天文学课论文
天文学毕业论文开题报告

天文学毕业论文开题报告尊敬的评审专家:我计划从事一份名为《探索恒星形成区的分子云物理性质与演化》的天文学毕业论文研究。
1. 研究背景与意义大气环境的变化和日益严重的环境问题引起了人们对地球未来的担忧,进一步引发了对于外部星系和宇宙的探索。
天文学作为科学领域的一部分,可以为我们了解星系形成、恒星演化和行星形成提供重要线索。
作为天体物理学的分支之一,天文学旨在研究宇宙中的天体现象和它们所遵循的物理规律。
我的研究将专注于恒星形成区的分子云物理性质与演化,对于深入理解恒星生成的机制和过程至关重要。
2. 研究目标本论文的目标是通过观测和分析恒星形成区的分子云,揭示其物理性质和演化特征,从而为研究恒星形成过程提供重要信息。
具体而言,我将尝试实现以下目标:2.1 研究分子云的成分和结构通过天文观测和分析技术,我将探索分子云的成分和结构。
分子云中的各种元素和分子物质的组成,将为我们解析分子云的物理特性和演化提供线索。
2.2 研究分子云中恒星形成的条件我将深入研究分子云中恒星形成的条件。
包括分子云的密度、温度、流体运动等参数的测量和分析,以及星际物质与尘埃的相互作用对于恒星形成的影响。
2.3 研究恒星形成区的时空演化通过长期的观测和分析,我将揭示恒星形成区的时空演化特征。
从分子云的形成和演化、星际物质的聚集和坍缩,到星云中年轻恒星的形成和早期演化,我将对这一过程进行深入研究。
3. 研究方法与步骤3.1 数据收集针对恒星形成区的分子云,我将收集和整理大量的天文观测数据。
这些数据来自于地面和空间望远镜的观测,包括射电波段和红外波段等。
3.2 数据分析与处理通过适当的数据分析与处理方法,我将提取出有关分子云成分、物理特性和演化的重要信息。
这些方法包括谱学分析、成像处理和统计学方法等。
3.3 结果解释与讨论在论文中,我将详细解释和讨论研究结果,探讨分子云物理性质与演化的潜在机制。
同时,我将与前人的研究成果进行比较和对比,加深对该领域的理解。
天文学基础论文——宇宙的观测和假说

宇宙的观测和假说——探索神秘瑰丽的宇宙世界摘要:宇宙广袤无垠,我们现在所知道有太阳系,银河系,河外星系,并且通过近半世纪对河外星系的研究,不仅已发现了星系团、超星系团等更高层次的天体系统,而且已使我们的视野扩展到远达大约140亿光年的宇宙深处。
关键词:宇宙起源大爆炸太阳九大行星黑洞宇宙世界神秘莫测,从粒子、宇宙物质、地球、月球、太阳、九大行星到太阳系、银河系、黑洞和宇宙大爆炸,科学家们仿佛一层又一层的揭开了宇宙神秘的面纱,却在欣喜的以为可以了解一个完整的宇宙后,却又发现这只不过是冰山一角。
尽管人们在宇宙面前显得无比渺小,却无法阻止宇宙以其独特的魅力吸引着人们去不断探索它,认识它。
而我所写的这篇论文就是介绍一些我所了解的关于宇宙的假说。
一、关于宇宙起源的假说(宇宙大爆炸的假说)宇宙大爆炸(简称大爆炸)是描述宇宙诞生初始条件及其后续演化的宇宙学模型,这一模型得到了科学研究和观测最广泛且最精确的支持。
宇宙学家所指的宇宙大爆炸观点为:宇宙是在过去有限的时间之前,由一个密度极大且温度极高的太初状态演变而来的(根据2010年所得到的最佳观测结果,这些初始状态大约存在于133亿年至139亿年前),并经过不断的膨胀到达今天的状态。
比利时神父、物理学家乔治·勒梅特首先提出了关于宇宙起源的大爆炸理论,但他本人将其称作“原生原子的假说”。
这一模型的框架基于爱因斯坦的广义相对论,又在场方程的求解上作出了一定的简化(例如空间的均匀和各向同性)。
大爆炸理论的建立基于了两个基本假设:物理定律的普适性和宇宙学原理。
宇宙学原理是指在大尺度上宇宙是均匀且各向同性的。
这些观点起初是作为先验的公理被引入的,但现今已有相关研究工作试图对它们进行验证。
