数也要全部参加排序)后“找”到的.当数据的个数是奇数时,中位数就是最中间的那个数据;当数据的个数是偶数时,就取最中间的两个数据的平均数作为中位数.中位数的优点。

简单明了,很少受一组数据的极端值的影响。

中位数的缺点。

中位数不受其数据分布两端数据的影响,因此中位数缺乏灵敏性,不能充分利用所有数据的信息。

当观测数据已经分组或靠近中位数附近有重复数据出现时,则难以用简单的方法确定中位数。

众数一组数据中出现次数最多的那个数据。

集中趋势众数告诉我们,这个值出现次数最多,一组数据可以有不止一个众数,也可以没有众数。

众数着眼于对各数据出现的频数的考查,其大小只与这组数据中的部分数据有关.一组数据中的众数不止一个.当一组数据中有相同数据多次出现时,其众数往往是我们关心的.众数的优点比较容易了解一组数据的大致情况,不受极端数据的影响,并且求法简便。

标准差方差极差平均差

标准差方差极差平均差

标准差方差极差平均差标准差、方差、极差、平均差,这些听起来是不是有点让人头疼?别急,让我来给你慢慢唠唠。

咱先说说标准差,它就像是一个班级里同学们成绩的波动情况。

如果标准差小,那说明大家的成绩都比较接近,很稳定;要是标准差大呢,那就是有的同学成绩特别好,有的又特别差,差距挺大的。

你想想,要是一个团队里,大家的表现都很稳定,那多让人放心呀,这标准差就起到了这样一个衡量稳定程度的作用。

再来讲讲方差,它其实和标准差是一伙的,方差就是标准差的平方。

你可以把方差想象成是对波动程度的一种更强烈的表达。

就好像你对一件事情的不满意程度,方差大就像是非常不满意,小呢就表示还挺满意的。

然后是极差,这就简单多啦!极差就是最大值和最小值之间的差距。

就好比你去买衣服,最贵的和最便宜的价格差距,那就是极差呀!极差大,说明价格波动大;极差小,那价格就比较平稳咯。

最后说说平均差,它是每个数据与平均值差值的绝对值的平均值。

这就像是大家一起出去玩,每个人和平均花费的差距。

平均差小,说明大家的花费都差不多;平均差大,那可就有人花得多,有人花得少啦。

嘿,你说这些统计指标是不是还挺有意思的?它们就像是我们生活中的各种衡量标准一样。

比如说,我们评价一个人的性格,是不是也有稳定不稳定之分?就像标准差一样。

我们看一个地区的经济发展,是不是也有差距大小之别?这不就和极差差不多嘛。

在很多时候,我们都需要用这些指标来了解事情的本质。

比如在工作中,看看团队的业绩波动,就能知道是不是需要调整策略;在学习中,通过分析成绩的标准差,就能知道自己的学习状态是否稳定。

这些看似复杂的概念,其实就在我们的生活中无处不在。

它们就像是一个个小工具,帮助我们更好地理解和处理各种信息。

所以啊,别再觉得标准差方差极差平均差这些东西遥不可及啦,它们就在我们身边,而且还挺有用的呢!好好去发现它们的妙处吧,你会发现原来统计学也可以这么有趣,这么贴近生活!。

极差、方差、标准差

极差、方差、标准差
乙 10.2, 10, 9.5, 10.3, 10.5, 9.6, 9.8, 10.1
分别计算这两组数据的方差,比较它们的稳定 分性析 . (1)求平均数
x = 10 + 1(-0.1+ 0.3- 0.2+ 0.1+ 0.4 - 0.2- 0.3)= 10

8
x = 10 + 1(0.2- 0.5+ 0.3+ 0.5- 0.4 - 0.2+ 0.1)= 10
3、方差
,方差的单位是 S2 = 1 n
x1 - x

