几个典型颜色的光谱反射率曲线

合集下载

绿色植物的反射波谱曲线作用

绿色植物的反射波谱曲线作用

绿色植物的反射波谱曲线作用2014015587—贺康康—环科地面植物具有明显的光谱反射特征,不同于土壤、水体和其他的典型地物,植被对电磁波的响应是由其化学特征和形态学特征决定的,这种特征与植被的发育、健康状况以及生长条件密切相关。

在可见光波段内,各种色素是支配植物光谱响应的主要因素,其中叶绿素所起的作用最为重要。

健康的绿色植被,其光谱反射曲线几乎总是呈现“峰和谷”的图形,可见光谱内的谷是由植物叶子内的色素引起的。

例如叶绿素强烈吸收波谱段中心约0.45um和0.67um(常称这个谱带为叶绿素吸收带)的能量。

植物叶子强烈吸收蓝区和红区的能量,而强烈反射绿区能量,因此肉眼觉得健康的植被呈绿色。

除此之外,叶红素和叶黄素在0.45um(蓝色)附近有一个吸收带,但是由于叶绿素的吸收带也在这个区域内,所以这两种黄色色素光谱响应模式中起主导作用。

如果植物受到某种形式的抑制而中断了正常的生长发育,它会减少甚至停止叶绿素的产生。

这将导致叶绿素的蓝区和红区吸收带减弱,常使红波段反射率增强,以至于我们可以看到植物变黄(绿色和红色合成)。

从可见光区到大约0.7um的近红外光谱区,可看到健康植被的反射率急剧上升。

在0.7-1.3um区间,植物的反射率主要来自植物叶子内部结构。

健康绿色植物在0.7-1.3um间,的光谱特征的反射率高达(45%-50%),透过率高达(45%-50%),吸收率低至(<5%)。

植物叶子一般可反射入射能量的40%-50%,其余能量大部分透射过去,因为在这一光谱区植物叶子对入射能量的吸收最少(一般少于5%)。

在光谱的近红外波段,植被的光谱特性主要受植物叶子内部构造的控制。

在可见光波段与近红外波段之间,即大约0.76um附近,反射率急剧上升,形成“红边”现象,这是植物曲线的最为明显的特征,是研究的重点光谱区域。

许多种类的植物在可见光波段差异小,但近红外波段的反射率差异明显。

同时,与单片叶子相比,多片叶子能够在光谱的近红外波段产生更高的反射率(高达85%),这是因为附加反射率的原因,因为辐射能量透过最上层的叶子后,将被第二层的叶子反射,结果在形式上增强了第一层叶子的反射能量。

光谱反射率与颜色之间的关系实验报告

光谱反射率与颜色之间的关系实验报告

光谱反射率与颜色之间的关系实验报告颜色在我们的生产生活中扮演重要的角色,物体颜色与反射率有直接关系。

光照射到样品表面,会产生反射光。

样品反射光的光通量与完全漫反射样品(理想白样品)反射光的光通量的比率,称之为样品的反射率。

所以白色的反射率高,靠近100%;黑色的反射率低,黑洞则接近0%。

1、反射率曲线
由于可见光是由380--780nm(或400--700nm)波段的各色光组成的,所以对于一个样品,在其中的每个波段都可计算对应的反射率,我们将各个波段的反射率连接起来,这就组成了一条曲线,我们称之为样品的反射光谱曲线。

2、颜色解析
由于反射光谱是由反射率组成的,一个样品反射率一般是不受光源种类影响的,也不受观察者的影响,可以完整代表样品的颜色特性,所以有时我们称之为颜色的密码。

