辗转相除法求最大公约数和最小公倍数

合集下载

辗转相除法求最大公约数和最小公倍数

辗转相除法求最大公约数和最小公倍数

辗转相除法求最大公约数和最小公倍数1: /*辗转相除法基于如下原理:两个整数的最大公约数等于其中较小的数和两数的差的最大公约数。

2: 例如,252和105的最大公约数是21(252 = 21 ×12;105 = 21 ×5);3: 因为252 ? 105 = 147,所以147和105的最大公约数也是21。

在这个过程中,较大的数缩4: 小了,所以继续进行同样的计算可以不断缩小这两个数直至其中一个变成零。

这时,所剩下的5: 还没有变成零的数就是两数的最大公约数。

6: */7: #include <stdio.h>8:9: int getGCDAndLCM(int a,int b){10: int max=a>b?a:b;//将较大的数赋给max11: int min=(max=a)?b:a;//将较小的数赋给min12: int temp;//暂时存储变量13: while(max!=0){14: temp=min%max;15: min=max;16: max=temp;17: }18: printf("最大公约数为%d\n",min);19: printf("最小公倍数为%d\n",a*b/min);20: }21:22: int main(){23: printf("输入两个数整数值\n");24: int a,b;25: scanf("%d",&a);26: scanf("%d",&b);27: getGCDAndLCM(a,b);28: return 0;29: }C语言水仙花数算法打印出所有的“水仙花数”,所谓“水仙花数”是指一个三位数,其各位数字立方和等于该数本身。

例如:153是一个“水仙花数”,因为153=1的三次方+5的三次方+3的三次方。

(2)最大公因数、辗转相除法、整除性质-、最小公倍数

(2)最大公因数、辗转相除法、整除性质-、最小公倍数

辗转相除法求最大公约数问题
步骤:
时间复杂性:O(log n)
例 求198和252的 最 大 公 约 数 , 并 把 它 表为198和252的整系数线性组合.
252 1198 54 18 198 4(252 198)
198 354 36 4 252 5198
54 1 36 18 18 54 (198 3 54)
定理2 若b是任一正整数,则(i) 0与 b 的公因数就是 b 的因数,反之, b的因数也是0与b的公因数.
(ii) (0,b) b. 证 显然0与b的公因数是 b的因数.由于任何非零整数 都是0的因数,故 b的因数也就是0,b的公因数,于是(i) 获证.其次,我们立刻知道 b的最大公因数是 b ;而0,b的 最大公因数是 b的最大公因数,故 (0,b) b. 推论2.1 若b是任一非零整数,则 (0,b) b .
2m -1 2q1nr1 -2r1+2 r1 -1 2 r1 (2 q1n 1)+2 r1 -1. 由此及2n -1 2q1n 1得(2m -1, 2n -1)=(2n -1, 2r1 -1).
注意到(m,n)=(n,r1 ),若r1=0,则(m, n)=n,结论成立. 若r1>0,则继续对(2n -1, 2r1 -1)作同样的讨论,由辗转 相除法知,结论成立.
Qk a Pkb 1k1 rk , k 1, , n; (2)
其中 P0 1, P1 q1, Pk qk Pk1 Pk2 , Q0 0, Q1 1, Qk qkQk1 Qk2 , (3) k 2, , n
证 当k 1时, (2)显然成立,当k 2时,
r2 [aq2 b 1 q1q2 ]
显见, 2用任一大于1的自然数a代替,结论都成立.

求最大公约数的方法辗转相除法证明

求最大公约数的方法辗转相除法证明

求最大公约数的方法辗转相除法证明全文共四篇示例,供读者参考第一篇示例:辗转相除法是求解最大公约数的一种有效方法,也叫做欧几里德算法。

其基本思想是通过反复地用较大数除以较小数,然后用除数去除余数,一直重复这个过程,直到余数为0为止。

最终能够得到这两个数的最大公约数。

下面我们来详细地介绍辗转相除法的原理和证明过程。

假设有两个正整数a和b,其中a>b,我们要求它们的最大公约数。

首先我们用a除以b,得到商q和余数r,即a = q*b + r。

接着我们将b赋值给a,r赋值给b,然后再次用b去除以r,得到商q1和余数r1,即b = q1*r + r1。

如此循环下去,直到r1等于0为止。

那么此时b就是a和b的最大公约数。

下面我们用数学归纳法来证明辗转相除法的正确性。

设a=k*b+r,其中k和r是整数。

若d是a和b的一个公约数,则d也是b和r的公约数,反之亦然。

因此a和b的公约数集合等于b和r的公约数集合,即gcd(a, b) = gcd(b, r)。

现在我们假设b和r的最大公约数是d。

根据辗转相除法的步骤,可以得到以下等式:b = q1*r + r1r = q2*r1 + r2r1 = q3*r2 + r3...最终我们会得到r(n-1) = qnrn,其中rn是0。

