用短除法找最大公因数和最小公倍数
用短除法求最大公因数和最小公倍数课件

用短除法求最大公因数和最小公倍数课件最大公因数(Greatest Common Divisor,简称GCD)和最小公倍数(Least Common Multiple,简称LCM)是数学中常用的概念。
我们可以使用短除法来求解它们。
首先,让我们来解释一下什么是最大公因数。
最大公因数是指两个或多个整数共有的最大的因数。
我们可以通过短除法来找到最大公因数。
以两个整数a和b为例,我们首先将a除以b,并取得余数r。
然后,将b除以r,并再次取得余数r1。
我们重复这个过程,直到余数为0为止。
此时,最大公因数就是最后一次计算的非零余数。
例如,假设我们要求解整数36和48的最大公因数。
我们首先将36除以48,得到余数12。
然后,将48除以12,得到余数0。
因此,36和48的最大公因数是12。
接下来,让我们来解释一下什么是最小公倍数。
最小公倍数是指两个或多个整数的公有倍数中最小的一个。
我们可以通过短除法来找到最小公倍数。
以两个整数a和b为例,我们首先求解它们的最大公因数GCD。
然后,将a乘以b,再除以最大公因数GCD,即可得到最小公倍数LCM。
例如,假设我们要求解整数36和48的最小公倍数。
首先,我们计算它们的最大公因数,发现它们的最大公因数是12。
然后,我们将36乘以48,得到1728,再除以12,得到144。
因此,36和48的最小公倍数是144。
总结起来,最大公因数是两个或多个整数共有的最大因数,可以通过短除法找到;最小公倍数是两个或多个整数的公有倍数中最小的一个,可以通过将两个整数乘积除以最大公因数来求解。
找最大公因数和最小公倍数的方法(修)

1.观察法(1)当两个数互质(互质数就是两个数只有公因数1)时,最大公因数就是1。
(2)当两个数中的一个是另一个的倍数时,最大公因数就是其中较小的那个数。
2.列举法方法1:先列出两个数的因数,再找出两个数的公因数,最后找出两个数的最大公因数。
例如:用列举法找8和6的最大公因数8的因数有1、2、4、86的因数有1、2、3、68和6的最大因数数是2。
方法2:先列出较小数的因数,再从大到小依次找其中哪些是较大数的因数,最后找它们的最大公因数。
例如:用列举法找8和6的最大公因数6的因数有1、2、3、6,从大到小依次检测,6、3都不是8的因数,2是8的因数,所以 8和6的最大因数数是2。
3.分解质因数法用分解质因数方法找二个数的最大公因数,是分解质因数后,找出相同的质因数,把相同的质因数相乘,所得的积就是这两个数的最大公因数。
例如:用分解质因数的方法找下面12和18的最大公因数12=2×2×318=2×3×312和18相同的质因数是2×3,所以12和18的最大公因数是2×3=6 。
4.短除法。
用短除法求二个数的最大公因数,一般用这两个数除以它们的公因数,一直除到所得的两个商(只有公因数1)为止。
然后把最后所有的除数连乘,就得到了二个数最大公因数。
例如:用短除法找48和36的最大公因数1.观察法(1)当两个数互质(互质数就是两个数只有公因数1)时,最小公倍数就是这两个数的乘积。
(2)当两个数中的一个是另一个的倍数时,最小公倍数就是其中较大的那个数。
2.列举法方法1:先分别写各自的倍数,再找它们的公倍数,然后在公倍数里找它们的最小公倍数。
例如:用列举法找出6和8的最小公倍数。
6的倍数有:6,12,18,24,30,36,42,48,……8的倍数有:8,16,24,32,40,48,……6和8的公倍数:24,48,……其中24是6和8的最小公倍数。
方法2:先列较大数的倍数,再从小打大依次找其中哪些是较小数的倍数,最后找它们的最小公倍数。
用短除法求最小公倍数的方法步骤