在现代颜色数据沟通交流中,通过反射率进行颜色交流沟通是好的方式,不会产生颜色信息的损失。

因此,配制颜色时达到反射光谱的完全匹配,但是由于人眼无法直接看到光谱曲线,所以在日常工作中容易出现同色异谱现象。

借助分光光度仪,我们可以获得样品的反射光谱曲线;若再加上电脑配色软件,可预测计算颜料配方的准确光谱曲线。

反射率和反射光谱曲线主要是针对不透明样品的颜色参数;同
理,对于透明样品的测量,对应的是透射率和透射光谱曲线。

4油墨的光学性能解析

4油墨的光学性能解析

密度值的高、中、低值表示:
Y
0.13(L)
0.18(M)
1.02(H)
4.1 油墨的原色性
密度 值 滤色片 R 0.13 0.12 1.54 G 0.18 1.47 0.52 B 1.02 0.63 0.24
二、原色性指标计算:
Y M C
1、色强度:油墨的最高光密度值。 色强度=H
Y墨色强度=1.02 C墨色强度=1.54 M墨色强度=1.47
0.40
1.30 07 0.43
24.3
100 92.3 83.7
9.40
8.30 28.3 25.0
此组三原色墨色域范围:
G100 50 50
C0 Y0
50
50
B100
R100
B偏M83.7%,灰度 为25.0%
50 M0 50
M偏R22.4%,灰度为7.2%
4.1 油墨的原色性
二、原色性指标计算:
4、色效率:指油墨是否吸收了三分之一相反 色色光,而反射了三分之二基本色色光。
色效率=(实际反射色光/理想反射色光)×100%
规定:H值作为理想反射色光大小。 所以:理想反射色光为2H 实际反射色光为(H-M)+(H-L) 色效率=[(H-M)+(H-L)]/2H×100%
周向为色偏,轴向为灰度,边缘为0%,圆心为100%
4.2 油墨的透明度
一、油墨透明度定义:
油墨膜层透射光的能力。 要求三原色油墨的透明度要高!
4.2 油墨的透明度
二、影响油墨透明度的因素:
(1)颜料本身分子结构特性 (2)颜料分散度 (3)油墨中颜料含量 (4)颜料与连结料折光率差别
4.3 油墨的光泽度

