工程光学 3 习题课 1
工程光学习题3

当 m=2 时
当 m=3 时
15. 一块光栅的宽度为 10cm ,每毫米内有 500 条缝, 光栅后面放置的透镜焦距为 500nm。 问: (1)它产生的波长 λ = 632.8nm 的单色光的 1 级和 2 级谱线的半宽度是多少?(2)若 入射光线是波长为 632.8nm 和波长与之相差 0.5nm 的两种单色光, 它们的 1 级和 2 级谱 线之间的距离是多少? 解: d =
sin θ x =
α=
500 × 1.43π = 0.0286(rad ) x1 = 14.3(mm ) π × 0.025 × 10 6 500 × 2.459π 二级次极大 θ x ≈ sin θ x = = 0.04918( rad ) x1 = 24.59(mm ) π × 0.025 × 10 6
(m = 0,±1,±2 ⋅ ⋅⋅) ∴x =
mλ f d e=
x f
λ
d
f
∴d =
λf
e
=
632.8 ×10 −6 × 500 = 0.21(mm) 1.5
⎧ μ1 = 4 将⎨ 代入得 ⎩n = 1
d ∵ μ1 = n ⋅ ( ) a
2
d a 1 = 0.053(mm) ⇒ = 4 d 4 λ (2)当 m=1 时, sin θ 1 = a=
当 m=2 时, 当 m=3 时,
d 2λ sin θ 2 = d 3λ sin θ 3 = d
第三版工程光学答案[1]
![第三版工程光学答案[1]](https://img.taocdn.com/s3/m/a7b6190ba7c30c22590102020740be1e650ecce7.png)
第一章3、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离. 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm 即屏到针孔的初始距离为300mm。
4、一厚度为200mm的平行平板玻璃(设n=1。
5),下面放一直径为1mm的金属片。
若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?n0sinI1=n2sinI2(1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2) 由(1)式和(2)式联立得到n0。
16、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。
解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面. (1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后15mm处.(2)将第一面镀膜,就相当于凸面镜像位于第一面的右侧,只是延长线的交点,因此是虚像。
还可以用β正负判断:(3)光线经过第一面折射:, 虚像第二面镀膜,则:得到:(4)在经过第一面折射物像相反为虚像。
18、一直径为400mm,折射率为1.5的玻璃球中有两个小气泡,一个位于球心,另一个位于1/2半径处。
沿两气泡连线方向在球两边观察,问看到的气泡在何处?如果在水中观察,看到的气泡又在何处?解:设一个气泡在中心处,另一个在第二面和中心之间。
(1)从第一面向第二面看(2)从第二面向第一面看(3)在水中19、.有一平凸透镜r=100mm,r,d=300mm,n=1。
5,当物体在时,求高斯像的位置。
工程光学第三章课后习题及答案郁道银

第三章习题及答案
1.人照镜子时,要想看到自己的全身,问镜子要多长?人离镜子的距离有没有关系?
解:
镜子的高度为1/2 人身高,和前后距离无关。
2.设平行光管物镜L 的焦距f ' =1000mm,顶杆与光轴的距离a=10 mm,如果推动顶杆使平面镜倾斜,物镜焦点F 的自准直像相对于F 产生了y=2 mm 的位移,问平面镜的倾角为多少?顶杆的移动量为多少?
解:
3.一光学系统由一透镜和平面镜组成,如图3-1所示,平面镜MM 与透镜光轴垂直交于D 点,透镜前方离平面镜600 mm 有一物体AB,经透镜和平面镜后,所成虚像A"B"至平面镜的距离为150 mm,且像高为物高的一半,试分析透镜焦距的正负,确定透镜的位置和焦距,并画出光路图。
图3-1习题3图
解:平面镜成β=1 的像,且分别在镜子两侧,物像虚实相反。
4.用焦距=450mm 的翻拍物镜拍摄文件,文件上压一块折射率n=1.5,厚度d=15mm
的玻璃平板,若拍摄倍率,试求物镜后主面到平板玻璃第一面的距离。
解:
此为平板平移后的像。
5.棱镜折射角,C 光的最小偏向角,试求棱镜光学材料的折射率。
解:
6.白光经过顶角
的色散棱镜,n=1.51 的色光处于最小偏向角,试求其
最小偏向角值及n=1.52 的色光相对于n=1.51 的色光间的交角。
解:。
(完整版)工程光学第三版课后答案1