根据这些等式,我们可以得出以下结论:r(n-2) = r(n-3) - qn-1*r(n-2)r(n-3) = r(n-4) - qn-2*r(n-3)...rn = r1 - q2*r将这些等式带入最后的等式b = q1*r + r1,可以得出以下结论:d|r(n-2) = d|r(n-3) = ... = d|r1 = d|b所以最大公约数d同时也是a和b的最大公约数。

通过以上的推导和证明,我们可以得出结论:辗转相除法能够有效地求解两个数的最大公约数。

这个算法简单易懂,而且效率非常高,适用于各种情况。

在实际运用中,辗转相除法是一个非常重要的数学工具。

求最小公倍数的方法

求最小公倍数的方法

求最小公倍数的方法
最小公倍数是指两个或多个数共有的倍数中最小的那个数。

求解最小公倍数的方法有以下几种。

1. 列举法:列举出两个或多个数的倍数,找到它们共有的最小倍数。

这种方法适用于较小的数。

2. 分解质因数法:将每个数分解质因数,然后取每个质因数的最高指数相乘,得到最小公倍数。

3. 短除法:使用短除法求得两个或多个数的素因子分解,然后将每个数中出现的所有素因子按照最高指数相乘,得到最小公倍数。

4. 辗转相除法:对于两个数a和b,先求它们的最大公约数gcd(a,b),然后将a和b相乘,再除以最大公约数,得到最小公倍数。

5. 使用公式:对于两个数a和b,最小公倍数等于它们的乘积除以最大公约数,即最小公倍数 = (a * b) / gcd(a, b)。

这些方法可以灵活运用,选择适合自己的方法来求解最小公倍数。

辗转相除法求最大约数

辗转相除法求最大约数

辗转相除法求最大约数一、辗转相除法的原理及应用辗转相除法,又称欧几里德算法,是一种用于求两个正整数的最大公约数的算法。

它的原理是基于整数的除法和取余操作。

辗转相除法的应用范围非常广泛,例如在数学、密码学、计算机科学等领域都有广泛应用。

在数学中,最大公约数是一个重要的概念,它可以用于约分、化简分数、求最小公倍数等问题。

在密码学中,辗转相除法可以用于生成密钥对或者进行加密解密操作。

在计算机科学中,辗转相除法可以用于求解线性同余方程、计算哈希值等。

二、辗转相除法的步骤辗转相除法的步骤非常简单,主要分为以下几个步骤:1. 输入两个正整数首先,我们需要输入两个正整数,分别记为a和b,其中a大于等于b。

2. 取余操作我们将a除以b,得到商q和余数r。

3. 判断余数如果余数r等于0,那么b就是最大公约数,算法结束。

否则,进入下一步。

4. 交换变量将b的值赋给a,将r的值赋给b,然后回到步骤2。

5. 重复步骤2-4重复执行步骤2-4,直到余数r等于0,此时b的值就是最大公约数。

三、辗转相除法的证明辗转相除法的正确性可以通过数学归纳法来证明。

首先,我们假设a = bq + r,其中b大于等于r,且r不为0。

根据这个等式,我们可以得出以下结论:1. a和b的公约数也是b和r的公约数设d是a和b的公约数,那么d也是a和bq的公约数。

又因为r = a - bq,所以d也是a和r的公约数。

2. b和r的公约数也是a和b的公约数设d是b和r的公约数,又因为a = bq + r,所以d也是a和b的公约数。

综上所述,a和b的公约数与b和r的公约数是一样的。

因此,最大公约数也是一样的。

四、辗转相除法的优化辗转相除法虽然有效,但在处理大整数时可能会比较耗时。

为了提高效率,人们对辗转相除法进行了一些优化,主要有以下两种方法:1. 基于移位操作的优化在计算机中,移位操作是一种非常高效的操作。

我们可以利用移位操作来替代除法操作,进一步提高算法的执行效率。

辗转相除找公约数的原理

辗转相除找公约数的原理

辗转相除找公约数的原理
辗转相除法,也称欧几里得算法,是一种求最大公约数的算法。

该算法基于如下定理:
定理:两个整数a,b(a>b)的最大公约数等于b和a%b(余数)的最大公约数。

例如,求48和18的最大公约数,可以按照下面的步骤进行:
48÷18=2·12
18÷12=1·6
12÷6 =2·0
因为最后的余数为0,所以6是48和18的最大公约数。

