测控技术与仪器专业英语课文翻译

合集下载

测控技术与仪器专业英语unit

测控技术与仪器专业英语unit
句中,that 从句作output的定语从句。
全句译为:然而,微处理器技术的出现使得传感器必须要 有电信号输出,这样便于接口以实现无人测控。
8
Unit3 Smart Sensors
That also required the analog signal level to be amplified and converted to digital format prior to (在……之前) being supplied to the process controller. Today’s MCUs and analog-to-digital (A/D) converters typically have a 5V power supply, which has dictated the supply voltage for many amplified and signal conditioned sensors.
译为:应用微电子技术之前,传感器或转换器用于测量 物理量,如温度,压力,流量,通常直接与读数装置相连, 通常一个仪表有一个观察员读数。
6
Unit3 Smart Sensors
The transducer converted the physical quantity being measured to a displacement. The observer initiated system corrections to change the reading closer to a desired value. The typical blocks of a measurement system are shown in Figure 3.1.
译为:在今天几乎一切的技术领域都将智能一词作为 其前缀的候选。智能传感器这一术语是在20世纪80年代 中期出现的,从那以后,一些设备已被称之为智能传感器。

测控技术与仪器 自动化 外文翻译 外文文献 英文文献

测控技术与仪器 自动化 外文翻译 外文文献 英文文献

外文出处:资料1:Virtual instrument based on serial(用外文写)communication and data acquisition system of management .资料2:LabVIEW serial communication based on Frequency Control Monitoring System附件:资料1:1.翻译译文;2.外文原文。

资料2:1.翻译译文;2.外文原文。

附件:资料1翻译译文在自动化控制和智能仪器仪表中, 单片机的应用越来越广泛, 由于单片机的运算功能较差, 往往需要借助计算机系统, 因此单片机和 PC机进行远程通信更具有实际意义, 通信的关键在于互传数据信息。

51系列单片机内部的串行口具有通信的功能,该串行口可以作为通信接口, 利用该串行口与 PC机的串行口 COM 1或COM 2进行串行通信, 将单片机采集的数据传送到 PC机中, 由 PC机的高级语言或数据库语言对数据进行整理及统计等复杂处理就能满足实际的应用需要。

软件设计,初始化后,打开数据通道对上下游信号进行采样,并进行相关运算,求峰值R~,对R.二是否峰值进行判断,以确保正确求出延时r,从而得出正确的流量。

由于一次相关计算所需时间很短,因此,采用计数器控制。

PC机和单片机在进行通信时, 首先分别对各自的串行口进行初始化、确定串行口工作方式、设定波特率、传输数据长度等, 然后才开始数据传输, 这些工作是由软件来完成的, 因此对 PC机和单片机均需设计相应的通信软件。

DOS环境下, 串行通信一般用中断方式来实现,用户对通信端口进行完全控制。

而在 W i ndow s 环境下, 系统禁止应用程序直接对硬件进行操作。

在W indows环境下提供了完备的 AP I应用程序接口函数, 程序员通过这些函数与通信硬件接口。

通信函数是中断驱动的: 发送数据时, 先将其放入缓存区,串口准备好后, 就将其发送出去; 传来的数据迅速申请中断, 使 W i ndow s接收它并将其存入缓冲区, 以供读取。

测控技术与仪器专业英语unit 4

测控技术与仪器专业英语unit 4
4
Unit4
Error Principle
Байду номын сангаас
In this case, special consideration must also be given to determining how the calculated error levels in each separate measurement should be combined together to give the best estimate of the most likely error magnitude in the calculated output quantity. 译为:在这种情况下,对于在每个单独的测量中,如 何确定计算的误差等级,以及在计算输出量中给与尽可 能最佳的误差幅度估计,还必须给予特殊的考虑。
7
Unit4
Error Principle
Other sources of systematic error include bent meter needles, the use of uncalibrated instruments, drift in instrument characteristics and poor cabling practices. Even when systematic errors due to the above factors have been reduced or eliminated, some errors remain that are inherent in the manufacture of an instrument. These are quantified by the accuracy figure quoted in the published specifications contained in the instrument data sheet.