(完整版)⼯程光学第三版课后答案1第⼀章2、已知真空中的光速c =3*108m/s ,求光在⽔(n=1.333)、冕牌玻璃(n=1.51)、⽕⽯玻璃(n=1.65)、加拿⼤树胶(n=1.526)、⾦刚⽯(n=2.417)等介质中的光速。
解:则当光在⽔中,n=1.333 时,v=2.25*108m/s, 当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s, 当光在⽕⽯玻璃中,n =1.65时,v=1.82*108m/s ,当光在加拿⼤树胶中,n=1.526 时,v=1.97*108m/s ,当光在⾦刚⽯中,n=2.417 时,v=1.24*108m/s 。
3、⼀物体经针孔相机在屏上成⼀60mm ⼤⼩的像,若将屏拉远50mm ,则像的⼤⼩变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则⽅向不变,令屏到针孔的初始距离为x ,则可以根据三⾓形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。
4、⼀厚度为200mm 的平⾏平板玻璃(设n=1.5),下⾯放⼀直径为1mm 的⾦属⽚。
若在玻璃板上盖⼀圆形纸⽚,要求在玻璃板上⽅任何⽅向上都看不到该⾦属⽚,问纸⽚最⼩直径应为多少?解:令纸⽚最⼩半径为x,则根据全反射原理,光束由玻璃射向空⽓中时满⾜⼊射⾓度⼤于或等于全反射临界⾓时均会发⽣全反射,⽽这⾥正是由于这个原因导致在玻璃板上⽅看不到⾦属⽚。
⽽全反射临界⾓求取⽅法为:(1) 其中n2=1, n1=1.5,同时根据⼏何关系,利⽤平板厚度和纸⽚以及⾦属⽚的半径得到全反射临界⾓的计算⽅法为:(2)联⽴(1)式和(2)式可以求出纸⽚最⼩直径x=179.385mm ,所以纸⽚最⼩直径为358.77mm 。
8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射⽅式传播时在⼊射端⾯的最⼤⼊射⾓)。
工程光学第3版第一章习题答案

• 光学元件的特性与选择:不同光学元件具有不同的特性,如透镜的焦距、折射 率,反射镜的反射率、角度等。在选择和使用光学元件时,需要考虑系统的需 求和限制,如成像质量、光束直径、光谱范围等。
习题1.6
什么是光的衍射?衍射现象有哪些应用?
答案
光的衍射是指光波在遇到障碍物时,绕过障碍物的边缘继 续传播的现象。衍射现象在许多领域都有应用,如全息摄 影、光学仪器制造和光学信息处理等。
习题1.3答案
习题1.7
什么是光谱线及其分类?光谱分析的原理是什么?
答案
光谱线是指物质在特定温度和压力下发射或吸收的特定波长的光。根据产生机理 ,光谱线可分为发射光谱和吸收光谱。光谱分析的原理是利用物质对光的吸收、 发射或散射特性来分析物质的组成和结构。
习题1.2
简述光学显微镜的基本组成部分。
习题1.1答案
习题1.3
如何正确使用光学显微镜?
答案
使用光学显微镜时,应先调节光源亮度,然后调节聚光镜和物镜的焦距,确保 样品清晰可见。接着,通过调节载物台和调焦装置,使样品在显微镜视场中居 中。最后,通过目镜观察并记录观察结果。
习题1.2答案
习题1.4
什么是光的折射?折射率与题考察了光学显微镜的分辨本领与照 明方式、物镜的数值孔径和照明光的波长的 关系。光学显微镜的分辨本领主要取决于物 镜的数值孔径和照明光的波长。数值孔径越 大,照明光的波长越短,则显微镜的分辨本 领越高。同时,照明方式也会影响显微镜的 分辨本领,暗视场显微镜具有较高的对比度
练习题3
工程光学习题课1