用短除法求最小公倍数的方法步骤文/春秋书生教材介绍的是采用列举法和分解质因法求两个数的最小公倍数,这两种方法对于对较小数的求最小公倍数比较适用,但对较大的数来说,做起来就比较麻烦了,下面是我总结的用短除法求最小公倍数的方法步骤:第一步:找出两数的最小公因数,列短除式,用最小公因数去除这两个数,得到两个商;第二步:然后找出两个商的最小公因数,用最小公因数去除这两个商,得到新一级的两个商;第三步:以此类推,直到这两个商为互质数(即两个商只有公因数1)为止;第四步:将所有的公因数及最后的两个商相乘,所得积就是我们要求的两个数的最小公倍数。
例:甲数=2×3×7×A,乙数=2×5×7×A,请问当A=()时,甲乙两数的最大公因(约)数是42。
A.2B.3C.5D.7题:求96,30,132的最小公倍数1.30=2×3×5 2. 96=25×5 3. 132=22×3×11所以【96,30,132】=25×3×5×11=5280题:求【150,42】因为(150,42)=21 所以【150,42】=150×42÷21=210题:把一张长60厘米、宽40厘米的长方形纸板剪成边长是整数厘米数的小正方形,且无剩余,最少可以剪成多少块?解:(60,40)=20……这是小正方形的边长。
(60÷20)×(40÷20)=6(块)或用面积计算:(60×40)÷(20×20)=6(块)题:用长5厘米、宽3厘米的长方形纸片摆成一个正方形(中间无空隙),至少要用多少个长方形纸片?解:(5,3)=15(厘米)……这是正方形的边长。
(15÷5)×(15÷3)=15(个)长方形如果一个数能被第二个数整除,那么这两个数的最大公因数是第二个数。
用短除法求最小公倍数的方法步骤

用短除法求最小公倍数的方法步骤文/春秋书生教材介绍的是采用列举法和分解质因法求两个数的最小公倍数,这两种方法对于对较小数的求最小公倍数比较适用,但对较大的数来说,做起来就比较麻烦了,下面是我总结的用短除法求最小公倍数的方法步骤:第一步:找出两数的最小公因数,列短除式,用最小公因数去除这两个数,得到两个商;第二步:然后找出两个商的最小公因数,用最小公因数去除这两个商,得到新一级的两个商;第三步:以此类推,直到这两个商为互质数(即两个商只有公因数1)为止;第四步:将所有的公因数及最后的两个商相乘,所得积就是我们要求的两个数的最小公倍数。
例:甲数=2×3×7×A,乙数=2×5×7×A,请问当A=()时,甲乙两数的最大公因(约)数是42。
A.2B.3C.5D.7题:求96,30,132的最小公倍数1.30=2×3×5 2. 96=25×5 3. 132=22×3×11所以【96,30,132】=25×3×5×11=5280题:求【150,42】因为(150,42)=21 所以【150,42】=150×42÷21=210题:把一张长60厘米、宽40厘米的长方形纸板剪成边长是整数厘米数的小正方形,且无剩余,最少可以剪成多少块?解:(60,40)=20……这是小正方形的边长。
(60÷20)×(40÷20)=6(块)或用面积计算:(60×40)÷(20×20)=6(块)题:用长5厘米、宽3厘米的长方形纸片摆成一个正方形(中间无空隙),至少要用多少个长方形纸片?解:(5,3)=15(厘米)……这是正方形的边长。
(15÷5)×(15÷3)=15(个)长方形如果一个数能被第二个数整除,那么这两个数的最大公因数是第二个数。
用短除法求两个数的最大公因数和最小公倍数王现辉