地物反射率光谱特征曲线

地物反射率光谱特征曲线

地物反射率光谱特征曲线地物反射率光谱特征曲线是指在不同波长下地物对太阳辐射所反射的光的强度的变化。

通过分析地物反射率光谱特征曲线,可以获取有关地物组成、结构和性质的信息,从而在科学研究、遥感监测和环境保护等领域中发挥重要作用。

地物反射率光谱特征曲线的形状和特点是由地物类型和组成决定的。

不同地物具有不同的反射特性,因此其光谱曲线也会有很大的差异。

植被是地表最常见的地物之一,其反射率光谱特征曲线呈现出明显的特征。

在可见光波段(400-700nm),植被的反射率较高,主要是由于叶片的叶绿素吸收太阳光造成。

在红光波段(约650-700nm),植被的反射率特别高,这一段被称为"红光高谷"。

而在近红外光波段(700-1300nm),植被的反射率则相对较低,这主要是由于植被的叶绿素吸收光能的能力较弱。

土壤是地表另一个重要的地物,其反射率光谱特征曲线也有其独特之处。

在可见光波段,土壤的反射率较低,主要是由于土壤中的颜色成分(如氧化铁)吸收了部分能量。

而在近红外光波段,土壤的反射率会有所增加,这是因为土壤中存在一些具有较高反射率的矿物质,如黏土和白云石。

水体是另一种常见的地物类型,其反射率光谱特征曲线也具有独特的特征。

在可见光波段,清澈的水体的反射率较低;而在近红外光波段,水体的反射率会急剧增加。

这是因为水体中的吸收和散射现象导致部分光线无法透过水体,反而被反射回来。

除了以上提到的几种地物类型外,还有许多其他地物也具有特征明显的反射率光谱特征曲线,如岩石、建筑物、云等。

通过对这些地物的光谱特征进行解析,可以帮助我们识别和区分不同的地物类型,进而对地表进行准确的遥感监测和研究。

总而言之,地物反射率光谱特征曲线是一种重要的遥感分析工具,能够提供地物组成和性质的有关信息。

通过研究不同地物在不同波长下的反射率变化,我们能够更好地了解地球表面的特征和变化,为科学研究和环境保护提供有力支持。

各典型地物的光谱曲线-文档资料

各典型地物的光谱曲线-文档资料
各典型地物的光谱曲线
常见地物比较光谱曲线 植被光谱曲线 土壤光谱曲线 水体光谱曲线 岩石光谱曲线
地物波谱特征
在可见光与近红外波段,地表物体自身的辐射几乎等于零。地物
发出的波谱主要以反射太阳辐射为主。太阳辐射到达地面之后, 物体除了反射作用外,还有对电磁辐射的吸收作用。电磁辐射未 被吸收和反射的其余部分则是透过的部分,即: 到达地面的太阳辐射能量=反射能量+吸收能量+透射能量 一般而言,绝大多数物体对可见光都不具备透射能力,而有些物 体如水,对一定波长的电磁波透射能力较强,特别是对0. 45 ~ 0. 56μm的蓝绿光波段,一般水体的透射深度可达10~20 m,清澈 水体可达100 m的深度。 对于一般不能透过可见光的地面物体,波长5 cm的电磁波却有透 射能力,如超长波的透射能力就很强,可以透过地面岩石和土壤。
土壤的光谱曲线
自然状态下,土壤表面的 反射率没有明显的峰值和 谷值,一般来说,土质越 细反射率越高。有机质和 含水量越高反射率越低, 土类与肥力也对土壤反射 率有影响。但由于其波谱 曲线较平滑,所以在不同 光谱段的遥感影像上土壤 亮度区别并不明显。
水体的光谱曲线
水体反射率较低,小于 10%,远低于大多数的其 他地物,水体在蓝绿波段 有较强反射,在其他可见 光波段吸收都很强。纯净 水在蓝光波段最高,随波 长增加反射率降低。在近 红外波段反射率为0;含叶 绿素的清水反射率峰值在 绿光段,水中叶绿素越多 则峰值越高。这一特征可 监测和估算水藻浓度。 而浑浊水、泥沙水反射率 高于以上,峰值出现在黄 红区。
岩石的光谱曲线
岩石反射曲线无统一特 征,矿物成分、矿物含 量、风化程度、含水状 况、颗粒大小、表面光 滑度、色泽都有影响。 例如:浅色矿物与暗色 矿物对其影响较大,浅 色矿物反射率高,暗色 矿物反射率低。 自然界岩石多被植、被 土壤覆盖,所以与其覆 盖物也有关