专业英语Lesson 11 Computer-based Test Instruments 《测控技术与仪器英语教程》

专业英语Lesson 11 Computer-based Test Instruments 《测控技术与仪器英语教程》
• In the design of external PC-test instruments, external box
should connect to the internal computer bus
• manufacturer attempts to standardize its interface
cabinet external to the computer’s cabinet
• The connection between the external PC test instrument and
the computer is cable
• A example of external PC-test instrument— multifunctional
2020/6/30
《测控技术与仪器英语教程》
4
11.1 Internal Adapters
• PC instruments designed for internal use are fabricated on one
or more computer adapter bf internal-adapter PC-test device —IS-16
• The first major step toward this goal was taken by HewlettPackard in the early 1970’s with their introduction of the Hewlett-Packard Interface-Bus (HP-IB)
2020/6/30
《测控技术与仪器英语教程》
7
11.3.1 Successive Approximation Register Conversion

2018-测控技术与仪器科技英语-word范文 (12页)

2018-测控技术与仪器科技英语-word范文 (12页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==测控技术与仪器科技英语篇一:测控技术与仪器科技英语第四课翻译与课文Unit 4Digital Signal Processing (DSP)Having heard a lot about digital signal processing (DSP) technology , investigate why DSP is preferred to analog circuitry for many types of operations , and discover how to learn enough to design your own DSP system .This article , the first of a series , is an opportunity to take a substantial first step towards finding answers to your question .This series is an introduction to DSP topics from the point of analog system designers seeking additional tools for handing analog signal. Designers reading this series can lean about the possibilities of DSP to deal with analog signals and where to find additional sources of information and assistance.4.1 What Is DSP?In brief, DSPs are processors or microcomputers whose hardware, software, and instruction sets are optimized high-speed numeric processing applications-an essential for processing digital data representing analog signals in real time. What a DSP does is straightforward. When acting as a digital filter, for example, the DSP receives digital values based on samples of a signal, calculates the results of a filter function operating on these values, and provides digital values that represent the filter output; it can also provide system control signals based on properties of these values. The DSP’s high-speed arithmetic and logical hardware is programmed to rapidly execute algorithms modeling the filter transformation.The combination of design elements a arithmetic operators, memory handling, instruction set, parallelism, data addressing that provide this ability forms the key difference between DSPs and other kinds of processors. Understanding the relationship between real-time signal and DSP Calculation speed provides some background on just how special this combination is .The real-time signal comes to the DSP asa train of individualsamples from an analog-to-digital converter (ADC) .To do filtering in real-time, the DSP must complete all the calculations and operations required for processing each samples (usually updating a process involving many previous samples ) before the next sample arrives. To perform high-order filtering of real-world signals having significant frequency content calls for really fast processors.4.2 Why Use a DSP?To get an ideal of the type of calculations of DSP dose and get an ideal of how an analog circuit compares with a DSP system , one could compare the two systems in terms of a filter function. The familiar analog filter uses resistors ,capacitors,inductors ,amplifiers .It can be cheap and easy to assemble ,but difficult to calibrate,modify, and maintain a difficulty that increases exponentially with filter order .For many purposes, one can more easily design ,modify,and depend on filters using a DSP because the filter function on the DSP is software-based, flexible ,and repeatable.Further,to createflexibly adjustable filter s with higher-order response requires only software modifications,with no additional hardware unlike purely analog circuits .An ideal bandpass filter,with the frequency response shown in Fig.4.1,would have the following characteristics:? a response within the passband that is completely flat with zero phase shift? infinite attenuation in the stopband.Useful additions would include:? passband tuning and width control? Stopband rolloff controlAs Fig.4.1 shows, an analog approach using second-order filters would require quite a few staggered high-Q sections; the difficulty of tuning and adjusting it can beimagined.With DSP software ,there are two basic approaches to filter design : finite impulse response (FIR) and infinite impulse response(IIR) .The FIR filter's time response to an impulse is thestraightforward weighted sum of the present and a finite number of previousinput samples. Having no feedback,its response to a given sample ends when the sample reaches the "end of the line "(Fig. 4 . 