+
x2 - x
2
+L
+
xn - x
2
原数据的单位的平方,方差表示统计的样本基于平
均数的偏差,当平均数相同时,方差大,说明数据
不整齐波动大,起伏大。
4、标准差为S,即方差的算术平方根,它的单位 与原数据的单位相同。
什么样的指标可以反映一组数据变化范围的大小?
用一组数据中的最大值减去最小 值所得的差来反映这组数据的变化范
围.用这种方法得到的差称为极差
(range).
极差=最大值-最小值.
练习:
1、求下列各题中的极差
(1)已知一组数据4、0、2、1、-2,则极差是__
(2)某班个子最高的学生身高为1.70米,个子最 矮的学生的身高为1.38米,求该班所有学生身高 的极差______
(x>y)的平均数为100,方差为2,
求 x,y
4、已知数据 x1, x2 ,L xn 的方差为
a,求数据

2x1
1,2x2
1,L
L
, 2xn
1
的方

极差.方差与标准差(知识点讲解)

极差.方差与标准差(知识点讲解)

极差.方差与标准差(知识点讲解)极差、方差与标准差一、本节知识导学本节以自主探索为主,并初步体验:对图的观察和分析是科学研究的重要方法。

通过例题发现极差(最大值-最小值)的作用:用来表示数据高低起伏的变化大小;同时也希望同学们通过深入思考发现极差的不足之处:极差只能反应一组数据中两个极端值之间的差异情况,对其他数据的波动情况不敏感。

因此有必要重新找一个对整组数据的波动情况更敏感的指标, 构造方差前请同学们注意以下几个方面: 1.为什么要用“每次成绩”和“平均成绩”相减。

2.为什么要“平方”。

3.为什么“求平均数”比“求和”更好。

同时请同学们意识到:比较两组数据的方差有一个前提条件是,两组数据要一样多。

对于方差的学习,重点在于方差公式的导出和对于方差概念的理解,而不是数字的计算,应充分利用计算器和计算机去完成繁杂的计算。

对于方差与标准差之间除了计算公式不一样,数量单位也不一样但通过求算术平方根运算又可以将他们联系在一起。

二、例题1.不通过计算,比较图中(1)(2)两组数据的平均值和标准差分析:平均值是反映一组数据的平均水平,标准差是反映一组数据与其平均值的离散程度。

本例不通过计算,从折线图来估算标准差,应先估算平均值的大小。

解:从图(1)(2)中可以看出,两组数据的平均值相等。

(图(1)中数据与图(2)中前10个数据相等, 且图(2)中后几个数据不影响平均值)。

图(1)的标准差比图(2)的标准差大。

(因为图(1)中各数据与其平均值离散程度大,图(2)中前10个数据与其平均值的离散程度与图(1)相同,而后几个数据与其平均值的离散程度小。

因此整体上说图(2)所有数据与其平均值的离散程度小于图(1)。

)2.求下列数据的方差(小数点后保留两位):5,7,9,9,10,11,13,14。

分析:要求方差,必须先求平均数。

解:= (5+7+9+9+10+11+13+14)=9.75方差s 2= =7.69[(5-9.75)2+(7-9.75)2+……+(14-9.75) 2]3.求下列一组数据的极差、方差和标准差(小数点后保留两位):50,55,96,98,65,100,70,90,85,100分析:由于标准差是方差的变形所以一般情况下先求方差解:极差为100-50=50平均数为=(50+55+96+98+65+100+70+90+85+100)=80.9方差为:s 2= =334.69 标准差为:s=[(50-80.9)2+(55-80.9)2+……+(100-80.9) 2]=18.294.在某次数学竞赛中,甲、乙两班的成绩如下已经算出两班的平均数都是80分,请你根据已有的统计知识分析两个班的成绩。

平均数、众数、中位数、极差、方差、标准差

平均数、众数、中位数、极差、方差、标准差

平均数、众数、中位数、极差、方差、标准差说明6个基本统计量(平均数、众数、中位数、极差、方差、标准差)的内涵,学生学习过程中可能产生的困难及主要原因、应对策略.首先,结合简单实例认真把握这6个基本统计量的内涵。