植物反射光谱曲线及其特点

植物反射光谱曲线及其特点

植物反射光谱曲线及其特点
植物反射光谱曲线是研究植物组织与光之间相互作用的重要工具。

根据植物反射光谱曲线的特点,可以了解植物对不同波长的光的吸收和反射能力。

以下是植物反射光谱曲线的特点:
1. 光谱特征:植物反射光谱曲线通常呈现出明显的特征峰和谷。

这些特征峰和谷对应于植物组织中各种不同化学物质对光的吸收和反射的特定波长。

2. 绿色谷:植物反射光谱曲线在可见光谱范围内通常呈现出一个明显的绿色谷,即在绿光波长范围内,植物对光的吸收最低,反射最高。

这是因为植物叶绿素对绿光的吸收最弱,而对红光和蓝光的吸收较高。

3. 物种差异:不同植物物种的反射光谱差异较大,这是由于植物组织中不同化学物质含量和组成的不同所决定的。

通过比较不同物种的反射光谱曲线,可以快速鉴别不同植物物种。

4. 环境影响:植物反射光谱曲线还可受到环境因素的影响。

例如,植物受到干旱、盐碱胁迫等环境压力时,其反射光谱曲线可能发生改变。

通过分析这些变化,可以了解植物对环境的响应和适应能力。

5. 应用价值:植物反射光谱曲线的研究在农业、森林生态学、环境监测等领域具有广泛的应用价值。

例如,可以利用植物反
射光谱数据来监测作物的生长状况、气候变化的影响等。

总之,植物反射光谱曲线可以提供关于植物组织与光之间相互作用的重要信息。

通过研究植物反射光谱曲线的特点,可以深入了解植物的生理特性、环境适应能力和应用潜力。

不同颜色光在玻璃中的折射率

不同颜色光在玻璃中的折射率

不同颜色光在玻璃中的折射率好嘞,今天咱们聊聊不同颜色光在玻璃里的折射率。

这听起来挺专业的,但其实简单得很,咱们就像坐在咖啡馆里闲聊一样,轻松点儿说。

想象一下,阳光透过窗户洒在地板上,那种五彩斑斓的感觉是不是让人心情大好?这其实就是光折射的魔力。

没错,折射就是光在不同介质中速度变化的结果,简单来说就是光在玻璃里“转了个弯”。

先说说颜色,颜色可不是说说而已,它跟光的波长有直接关系。

你有没有注意到,红色光和蓝色光的区别?红色光波长长,蓝色光波长短。

就像那一杯饮料,果汁和水混在一起,你能清楚地看到它们的分界线,没错,颜色的不同就像这两种液体。

红光在玻璃中走得相对轻松,折射率低一些,而蓝光在里面就像被“绑架”了一样,折射率高,走得慢。

想象一下,红光像一个懒洋洋的家伙,悠哉游哉,蓝光则像个急性子,想快点儿出去。

这就引出了一个有趣的现象:光的色散。

光线一进入玻璃,就像小朋友们在游乐场一样,纷纷跑去不同的方向。

于是,就出现了我们常常在彩虹中看到的各种颜色。

就像你看一幅画,那种丰富的色彩总让人目不暇接,特别是当阳光透过玻璃窗,形成一条美丽的光带,仿佛在说:“看,我多美!”这时候,大家都忍不住想拿起手机拍照,发个朋友圈,配上几个小太阳的表情。

你可能会问,这光折射跟咱们的生活有什么关系呢?好吧,这可多了去了。

想象一下,你去海边,阳光照在水面上,水下的石头看起来总是变得歪歪扭扭的,是不是?这就是折射在作祟。

再说了,咱们现在的眼镜,背后也是折射的功劳。

眼镜片的设计就考虑了不同波长光的折射,这样才能让视力矫正得更好。

简直就是科技的魔法。

折射率不仅仅是个数字,它还能让咱们感受到生活中的美。

比如,艺术家们常常用这些光的特性来创作,像是用玻璃做的艺术品,光线在里面穿梭、折射,简直是一场视觉盛宴。

每当阳光照射到这些作品上,仿佛整件作品都活了过来,闪闪发光,让人忍不住想多看几眼。

咱们也不能忽视光在水中的折射。

水下的世界仿佛另一个宇宙,各种颜色交织在一起,鱼群在里面游弋,犹如水中的彩虹。

常见光源光谱分布(阳光,卤素,荧光灯,LED,白炽灯)

常见光源光谱分布(阳光,卤素,荧光灯,LED,白炽灯)

常见光源光谱分布(阳光,卤素,荧光灯,LED,白炽灯)有机会能用一个光谱仪,测试了手头的常见光源。

数据处理方式:每组数据减去改组最小值作为offget,总能量归为一,图示为个波长成分在总能量中的百分比。

!数据只为所测量单一样品负责,供参考。

!先来个总表:曲线太多看不清,分组分析。

第一组,高大上组:阳光和卤素灯测量条件,晴天,下午2点左右,阳光普照中等雾霾,普通双层从来没擦的窗玻璃。

结论:1. 南北向阳光只有强度差别(未显示),光谱相差不多。

按照摄影的经验,阴影中的色温略高,也就是短波长成分应该略高,没有表现,可以能与雾霾天有关系。

2. 玻璃温室效应明显,长波长滤波效果低,短波长(<600nm)滤波明显。

3. 卤素灯高大上。

显色性100真不是闹着玩的!唯一光谱能和太阳放一组的人造光源。

光谱非常丰富,但明显偏长波。

所以卤素灯发热巨大,太不节能。

4. 我认为白炽灯也应该属于这一组,竟然一个也没有找到。

第二组,荧光灯组:测试了5中不同的荧光灯,都是这个模样。

结论:1 荧光灯光谱特征明显,有几个尖峰。

2. 各种荧光灯,不管是什么模样的灯管,光谱都一个样。

3. 比日光差远了,不知道为什么叫“日光灯管”第三组,大家最关心的,LED来啦对这个最关心,尽可能的找。

结论1. LED灯光谱都有一个普遍特征,双峰。

一个相对窄峰在450nm左右,另一个相对宽峰在550-600nm2. 清华同方的3W LED(3000K)非常特别,因为这个光源有个白玻璃灯罩,不好拆。

估计是灯罩滤波的结果。

可惜,灯罩对450峰压抑作用不大,使光线整体偏暖。

3. 清华同方3W(3000K) 9WLED(3000k)灯泡和一个号称高显色的山寨LED射灯450nm峰相对较低。

其他都是坑人货。

4. 坑人第一名,LED山寨(紫色曲线),是一个室内吸顶灯:这个灯看着都是紫莹莹的,感觉和UV杀菌灯差不多。

5. 坑人并列第一名,LED台灯(蓝曲线),是一个看着很高大上的LED台灯,光源是很多小LED二极管的阵列,这个灯450nm含量也非常高,更要命的,发出光看着却是白色的,而且是台灯啊,太坑人了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档