2). An FIR filter's frequency response has no poles, only zeros. The IIR filter , by comparison, is called infinite because it is a recursivefunction:its output is a weighed sum of inputs and outputs. Since itis recursive , its response can continue indefinitely . An IIR filter frequency response has both poles and zeros. .The x(s) are the input samples, y(s) are the output samples, a(s) are input sample weighings, and b(s) are sample weighings. Nis thepresent sample time, and M and N are the number of samples programmed (the filter's order). Note that the arithmetic operations indicatedfor both types are simply sums and products in potentially great number. In fact ,multiply-and-add is the case for many DSP algorithms that represent mathematical operations of great sophistication and complexity.Approximating an ideal filter consists of applying a transferfunction with appropriate coefficients and a high enough order , or number of taps (considering the train of input samples as tappeddelay line). Fig. 4.3shows the response of a 90-tap FIR filter compared with sharp-cutoff Chebyshev filters of various orders. The90-tap example suggests how close the filter can come toapproximating an ideal filter. Within a DSP system, programming a 90-tap FIR filter like the one in Fig. 4.3 is not a difficult task. By comparison, it would no be cost-effective to attempt this level of approximation with a purely analog circuit. Another crucial point in favor of using a DSP to approximate the ideal fillter is long-term stability. With an FIR (or an IIR having sufficientresolution to avoid truncation-error buildup), the programmable DSP achieves the same response,time after time. Purely analog filter responses of high order areless stable with time.Mathematical transform theory and practice are the core requirementfor creating DSP application and understanding their limits. This article series walks through a few signal-analysis and-processing examples to introduce DSP concepts. The series also provides references to texts for further study and identifies software tools that case the development of signal-processing software.4.3 Sampling Real-world SignalsReal-world phenomena are analog the continuously changing energylevels of physical processes like sound, light, heat, electricity, magnetism, A transducer converts these levels into manageableelectrical voltage and current signals, and an ADC sampling frequency, of the ADC is critically important in digital processing processingof real-world signals.This sampling rate is determined by the amount of signal information that is needed for processing the signal adequately for a given application. In order for an ADC to provide enough samples to accurately describe the real-world signal, the sampling rate must beat least twice the highest-frequency component of the analog signal. For example, to accurately describe an audio signal containing frequencies up to 20kHz, the ADC must sample the signal at a minimumof 40kHz. Since arriving signal can easily contain component frequencies above 20kHz (including noise), they must be removedbefore sampling by feeding the signal through a low-pass filter, is intend to remove the frequencies above 20kHz that could corrupt the converted signal.However, the anti-aliasing filter has a finite frequency rolloff, so additional bandwidth must be provided for the filter's transition band. For example, with an inputsignal bandwidth of 20kHz, one might allow 2 to 4kHz of extra bandwidth.Figure 4.4 depicts the filter needed to reject any signals with frequencies above half of a 48kHz sampling rate.Second sample .The time between samples is the time budget for the DSP to preform all processing tasks.For the audio example ,a 48kHz sample rate corresponds to a 20.833vs sampling interval. Fig.4.5 relates the the analog signal and digital sample rate .图Next consider the relation between the speed of the DSP andcomplexity of the algorithm (the software containing the transform or other set of numeric operations ).Complex algorithm require more processing tasks.Because the time between samples is fixed ,thehigher complexity calls for faster processing .For example ,suppose that the algorithm requires 50 processing operations to be performed。