例如对第一个假设而言,已有实验证实在宇宙诞生以来的绝大多数时间内,精细结构常数的相对误差值不会超过10-5。
此外,通过对太阳系和双星系统的观测,广义相对论已经得到了非常精确的实验验证;而在更广阔的宇宙学尺度上,大爆炸理论在多个方面经验性取得的成功也是对广义相对论的有力支持。
天文学基础的论文

天文学基础摘要:天文学是一门最古老的科学,它一开始就同人类的劳动和生存密切相关。
它同数学、物理、化学、生物、地学同为六大基础学科。
天文学家观测从行星、恒星、星系等各种天体来的辐射,小到星际的分子,大到整个宇宙。
天文学家测量它们的位置,计算它们的轨道,研究它们的诞生,演化和死亡,探讨它们的能源机制。
由于科技的不断发展,人们对天文学的定义,研究对象,研究范畴,学科分支,论研究等方面都取得了突破性的进展。
天文学正朝着高、精、尖的方向发展。
我们期待着天文学的进一步发展为科学事业和人们的社会生活造福。
关键字:天文学,研究对象,研究理论,天文学四大发现,矮行星,中子星,黑洞通过听天文学基础的课使我对天文学有了一定的了解。
天文学是研究天体、宇宙的结构和发展的自然科学,内容包括天体的构造、性质和运行规律等。
人类生在天地之间,从很早的年代就在探索宇宙的奥秘,因此天文学是一门最古老的科学,它一开始就同人类的劳动和生存密切相关。
它同数学、物理、化学、生物、地学同为六大基础学科。
天文学主要通过观测天体发射到地球的辐射,发现并测量它们的位置、探索它们的运动规律、研究它们的物理性质、化学组成、内部结构、能量来源及其演化规律。
随着人类社会的发展,天文学的研究对象从太阳系发展到整个宇宙。
现在天文学按研究方法分类已形成天体测量学、天体力学和天体物理学三大分支学科。
按观测手段分类已形成光学天文学、射电天文学和空间天文学几个分支学科。
“几乎所有的自然科学分支研究的都是地球上的现象,只有天文学从它诞生的那一天起就和我们头顶上可望而不可及的灿烂的星空联系在一起。
天文学家观测从行星、恒星、星系等各种天体来的辐射,小到星际的分子,大到整个宇宙。
天文学家测量它们的位置,计算它们的轨道,研究它们的诞生,演化和死亡,探讨它们的能源机制。
自古以来,人类一直对恒星和行星十分感兴趣。
古代的天文学家仅仅依靠肉眼观察天空,1608年,人们发明了望远镜,此后,天文学家就能够更清楚的观察恒星和行星了。
探索未知的宇宙天文学专业毕业论文

探索未知的宇宙天文学专业毕业论文宇宙天文学,作为天体研究与探索的学科,一直以来都是人们执着追求的对象。
无论是对于天体起源、演化,还是对于宇宙的深度理解,宇宙天文学专业的毕业论文都承载着对未知世界的探索。
本文将围绕着宇宙天文学专业毕业论文的撰写要点展开探讨,以帮助同学们更好地完成论文的写作。
一、选题与引言在选题时,需要根据自身兴趣和专业背景定位研究方向。
可以借鉴前人的研究成果,选择有创新意义的方向,同时要结合实际可行性进行选择。
引言部分应对选题进行合理的介绍与展望,引出研究问题,强调研究的重要性与意义。
二、文献综述文献综述是毕业论文的重要组成部分,它既是承前启后的桥梁,也是对现有研究进展的总结与评价。
在写作时,应选择近年来权威期刊、学术论文、国际会议的相关文献,将各个观点进行对比和综合,形成一个相对完整的学术思路。
三、问题描述与研究方法在问题描述部分,需要准确地概括研究的具体问题,并明确研究的目标与内容。
对于研究方法,可以根据具体问题选择合适的实验、观测、模型或理论计算等方法,并进行详细描述。
四、实验/观测设计与实施针对研究的具体问题,设计合理的实验或观测方案,并明确数据采集的方法与步骤。
实验/观测需遵循科学严谨的原则,确保数据的准确性与可靠性。
五、结果与分析结果部分应直观地呈现实验/观测所得数据,并进行合理的统计与分析。
可以借助图表、曲线等形式呈现数据,同时结合前人研究成果进行深入的解释和讨论。