一、平均数、众数、中位数是刻画一组数据的“平均水平”的数据代表。

(八上《第八章数据的代表》)平均数分算术平均数和加权平均数,算术平均数是指n个数据的和的平均值,学生理解与计算都不成问题,只要注意细心运算就是其中的取标准值后的简便算法也都是在小学早已熟练的(公式:x=1/n(x1+x2+x3+……+xn);而加权平均数是一组数据里的各个数据乘各自的“权”之后的平均数。

此处理解“权”的概念可能产生很大困难,因为“权”的理解的确不易,若是照搬教材直接给出其定义,学生会迷惑成团,再进行应用更是不可思议。

所以应对措施:讲好、用好加权平均数就要先举例、后分析、再给出定义,比如:某同学的一次考试各科成绩如下:语文110、数学105、英语106、物理95、化学90、政治86、历史98、地理66、生物89,你可以先让学生算算各科的平均数,再按中考计分法将语、数、英各取120%,物、化、政各取100%,史、地、生各取40%后的平均值算出,两个结果一比较,学生就会很容易发现不同的原因是加入了所谓的“权”,这样,不仅通俗易懂,而且对“权”内涵的理解和应用就不再困难。

众数是一组数据中出现次数最多的数。

其内涵很好理解和掌握,就是结合实际应用也顺理成章,如商店老板进货号多大的男鞋好?那当然是“众数”(调查数据最多的号)所代表的。

中位数顾名思义是一组数据中间位置的数,但考虑一组数可能有偶数个或奇数个,所以要注意强调取中位数的方法。

教材上给出的内涵很好:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

如一组数据1.5,1.5,1.6,1.65,1.7,1.7,1.75,1.8的中位数是1/2(1.65+1.7),即1.675。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
小 每次测试成绩 9 明 (每次测试成绩-
平均成绩)2
小 每次测试成绩 11 兵 (每次测试成绩-
平均成绩)2
23 4 5 6 7 14 13 缺席 13 缺席 16
10 13 14 12 16 15
求和
交流讨论 考虑实际情况,如果一共进行 了7次测试,小明因故缺席两次,怎样比较 谁的成绩更稳定?
表 20.2.1 上海每日最高气温统计表 (单位:℃)
2001年 2002年
这段时间的 平均气温
最高气温 最低气温 变化范围
将观察结果添入表格
思 考 : 什么样的指标可以反
映一组数据变化范围的大小?
我们可以用一组数据中的最大值减去最小 值所得的差来反映这组数据的变化范围。用这
种方法得到的差称为极差(range).
极 差
方 差 与 标 准 差
前面几节课我们学会了去分析或描述 一组数据。那么我们当时是如何来描述 和分析一组数据的呢?
我们可以选用这些数据的代表: 平均数、中位数、众数。
情景引人
问题1 : 表20.2.1显示的是上海2001年2月 下旬和2002年同期的每日最高气温, 如何对这两段时间的气温进行比较呢?
通常,如果一组数据与其平均值的离 散程度较小,我们就说它比较稳定。
思考:什么样的数 能反映一组数据与其平均值的
离散程度?
小明和小兵两人参加体育项目训练,近期的五次测试成绩如下 表所示。表20.2.2
测试次数 1
2
3
4
5
小明
13
14
13
12
13
小兵
10
13
16
14
12
仔细观察
小明和小兵的体育项目测试成绩
1
0
1
0
2 0.4
小 每次测试成绩 10 13 16 14 12 65 13
兵 每次成绩—平均成绩 -3 0 3 -1 1
0
0
9 0 (每次测试成绩-平均成绩)2 9 1 1
20
4
归纳小结
我们可以用“先平均,再求差,然后平方,最 后再平均”得到的结果表示一组数据偏离平均值 的情况.这个结果通常称为方差。
通过计算,依据最后的结果可以比较两组数据围绕其平均
值的波动情况吗?
交流讨论 请你提出一个可行的方案,在表 20.2.4的红色格子中写上新的计算方案,并将计算 结果填入表中。 表20.2.4