共三十五页
• 牛顿公式(GŌNGSHÌ)
xx ff y f x
y x f
• 高斯公式
f ' f 1 l' l
y f l'
y f l
1 1 1 , l' l f '
l'
l
共三十五页
• 理想光学系统物方焦距(JIĀOJÙ)与像方焦距(JIĀOJÙ)的关系
共三十五页
拉赫不变量(BIÀNLIÀNG)
它是光学系统的重要指标
在近轴区域成像时像方和物方参数乘积的一个不变式。像高的增大 必然伴随(BÀN SUÍ)着像方孔径角的减小。增大视场牺牲孔径为代价。
共三十五页
2. 单个反射(FǍNSHÈ)球面的成像
球面折射成像的相关公式 中,令N’=-N,可得反射球面 成像公式如下:
线反射到原介质中的现象。
光线发生(FĀSHĒNG)全反射的条件:
① 光线由光密介质射向光疏介质; ② 入射角大于临界角。二者缺一不可。
(1-3)
共三十五页
结束
返回
实物、实像(SHÍXIÀNG);虚物、虚像
实物(SHÍWÙ)成实像
实物成虚像
虚物成实像
虚物成虚像
共三十五页
物像 概念小结: (WÙ XIÀNɡ)
n, l,
n l
n,
r
n
n, n -- 光焦度
r
n, l,
n
n, n r
n, n n, n
l
r
n, f,
n f
f , n,
f
n
共三十五页
1.3. 单个球面(QIÚMIÀN)的近轴放大率
工程光学习题参考答案第三章平面与平面系统

第三章 平面与平面系统1. 人照镜子时,要想看到自己的全身,问镜子要多长?人离镜子的距离有没有关系? 解:镜子的高度为1/2人身高,和前后距离无关。
2有一双面镜系统,光线平行于其中一个平面镜入射,经两次反射后,出射光线与另一平面镜平行,问两平面镜的夹角为多少? 解:OA M M //32 3211M M N M ⊥∴1''1I I -= 又 2''2I I -=∴α同理:1''1I I -=α 321M M M ∆中 ︒=-+-+180)()(1''12''2I I I I αO︒=∴60α 答:α角等于60︒。
3. 如图3-4所示,设平行光管物镜L 的焦距'f =1000mm ,顶杆离光轴的距离a =10mm 。
如果推动顶杆使平面镜倾斜,物镜焦点F 的自准直象相对于F 产生了y =2mm 的位移,问平面镜的倾角为多少?顶杆的移动量为多少? 解:θ'2f y = rad 001.0100022=⨯=θ αθx=mm a x 01.0001.010=⨯=⨯=∴θ图3-44. 一光学系统由一透镜和平面镜组成,如图3-29所示。
平面镜MM 与透镜光轴垂直交于D点,透镜前方离平面镜600mm 有一物体AB ,经透镜和平面镜后,所成虚像''A ''B 至平面镜的距离为150mm,且像高为物高的一半,试分析透镜焦距的正负,确定透镜的位置和焦距,并画出光路图。
图3-29 习题4图解: 由于平面镜性质可得''B A 及其位置在平面镜前150mm 处 ''''B A 为虚像,''B A 为实像则211-=β 21'1-==L L β 450150600'=-=-L L 解得 300-=L 150'=L 又'1L -L 1='1f mm f 150'=∴ 答:透镜焦距为100mm 。
第三版工程光学答案[1]
![第三版工程光学答案[1]](https://img.taocdn.com/s3/m/fe25bf748762caaedc33d4a5.png)
第一章3、一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm ,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm.4、一厚度为200mm 的平行平板玻璃(设n =1。
5),下面放一直径为1mm 的金属片。
若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n =66666.01sin 22==n I745356.066666.01cos 22=-=I88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=1mmI 1=90︒n 1 n 2200mmL I 2 x8、。
光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .16、一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置.如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。
解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面。
(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后15mm处。