六、结论与展望结论是整个毕业论文的总结,应对研究问题进行准确、简明的归纳,并客观地评价研究结果。
展望部分可以对未来研究方向进行发散思考,提出自己的观点和建议。
七、参考文献在撰写毕业论文时,要严格按照学术规范引用相关文献,确保引文的准确性和全面性。
参考文献的格式要符合学校或学术杂志的要求,并按照字母顺序排列。
八、附录根据具体需要,可以在毕业论文中加入附录,以提供一些详细数据、图表、实验设备及参数等辅助信息,以便读者更深入地理解论文内容。
“行星地球”视角下的空间物理学,天文学论文

“行星地球〞视角下的空间物理学,天文学论文摘要:空间物理学日趋成熟,既丰富了人类对地球和行星空间的认识,也引申出更具挑战性的问题。
一些牵涉行星演化问题的解决倚赖与其他学科的穿插探寻求索,要求研究者从行星地球的视角出发,把地球视为一个从地核到磁层的多圈层耦合系统。
作为系统外层环节的空间环境,华而不实的问题可通过比拟行星研究的思路找到突破口。
基于学科穿插的比拟行星空间物理研究将是将来空间物理学的一个重要发展方向。
阐述比拟行星空间物理研究的思路和必要性,梳理研究现在状况,并瞻望研究前景。
关键词:空间物理;磁层;电离层;行星;比拟行星学1空间物理研究的挑战和机遇空间物理学主要研究空间环境中的物理经过,其发展得益于人们对于空间中各种现象的好奇心所驱动的探寻求索行为。
纵观数千年来世界各地文明流传下来的史料,围绕极光、气辉、慧尾、黑子等具有视觉冲击力的空间现象,观测记录数量愈益丰富,认知思辨水平逐步提高,衍生出多种具有地域特色的人与自然文化体系,并以神话、传讲、礼仪、哲学等形式传承至今。
尤其是封建时代的中华文明,长期推崇天人合一的理念,使得包括空间现象在内的各种天象成为影响文明进程的一个重要因素。
例如,极光和慧尾等现象往往与民族兴衰、王朝更迭、邦交征伐等重大历史事件联络起来[1].由于观测和记录行为具有政治严肃性,很多较为显着的现象被具体记录下来,成为了解空间环境长期变化的重要参考资料。
例如,公元1645-1715 年欧洲和亚洲的极光观测记录同时大幅减少,成为孟德尔极小期存在的重要佐证[2].空间物理学的构成与发展依靠观测技术的进步。
尽管地面观测已持续数千年,人们始终无法知晓空间中物理经过的触发、发展和变化机理。
直到近期100 多年,磁强计、电离层测高仪等地面观测设备的持续运行,探空气球、火箭和大功率雷达技术的不断进步,使得人们终于告别裸眼观测的时代,本质上提高了认知空间的能力。
20 世纪50 年代末期,人造卫星及其搭载的场和粒子探测仪器实现了空间实地探测,促成了空间物理研究的飞跃,使其能够从地球物理、大气物理、天文等学科的穿插状态中发展起来,构成一门独立的学科[3].时至今日,空间物理研究者已经把握了地球空间环境中各个区域的电磁场和粒子的平均特征及其最主要的变化规律,并在一定程度上理解了背后的主要物理经过;对行星际空间的安静和扰动状态也有了全局性的了解,并具备了初步的预报能力;对太阳系其他行星的空间环境有了基本认识,并能够归纳出其与地球空间环境的主要异同之处。
天文学论文

为什么要选择天文学从小的时候,就对天空兴趣十足,好奇着星空,那些点滴的繁星,连起来就是不同的图案。
美轮美奂。
然后梦想就是成为一名天文学家。
开始在网上搜索那些星空的图片以及资料。
更加喜欢夜晚的天空了。
浅论天文学的学习与认识建筑11-4 佟义丙 8113430摘要:天文学是一门最古老的科学,它一开始就同人类的劳动和生存密切相关。
天文学家观测从行星、恒星、星系等各种天体来的辐射,小到星际的分子,大到整个宇宙。
天文学家测量它们的位置,计算它们的轨道,研究它们的诞生,演化和死亡,探讨它们的能源机制。
由于科技的不断发展,人们对天文学的定义,研究对象,研究范畴,学科分支,论研究等方面都取得了突破性的进展。
天文学正朝着高、精、尖的方向发展。