可以看到,在每一步中,我们都是将较大的数除以较小的数,并得到一个余数,然后将较小的数和余数作为新的两个数继续进行相同的操作,直到余数为0为止。

最终得到的较小的数就是原来两个数的最大公约数。

这个算法的原理可以用数学归纳法证明。

具体可以参考相关的数学教材和理论知
识。

介绍十种求最小公倍数方法

介绍十种求最小公倍数方法

介绍十种求最小公倍数方法如何理解介绍十种求最小公倍数方法公倍数,最小公倍数(Least Common Multiple,LCM)是指两个或多个数字的公倍数中最小的一个。

它是自然数的乘积,可以用公式表达为:LCM(a,b)=a×b/gcd(a,b),其中gcd(a,b)是a和b的最大公约数。

也就是说,最小公倍数是这两个数的积除以他们的最大公约数。

公倍数十种,1. 公倍数是两个或多个整数公有的倍数。

2. 公倍数是可以被所有整数同时整除的数字。

3. 公倍数是由多个完全相同因数组合而成的数字。

4. 公倍数是一系列有序数字中,最小的一个整数能被剩余数字整除的数字。

5. 最小公倍数(LCM)是指它们共有的最小的倍数。

6. 两个数的最小公倍数是其乘积除以最大公约数。

7. 任何数的最大公倍数是其乘积的除以最小公倍数。

8. 任何数的最小公倍数是其乘积的除以最大公约数。

9. 任意多个整数的最大公倍数是它们乘积的除以最小公倍数。

10. 公倍数的求法有很多,如最小公倍数、最大公倍数、素因子分解法等。

公倍数十种最小,1、最小公倍数是指能够同时整除两个或多个数字的最小正整数。

2、最小公倍数是按照数学归纳法推导出来的所有数字中公共分子中最小的一个正整数。

3、最小公倍数可以通过求出两个数之积然后再取它们的最大公因数(比如辗转相除法)来求得。

4、最小公倍数也可以通过计算比如一个数的平方根来求得。

5、最小公倍数可以用分数的方法表示出来,比如把你想要的数字分别写成分数的形式,然后将它们合在一起再加上它们之间的最小公倍数,这样就可以求得最小公倍数。

6、最小公倍数的定义也可以看作是在给定的数字之间的最小正整数,该数可以被所有给定数字整除。

7、最小公倍数可以用整数的最大公约数来求得,例如使用质因数分解法可以找出两个数字的最大公约数,然后根据两个数之积除最大公约数即可获得最小公倍数。

8、最小公倍数的定义也可以用于求解多个不同的数的最小公倍数,即求解所有数字的最小公倍数。

辗转相除法最小公倍数

辗转相除法最小公倍数

辗转相除法最小公倍数
辗转相除法最小公倍数,是指通过辗转相除法来求解两个数的最小公倍数。

辗转相除法是一种求解两个整数的最大公约数的方法,它的核心思想是将两个数中较小的那个数反复地除以两数的余数,直到除尽为止。

因为最大公约数约定是“最大的”,所以当两个数中有一数被除尽后,得到的其实是这两个数的最大公约数。

而最小公倍数是指两个数中可以同时整除的最小的整数,它可以通过两个数的乘积除以它们的最大公约数来得到。

因此,如果我们已经通过辗转相除法求出了这两个数的最大公约数,那么我们也就可以得到它们的最小公倍数。

具体来说,我们可以先将这两个数用辗转相除法求出它们的最大公约数,然后再用这两个数的乘积除以这个最大公约数,就可以得到它们的最小公倍数了。

例如,对于两个数12和18,它们的最大公约数是6,因为
12÷6=2,18÷6=3,所以6就是它们的最大公约数。

那么它们的最小公倍数就是12×18÷6=36。

因此,我们可以用辗转相除法来求出它们的最大公约数6,再用乘积36÷6=6,就得出了它们的最小公倍数6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

辗转相除法求最大公约数和最小公倍数
(2006-08-28 11:39:55)
转载
分类:小学奥数专题讲解
辗转相除法是求最大公约数和最小公倍数的另一种方法。

具体做法是:用较小数除较大数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。

如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数。

把这些数相乘就是最小公倍数。

例如:求112和77的最大公约数。

把112和77并列,用77去除112,商1余35,如下图:
因为余数不是0,所以继续用35去除77,商2余7,如下图:
因为余数不是0,继续用7去除35,商5余0,如下图:
当最后余数是0时,辗转相除的过程已经完成,最后的除数7就是112和77的最大公约数。

辗转相除法的算理是根据:在a=bq+r,中,除数b和余数r能被同一个数整除,那么被除数a也能被这个数整除。

或者说,除数与余数的最大公约数,就是被除数与除数的最大公约数;如果反过来说,被除数与除数的最大公约数,就是除数与余数的最大公约数。

如果用辗转相除法求两个数的最大公约数时,最后的余数是1,那么这两个数就是互质数,或者说,它们只有公约数1。

相关文档
最新文档