测控技术与仪器专业英语翻译

测控技术与仪器专业英语翻译
闭环控制的主要优点是对过程的控制有更精确的潜力。闭环控制有 两个缺点:(1)闭环控制比开环控制更昂贵;(2)一个闭环控制系统 的反馈功能使系统变得不稳定。一个不稳定的系统产生的控制变量的 振荡,通常是一个非常大的振幅。
Selected from “Introduction to Control System technology , 4th Ed. , by Robert N. Bateson, Macmillan Publishing Co., 1933”. 选自“控制系统技术,第四版的介绍,罗伯特N.贝特森,麦克米兰出版有限公司,1933。
• 测量变量(CM)是衡量价值的控制变量。这是输出的测 量手段和通常不同于实际的控制变量的一小部分。
• The error (E) is the difference between the setpoint and the measured value of the controlled variable . It is computed according to the equation E=SP-.
控制变量(C)是过程的输出变量,用来出变量,它能很好地衡量 产品的质量。最常见的控制变量有位置、速度、温度、压 力和流量水平。


The set point (SP) is the desired value of the controlled variable.
6.Variable Name(变量名称)

The controlled variable (C) is the process output variable that is to controlled. In a process control system, the controlled variable is usually an output variable that s a good measure of the quality of the product. The most common controlled variables are position, velocity, temperature, pressure level and flow rate.

测控技术与仪器专业英语UNIT-2-Power Generation and Transmission

测控技术与仪器专业英语UNIT-2-Power Generation and Transmission
(2) Three coils are placed 120° apart in a generator to produce three-phase AC voltage. Most AC motors over 1 hp in size operate with three-phase AC power applied. . 为生产出三相交流电压,发电机中每隔120°放置一个线圈,共有 三个线圈。大多数1马力以上的马达用三相交流电工作 。
框架尺寸相当时,三相交流电机的功率值比单相交流电机大50%。
2.3 Further Reading
Transformers 变压器
New Words and Phrases
transformer
n.
electromagnetism n.
autotransformer n.
substation
n.
classification
magnetic coupling or mutual inductance 磁耦合或互感
expanding and collapsing of …
…的增强和减弱
powered metal core transformers
强磁化金属芯变压器
step-up
升压的
step-down
降压的
inverse ratio
sine
n.
正弦
transmit
v.
transfer, 输送
pulsate
v.
脉动
cylinder ['silində]
n.
汽缸,气缸,圆柱体
rating ['reitiŋ]
n.
额定值,标称值;级别