我们期待着天文学的进一步发展为科学事业和人们的社会生活造福。
关键字:天文学,研究对象,研究理论,天文学四大发现通过听天文学的课使我对天文学有了一定的了解。
天文学是研究天体、宇宙的结构和发展的自然科学,内容包括天体的构造、性质和运行规律等。
人类生在天地之间,从很早的年代就在探索宇宙的奥秘,因此天文学是一门最古老的科学,它一开始就同人类的劳动和生存密切相关。
天文学主要通过观测天体发射到地球的辐射,发现并测量它们的位置、探索它们的运动规律、研究它们的物理性质、化学组成、内部结构、能量来源及其演化规律。
随着人类社会的发展,天文学的研究对象从太阳系发展到整个宇宙。
现在天文学按研究方法分类已形成天体测量学、天体力学和天体物理学三大分支学科。
按观测手段分类已形成光学天文学、射电天文学和空间天文学几个分支学科。
“几乎所有的自然科学分支研究的都是地球上的现象,只有天文学从它诞生的那一天起就和我们头顶上可望而不可及的灿烂的星空联系在一起。
天文学家观测从行星、恒星、星系等各种天体来的辐射,小到星际的分子,大到整个宇宙。
天文学家测量它们的位置,计算它们的轨道,研究它们的诞生,演化和死亡,探讨它们的能源机制。
天文学论文范文范文

天文学论文范文范文天文学它一开始就同人类的劳动和生存密切相关。
远古时候,人们为了根据生活的需要而对太阳、月亮和星星进行观察,确定它们的位置、找出它们变化的规律,并据此编制历法,因此说天文学是最古老的自然科学学科之一古代的天文学家因为没有可以凭借的工具,只能靠肉眼观察天空。
我国自古以农耕为主,春种秋收,季节最为重要。
中国古代天文学家用来观测星象最重要的工具是浑仪。
在望远镜发明以前,浑仪是世界上最先进的天文观测工具。
(现今存世最早的浑仪是明代正统七年(1442)制成的,陈列在南京紫金山天文台)公元二世纪时,古希腊天文学家托勒密提出的地心说,这一学说统治了西方对宇宙的认识长达1000多年。
十六世纪,波兰天文学家哥白尼提出新的宇宙体系的理论,日心说,天文学的发展进入了全新的阶段,使天文学摆脱宗教的束缚,并在此后的一个半世纪中从主要纯描述天体位置、运动的经典天体测量学,向着寻求造成这种运动力学机制的天体力学发展。
到了1610年,意大利天文学家伽利略某某某制造折射望远镜,成为最早使用望远镜研究太空的人之一、人类第一次通过望远镜观察到了太阳黑子、月球和其他一些行星表面的状况。
在同时代,牛顿创立牛顿力学,使天文学出现了一个新的分支学科----天体力学。
天体力学诞生使天文学从单纯描述天体的几何关系造成天体运动的原因的新阶段,在天文学的发展历史上,是一次巨大的飞跃。
19世纪中叶天体摄影和分光技术的发明,使天文学家可以进一步深入地研究天体的物理性质、化学组成、运动状态和演化规律,从而更加深入到问题本质,从而也产生了一门新的分支学科天体物理学。
这又是天文学的一次重大飞跃。
20世纪50年代,射电望远镜开始应用。
到了20世纪60年代,取得了称为“天文学四大发现”的成就:微波背景辐射、脉冲星、类星体和星际有机分子。
而与此同时,人类也突破了地球束缚,可到天空中观测天体,通过发射的航天探测器来了解一些太空信息。
除可见光外,天体的紫外线、红外线、无线电波、X射线、γ射线等都能观测到了。
古代天文学的论文

古代天文学的论文•相关推荐古代天文学的论文在日常学习和工作生活中,大家一定都接触过论文吧,借助论文可以达到探讨问题进行学术研究的目的。
为了让您在写论文时更加简单方便,以下是小编为大家整理的古代天文学的论文,供大家参考借鉴,希望可以帮助到有需要的朋友。
摘要:中国古代天文学有着上千年的悠久历史,自神话时期兴起,绵延千年不衰。
但中外学者对于中国古代天文学的质疑也从未停止过。
本文从科学哲学角度,叙述中国古代天文学的兴起与发展,详细分析其功能效用与历史影响,从而辨别中国古代天文学是否为真科学。