1 2 3 4 5 求和
小 每次测试成绩 13 14 13 12 13 65
明 每次成绩—平均成绩 0 1 0 -1 0
测试次数 1
2
3
4
小明 13 14 13 12
小兵 10 13 16 14
体育项目测试成绩折线图
5 平均 13 13 12 13
18
16
14
12
10
小明
8
小兵
6
4
2
0
1
2
3
4
5
探索思考
从表和图中可以看到,小兵的测试成
绩与平均值的偏差较大,而小明的较小.那么如何加
以说明呢?可以直接将各数据与平均值的差进行累加
(2)小明家中,年纪最大的长辈的年龄是78岁,年纪 最小的孩子的年龄是9岁,求小明家中所有成员年龄的 极差。
思考:哪个城市 四季分明?
问题2
请同学们比较下列两组数据,你觉得哪一组数 据比较稳定?
A组:0、10、55、、5、5、5、5、5、5; B组:4、6、5、3、7、2、8、1、9、5。
学习新知
极差=最大值-最小值
在生活中,我们常常会和极差打交道.班级 里个子最高的学生比个子最矮的学生高多少?家庭中 年纪最大的长辈比年纪最小的孩子大多少?这些都是 求极差的例子.
例1.(口答)求下列各题的极差。 (1)某班个子最高的学生身高为1.70米,个子最矮的 学生的身高为1.38米,求该班所有学生身高的极差。
0
(每次测试成绩-平均成绩)2
小 每次测试成绩 10 13 16 14 12 65
兵 每次成绩—平均成绩 -3 0 3 -1 1
0
(每次测试成绩-平均成绩)2
探索思考 请你提出一个可行的方案,在表 20.2.4的红色格子中写上新的计算方案,并将计算 结果填入表中。 表20.2.4
1 2 3 4 5 求和
吗?在下表中写出你的计算结果。
表20.2.3
1 2 3 4 5 求和
小 每次测试成绩 13 14 13 12 13 明 每次测试成绩
—平均成绩
小 每次测试成绩 10 13 16 14 12 兵 每次测试成绩
—平均成绩
探索思考
从表和图中可以看到,小兵的测试成
绩与平均值的偏差较大,而小明的较小.那么如何加
以说明呢?可以直接将各数据与平均值的差进行累加
吗?在下表中写出你的计算结果。
表20.2.3
1 2 3 4 5 求和
小 每次测试成绩 1均成绩
01
0 -1 0 0
小 每次测试成绩 10 13 16 14 12 65 兵 每次测试成绩
—平均成绩 -3 0 3 1 -1 0
结论:小兵的成绩稳定。
探索思考 请你提出一个可行的方案,在表 20.2.4的红色格子中写上新的计算方案,并将计算 结果填入表中。 表20.2.4
1 2 3 4 5 求和 平均
小 每次测试成绩 13 14 13 12 13 65 13
明 每次成绩—平均成绩 0 1 0 -1 0
0
0
0 (每次测试成绩-平均成绩)2
我们通常用S 2表示一组数据的方差,用 ̄X 表示一组数 据的平均数,用x1、x2、…、 xn 表示各个数据. 问题2中方差的计算式就是
S
2=
1 5
(x1
x)2
(x2
x)2
(x3
x)2
(x4
x)2
(x5
x)2
计算一组数据x1、x2、…、 xn 的方差的步骤是:
1、求平均数 ̄X ;2、代入公式求方差S 2。
小 每次测试成绩 13 14 13 12 13 65
明 每次成绩—平均成绩 0 1 0 -1 0
0
0 1 (每次测试成绩-平均成绩)2
01
0
2
小 每次测试成绩 10 13 16 14 12 65
兵 每次成绩—平均成绩 -3 0 3 1 -1 0
9 0 (每次测试成绩-平均成绩)2
91
1
20
交流讨论 考虑实际情况,如果一共进行 了7次测试,小明因故缺席两次,怎样比较 谁的成绩更稳定?
123 4 5 6 7
小 每次测试成绩 9 14 13 缺席 13 缺席 16
明 (每次测试成绩- 16 1 0 \ 0 \ 9
平均成绩)2
小 每次测试成绩 11 10 13 14 12 16 15
兵 (每次测试成绩-
平均成绩)2
490
1 19
4
求和 平均
65 13 26 5.2 91 13 28 4
相关文档
最新文档