测控技术与仪器专业毕业设计外文翻译

测控技术与仪器专业毕业设计外文翻译

测控技术与仪器专业毕业设计外文翻译Development of Sensor New TechnologySensor is one kind component which can transform the physical quantity,chemistry quantity and the biomass into electrical signal. Theoutput signalhas the different forms like the voltage, the electric current, the frequency, thepulse and so on, which can satisfy the signal transmission, processing,recording, and demonstration and control demands. So it is the automaticdetection system and in the automatic control industry .If automatic Technology is used wider, then sensor is more important.Several key words of the sensor:1 Sensor ElementsAlthough there are exception ,most sensor consist of a sensing element and aconversion or control element. For example,diaphragms,bellows,strain tubes andrings, bourdon tubes, and cantilevers are sensing elements which respond to changesin pressure or force and convert these physical quantities into a displacement. Thisdisplacement may then be used to change an electrical parameter such as voltage,resistance, capacitance, or inductance. Such combination of mechanical and electricalelements form electromechanical transducing devices or sensor. Similar combinationcan be made for other energy input such as thermal. Photo, magnetic andchemical,giving thermoelectric, photoelectric,electromaanetic, and electrochemicalsensor respectively.2 Sensor SensitivityThe relationship between the measured and the sensor output signal is usuallyobtained by calibration tests and is referred to as the sensor sensitivity K1= output-signal increment / measured increment . In practice, the sensor sensitivity is usuallyknown, and, by measuring the output signal, the input quantity is determined from input= output-signal increment / K1.3 Characteristics of an Ideal SensorThe high sensor should exhibit the following characteristics.(a)high fidelity-the sensor output waveform shape be a faithful reproduction of themeasured; there should be minimum distortion.(b)There should be minimum interference with the quantity being measured; thepresence of the sensor should not alter the measured in any way.(c)Size. The sensor must be capable of being placed exactly where it is needed.文献 (d)There should be a linear relationship between the measured and the sensor signal.(e)The sensor should have minimum sensitivity to external effects, pressure sensor,forexample,are often subjected to external effects such vibration and temperature.(f)The natural frequency of the sensor should be well separated from the frequencyand harmonics of the measurand.Sensors can be divided into the following categories:1 Electrical SensorElectrical sensor exhibit many of the ideal characteristics. In addition they offerhigh sensitivity as well as promoting the possible of remote indication ormesdurement.Electrical sensor can be divided into two distinct groups:(a)variable-control-parameter types,which include:(i)resistance(ii)capacitance(iii)inductance(iv)mutual-inductance typesThese sensor all rely on external excitation voltage for their operation.(b)self-generating types,which include(i)electromagnetic(ii)thermoelectric(iii)photoemissive(iv)piezo-electric typesThese all themselves produce an output voltage in response to the measurand input and their effects are reversible. For example, a piezo-electric sensor normally produces an output voltage in response to the deformation of a crystalline material; however, if an alternating voltage is applied across the material, the sensor exhibits the reversible effect by deforming or vibrating at the frequency of the alternating voltage.2 Resistance SensorResistance sensor may be divided into two groups, as follows:(i)Those which experience a large resistance change, measured by using potential-divider methods. Potentiometers are in this group.(ii)Those which experience a small resistance change, measured by bridge-circuitmethods. Examples of this group include strain gauges and resistance thermometers.文献3 Capacitive SensorThe capacitance can thus made to vary by changing either therelative permittivity, the effective area, or the distance separating the plates. The characteristic curves indicate that variations of area and relative permittivity give a linear relationship only over a small range of spacings. Thus the sensitivity is high for small values of d. Unlike the potentionmeter, the variable-distance capacitive sensor has an infiniteresolution making it most suitable for measuring small increments of displacement orquantities which may be changed to produce a displacement.4 Inductive SensorThe inductance can thus be made to vary by changing the reluctanceof the inductive circuit.Measuring techniques used with capacitive and inductive sensor:(a)A.C. excited bridges using differential capacitors inductors. (b)A.C. potentiometer circuits for dynamic measurements.(c)D.C. circuits to give a voltage proportional to velocity for a capacitor. (d)Frequency-modulation methods, where the change of C or L varies the frequency of an oscillation circuit.Important features of capacitive and inductive sensor are as follows: (i)resolution infinite(ii)accuracy?0.1% of full scale is quoted(iii)displacement ranges 25*10-6 m to 10-3m(iv)rise time less than 50us possibleTypical measurands are displacement, pressure, vibration, sound, and liquid level. 