关键词:中国古代天文学;科学哲学;真科学一、中国古代天文学的兴起从众多资料来看,中国古代天文学的历史之悠久,可以追溯到上古时期。
传说在少昊氏时,人人私下研习天文,都搞起了沟通上天的巫术,致使天下大乱。
颛顼帝命令重、黎二人“绝地天通”,禁止了平民与上天沟通交流。
之后与天交流的权利就专属于天子,也只有天子钦定的巫觋才有资格去沟通上天。
从此天文学在古代中国就成了皇家的专属品,而天子也开始拥有了对“天命”的解读权。
这也就是中国漫长天文学史的开端。
二、中国古代天文学的发展我国天文学至于夏商周代时已经有了一定水准的历法。
特别是到了周代,已经有人开始观测流星、行星等天象及星辰。
相比于上古时代,这已经有了很大的进步。
传统的天文学体系是在春秋战国时期正式完成的。
在这一时期,不仅二十八星宿体系确立,而且在历法方面有了重大的进步。
我们古人开始通过观测日影长短的周年变化来确定冬至和夏至的日期。
并且在这一时期流传了大量人们观测流星、彗星等天象的详细记录。
这些都成了我国历史上的宝贵资料。
自从春秋战国时期传统天文学大框架建立之后,秦、汉、魏晋南北朝、隋、唐、宋时期,天文学进一步蓬勃发展。
不仅历法得到统一,二十四节气,浑天仪等天文知识以及天文学仪器的进一步发明使得我国的天文学一路高歌猛进。
到了元朝,由于铁木真缔造了一个横跨欧亚大陆的辉煌帝国,我国古代天文学甚至传到阿拉伯等国,可谓是盛极一时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“大爆炸宇宙论”认为:宇宙是由一个致密炽热的奇点于137亿年前一次大爆炸后膨胀形成的。
1929年,美国天文学家哈勃提出星系的红移量与星系间的距离成正比的哈勃定律,并推导出星系都在互
相远离的宇宙膨胀说。
现代宇宙学中最有影响的一种学说。
它的主要观点是认为宇宙曾有一段从热到冷的演化史。
在这个时
期里,宇宙体系在不断地膨胀,使物质密度从密到稀地演化,如同一次规模巨大的爆炸。
该理论的创始人
之一是伽莫夫。
1932年勒梅特首次提出现代宇宙大爆炸理论,1946年美国物理学家伽莫夫正式提出大爆
炸理论,认为宇宙由大约200亿年前发生的一次大爆炸形成。
爆炸之初,物质只能以中子、质子、电子、光子和中微子等基本粒子形态存在。
宇宙爆炸之后的不
断膨胀,导致温度和密度很快下降。
随着温度降低、冷却,逐步形成原子、原子核、分子,并复合成为通
常的气体。
气体逐渐凝聚成星云,星云进一步形成各种各样的恒星和星系,最终形成我们现在所看到的宇宙。
爆炸之初,物质只能以中子、质子、电子、光子和中微子等基本粒子形态存在。
宇宙爆炸之后的不断
膨胀,导致温度和密度很快下降。
随着温度降低、冷却,逐步形成原子、原子核、分子,并复合成为通常
的气体。
气体逐渐凝聚成星云,星云进一步形成各种各样的恒星和星系,最终形成我们现在所看到的宇宙。
“宇宙并非永恒存在,而是从虚无创生”的思想在西方文化中可以说是根深蒂固。
虽然希腊哲学家曾
经考虑过永恒宇宙的可能性,但是,所有西方主要的宗教一直坚持认为宇宙是上帝在过去某个特定时刻创
造的。
那么大爆炸的思想是怎么来的呢?根据历史宇宙大爆炸思想主要有三个来源:(1)天文观测,如星
系红移;(2)广义相对论宇宙理论;(3)Gamow等的量子力学核合成原理。
当哈勃发现星系具有红移时,宇宙大爆炸思想就产生了,因为宇宙在膨胀,所以过去一定比现在小,它是一个简单而自然的逻辑推理,人人都有能力作出这样的判断,所以宇宙大爆炸思想并不能简单地归结
为某人的发现或发明。
但将大爆炸理论内容的具体化和科学化却是少数科学家的功劳,最值得提到的是Gamow的αβγ论文,Gamow第一个想到如果宇宙的过去比现在小,那么根据人类的热力学和统计物理学