5 Linear Variable-differential Ttransformer6 Piezo-electric Sensor7 Electromagnetic Sensor8 Thermoelectric Sensor9 Photoelectric Cells10 Mechanical Sensor and Sensing ElementsIn information age, the information industry includes information gathering, transmission, process three parts, namely sensor technology, communication, computer technology. Because of ultra large scale integrated circuit’s rapid development aft er having been developed Modern computertechnology and communication, not only requests sensor precision reliability,文献speed of response and gain information content request more and more high but also requests its cost to be inexpensive. The obvioustraditional sensor is eliminated gradually because of the function, the characteristic, the volume, the cost and so on. As world develop many countries are speeding up to the sensor new technology’s research and the development, and all has obtainedthe enormous breakthrough. Now the sensor new technology development mainly has following several aspects:Using the physical phenomenon, the chemical reaction, the biological effect as the sensor principle therefore the researches which discovered the new phenomenon and the new effect are the sensor technological improving ways .it is important studies to developed new sensor’s the foundation. JapaneseSharp Corporation uses the superconductivity technology to develop successfully the high temperature superconductivity magnetic sensor and get the sensor technology significant breakthrough. Its sensitivity is so high and only inferior in the superconductivity quantum interference component. Itsmanufacture craft is far simpler than the superconductivity quantum interference component. May use in magnetism image formation technology. So it has the widespread promoted value.Using the immune body and the antigen meets one another compound when the electrode surface. It can cause the electrode potential change and use this phenomenon to be possible to generate the immunity sensor. The immunity sensor makes with this kind of immune body may to some organism in whether has this kind of ant original work inspection. Likemay inspect somebody with the hepatitis virus immune body whether contracts the hepatitis, plays to is fast, the accurate role. The US UC sixth branch has developed this kind of sensor.The sensor material is the important foundation for sensor technology, because the materials science is progressive and the people may make each kind of new sensor For example making the temperature sensor with the high polymer thin film; The optical fiber can make the pressure, the current capacity, the temperature, the displacement and so on the many kinds of sensors; Making the pressure transmitter with the ceramics. The high polymer can become the proportion adsorption and the release hydrogen along with the environment relative humidity size. The high polymer electricity lies between文献the constant to be small, the hydrogen can enhance the polymer the coefficient of dialectical loss. Making the capacitor the high polymer dielectric medium, determines the electric capacity cape city the change, then obtains the relative humidity. Making the plasma using this principle to gather the legitimate polystyrene film temperature sensor below, it has the characteristic.Measured the wet scope is wide; The temperature range is wide, may reach -400 ? ~ +1,500 ?; The speed of response is quick, is smaller than 1S; Thesize is small, may use in the small space measuring wet; The temperature coefficient is small.The ceramic electric capacity type pressure transmitter is one kind does not have the intermediary fluid the dry type pressure transmitter. Uses the advanced ceramic technology, the heavy film electronic technology, its technical performance is stable, the year drifting quantity is smaller than 0.1%F.S, warm floats is smaller than ?0.15%/10K, anti- overloads strongly,may reach the measuring range several hundred times. The surveyscope may from 0 to 60mpa.German E+H Corporation and the American Kahlo Corporation product is at the leading position.The optical fiber application is send the material significant breakthrough, its uses in most early the optical communication techniques. In the optical communication use discovered works as environmental condition change and so on the temperature, pres-sure, electric field, magnetic field, causes the fiber optic transmissionlight wave intensity, the phase, the frequency, changeand so on the polarization condition, the survey light wave quantity change, may know causes these light wave physical quantity the and so on quantitative change temperature, pressure ,electric field, magneticfield size, uses these principles to be possible to develop the optical fiber sensor. The optical fiber sensor and the traditional sensor compare has many characteristics: Sensitivity high, the structure simple, the volume small, anti- corrosive, the electric insulation good, thepath of rays may be curving, be advantageous for the realization telemeter and so on. Optical fiber sensor Japan is in the advanced level.Like Idec Izumi Corporation and Sun x Corporation. The optical fiber send receiver and the integrated path of rays technology unify, accelerates the optical fiber sensor technology文献development. Will integrate the path of ray’s component to replace theoriginal optics part and the passive light component; enable the optical fiber sensor to have the high band width, the low signal processing voltage, the reliability high, the cost will be low.In semiconductor technology processing method oxygenation, the photo etc hang, the proliferation, the deposition, the plane electron craft, various guides corrosion and steams plates, the sputtering thin film and so on, these have all introduced to the sensor manufacture. Thus has produced each kind of new sensor, like makes the silicon micro sensor using the semiconductor technology, makes the fast response using the thin film craft the gas to be sensitive, the wet sensitive