知识,物质体积缩小温度会升高,所以宇宙的过去会比现在温度高,并且1948年人类已经有足够的知识
知道,核反应是有条件的,温度是主要条件,只有在一定温度条件下,某些核反应才能进行,所以根据量
子力学的核合成原理,我们可以精确地计算出在什么温度区间,某些核反应会发生,并产生什么样的元素。
基于这样的思想,Gamow在他的开创性论文中,计算出了两个可以用观测实验验证的预言:(1)在宇宙
大爆炸初期,约30万年左右的时间,温度条件使光子不再参与宇宙核反应,也就是说哪时候的光子可以
一直保留到现在。
这种现象称为光子退耦,因为宇宙在膨胀,所以退耦后的光子随着宇宙的膨胀,波长会
变长,到今天,根据计算相当于2.7K的黑体辐射(Gamow当时的数据为5K左右),这就是宇宙背景辐射,宇宙背景辐射(或退耦光子)有可能被今天的仪器测量到。
(2)根据核合成原理计算,原初核合成后,
氢占76%,氦占23%,和极少量锂、铍,其它重元素不能在原初核合成中产生。
所以今天我们应能测量到
的氦丰度在23%左右(宇宙中全部重元素只占1%左右)。
上述两个预言,后来都被实验证实了。
1965年彭齐亚斯和威尔逊,两位来之贝尔实验室的年轻人,
偶然发现他们想改做射电天文研究的通信卫星回波接收器的20英尺号角状天线上有4080MHz的额外噪声
无法消除,而且是全天空各向同性的,显然它不来之于任何天体或固定信源,最后确认他们发现的就是宇
宙背景辐射。
他们也因此获得了1978年的诺贝尔物理学奖。
那一年Gamow已经不在了,最可怜的是普林
斯顿是迪克,他和他的小组一直在研究宇宙背景辐射,并且做了好几套设备来探测它,但还是被两个无心
插柳的人抢先一步,与诺贝尔奖失之交臂。
1989年美国发射了COBE探测卫星,证明了在2.7K黑体辐射
的全波段上,理论和实验符合,从而进一步证明了宇宙背景辐射的存在和正确。
并探测到了背景辐射有微
小的各向异性,这说明宇宙初期就存在非对称性,两位研究者约翰·马瑟和乔治·斯穆特因此获得了
2006年的诺贝尔物理学奖。
同一个课题两次获奖在诺贝尔奖的历史上是唯一的,足以说明宇宙背景辐射
问题的重要性。
1984年Yang等人尝试实测氦丰度,以检验宇宙大爆炸理论的正确性,到1991年他们得到的实测结
果是:氦丰度=23.9%±0.3,理论和结果完全一致。
广义相对论提供的是宇宙的大尺度结构理论,这个理
论从爱因斯坦1917年第一篇关于宇宙学的论文“广义相对论中的宇宙学考察”发表后就开始发展了。
主
要的科学家有:爱因斯坦、弗里德曼、德西特、勒梅特、爱丁顿、罗伯逊、沃克等,这里要特别提到勒梅特,一位比利时宇宙学家,1927年发表了一篇文章,用广义相对论给出了一个膨胀的宇宙模型,提出了
宇宙来源于一个“原初原子”的爆炸理论,勒梅特的论文1931被爱丁顿发现后,翻译成英文,全世界才
知道了这个理论,Gamow是1948年才发表αβγ论文,所以要找“大爆炸理论”的源头的话,应该从勒
梅特开始。
到这里可以给出“宇宙大爆炸理论”历史发展的一条时间链:1905年爱因斯坦发表了第一篇关于相
对论的论文“论动体的电动力学”;1916年爱因斯坦发表了广义相对论的成熟理论“广义相对论基础”;1917年爱因斯坦发表了第一篇关于宇宙学的论文“广义相对论中的宇宙学考察”;1927年勒梅特发表了
关于“原初原子”宇宙模型的论文;1929年哈勃证实了星系红移现象;1948年Gamow发表了关于“热大
爆炸宇宙理论”的αβγ论文;1965年彭齐亚斯和威尔逊发现了宇宙背景辐射;1984年Yang等人尝试
实测氦丰度,证明了理论和实验吻合;1989年美国发射COBE探测卫星,证明了在2.7K黑体辐射的全波
段上,宇宙背景辐射理论和实验符合;2006年约翰·马瑟和乔治·斯穆特因分析COBE卫星数据,获得诺
贝尔物理学奖,整100年,使“宇宙大爆炸理论”成为人类宇宙观的组成部分。