sensor, the use sputtering thin film craft system pressure transmitter and so on..The Japanese horizontal river company uses various guides’corrosiontechnology to carry on the high accuracy three dimensional processing; the system helps the silicon resonance type pressure transmitter. The core partially presses two resonant Liang by thefeeling which above the silicon diaphragm and the silicon diaphragm manufactures to form, two resonant Liang's frequency difference correspondence different pressure, measures the pressure with thefrequency difference method, may eliminate the error which factor and so on ambient temperature brings. When ambient temperature change, two resonant Liang frequencies and the amplitude variation are same, after two frequency differences, its same change quantity can counterbalance mutually. It’s survey most high accuracy may reach 0.01%FS.American Silicon Microstructure Inc.(SMI) the company develops a series of low ends, linear in 0.1% to 0.In 65% scope silicon micro pressure transmitter, the lowest full measuring range is 0.15psi (1KPa), it makes take the silicon as the material, has the unique three dimensional structure, the light slight machine-finishing, makes the wheat stone bridge many times with the etching on the silicon diaphragm, when above silicon chip stress, it has the distortion, the resistance produces presses the anti- effect but to lose the bridge balance, the output and the pressure becomes the proportion theelectrical signal.Such silicon micro sensor is the front technology which now the sensor develops, Its essential feature is the sensitive unit volume is a micron文献magnitude, Is the traditional sensor several dozens, several 1%. In aspect and so on industry control, aerospace domain, biomedicine has the vital role, like on the airplane the use may reduce the airplane weight, reduces the energy. Another characteristic is can be sensitiveis small surveyed, may make the blood pressure pressure transmitter.The Chinese aviation main corporation Beijing observation andcontrol technical research institute, the development CYJ series splashes thanks the membrane pressure transmitter is uses the ion sputtering craft to process the metal strain gauge, it has over come the nonmetallic strain gauge easily the temperature influence insufficiency, has the high stability, is suitable in each kind of situation, is measured the medium scope widely, but also overcame the tradition lowly to glue the precision which the type brought, sluggish big, shortcoming and so on slow change, had the precision high, the re-liability is high, the volume small characteristic, widely used in domain and so on aviation, petroleum, chemical industry, medical service.Integrates the sensor the superiority is the traditional sensor is unable to achieve, it is a simple sensor not merely, it in at the same time the auxiliary circuit part and send the part will integrate on together the chip, will cause it to have the calibration, to compensate, from the diagnosis and the network correspondence function, it might reduce the cost, the gain in yield, this kind of blood pressure sensor which American LUCAS, NOVASENSORCorporation will develop, each week will be able to produce 10,000.The intellectualized sensor is one kind of belt microprocessor sensor, is achievement which the microcomputer and the sensor unifies,it has at the same time the examination, the judgment and the information processing function, compares with the traditional sensor has very many characteristics:Has the judgment and the information processing function, can carry on the revision, the error to the observed value compensates, thus enhancement measuring accuracy; May realize the multi-sensor multi parameters survey; Has from the diagnosis and from the calibration function, enhances the reliability; The survey data may deposit and withdraw, easy to operate; Has the data communication interface, can and the microcomputer direct communication.文献 The sensor, the signal adjustment electric circuit, the monolithic integrated circuit integration forms ultra large-scale integrated on a chip the senior intelligence sensor. American HONY WELL Corporation ST-3000intelligence sensor, the chip size only then has 3×4×2mm3, usesthesemiconductor craft, makes CPU, EPROM, the static pressure, the differential pressure, the temperature on the identical chip and so on three kind of sensitive units.The intellectualized sensor research and the development, US is at the leading position. American Space Agency when development spaceship called this kind of sensor for the clever sensor (Smart Sensor), on the spaceship this kind of sensor is extremely important. Our country inthis aspect research and development also very backward mainly is because our country semiconductor integrated circuit technological level is limited.The sensor’s development is changing day after day since especially the80's humanities have entered into the high industrialization the information age, sensor techno-logy to renewal, higher technological development. US, Japan and so on developed country sensor technological development quickest, our country because the foundation is weak, the sensor technology compares with these developed countries has the big disparity. Therefore, we should enlarge to the sensor engineering research, the development investment, causes our country sensor technology and the foreign disparity reduces, promotes our country instrument measuring appliance industry and from the technical development.,Jon ——From《Sensor Technology Handbook》Wilson,Newnes文献传感器新技术的发展传感器是一种能将物理量、化学量、生物量等转换成电信号的器件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档