用短除法求两个数的最大公因数和最小公倍数教学内容:五年级数学下册补充内容。
教学目标:1、学生会用短除法求两个数的最大公因数2、学生会用短除法求两个数的最小公倍数教学重、难点:理解并学会短除法学情分析:学生在前面的学习中已经掌握了用列举法求两个数的最大公因数和最小公倍数,但学生在用列举法找两个数的公因数和最小公倍数时,容易出错,不是找不齐一个数的因数,就是找出了所有公因数和一部分公倍数,对最大公因数和最小公倍数还是视而不见。
其次,教材中要求学生掌握的方法具有明显的局限性,遇到大的数学生就不会找了,错误率就很高,鉴于这种情况很有必要补充用短除法求两个数的最大公因数和最小公倍数。
教学过程:一、复习旧知1、口答下面问题(1)6和12的最大公因数和最小公倍数分别是多少(2)5和7的最大公因数和最小公倍数分别是多少师:同学们回答都很正确,倍数关系的两个数,最大公因数是较小的数,最小公倍数是较大的数。
互质关系的两个数,最大公因数是1,最小公倍数是它们的乘积。
对于没有这两种关系的两个数,你会求最小公倍数和最大公因数吗2、用列举法求32和48的最大公约数和最小公倍数。
解:32的约数有:1 2 4 8 16 3248的约数有:1 2 3 4 6 8 12 16 24 48则32和48的最大公约数为16。
32的倍数有:32 64 96 128 160 192 224……48的倍数有:48 96 144 192 240 288 336……则32和48的最小公倍数为96。
学生独立完成,师生集体订正。
师:同学们,你们个别同学用列举法找出的最大公因数和最小公倍数是错误的,原因是什么(生1:32和48的数字太大了。
生2:用列举法太麻烦了。
)师:我们今天就学习一种简便的求最大公因数和最小公倍数的方法。
2 332和48的最大公因数是4×4=1632和48的最小公倍数是4×4×2×3=96师:用短除法求两个数的最大公因数,一般用这两个数除以它们的公因数,一直除到所得的两个商只有公因数1为止,再把所有的除数连乘起来,所得积就是这两个数的最大公因数。
短除法求最大公因数与最小公倍数

短除法求最大公因数与最小公倍数
精锐教育学科教师辅导讲义
讲义编号
学员编号:年级:小五课时数:
学员姓名:辅导科目:数学学科教师:
学科组长签名及日期
课题
分解质因数、最大公因数和最小公倍数
⑽“所有的公有质因数”是什么意思?你是怎么理解的?
⑾从这里可以看出:用分解质因数的方法求两个数的最大公约数先干什么?然后干什么?最后干什么?
18和24的最大公约数是:2×3=6。
3.先把36和54分解质因数,再求出它们的最大公约数。
4.每道题都这样写麻烦吗?能不能简化一下呢?怎样简化?怎样把两个短除法算式合并成一个除法算式呢?
(11)五·一班部分同学参加植树活动,已经来了37人,5个人分成一组,至少还要来几个人,才能正好分完?
(12)小洪买了以下几本书,故事书10元一本,科技书8元一本,作文书7元一本。给售货员50元,找回22元,对不对?为什么?
(13)有36块糖,分给小朋友,2块2块的分能正好分完吗?3块3块的分呢?5块5块的分呢?
提问:6和4的最小公倍数它是由哪些质因数相乘得到的?
【最小公倍数=全部公有的质因数的积×各自独有的质因数】
练习。
填空。
(1)已知A=2×5×5,B=2×5×7。A和B全部公有的质因数有(),各自独有的质因数有(),A和B的最小公倍数是()。
(2)30=()×()×()18=()×()×()30和18的最小公倍数是()×()×()×()=()
五、(共5分)24、20和36的最小公倍数是它们最大公因数的多少倍?
[教学]用短除法求最小公倍数的方法步骤
![[教学]用短除法求最小公倍数的方法步骤](https://img.taocdn.com/s3/m/d39b0958842458fb770bf78a6529647d27283437.png)
用短除法求最小公倍数的方法步骤文/春秋书生教材介绍的是采用列举法和分解质因法求两个数的最小公倍数,这两种方法对于对较小数的求最小公倍数比较适用,但对较大的数来说,做起来就比较麻烦了,下面是我总结的用短除法求最小公倍数的方法步骤:第一步:找出两数的最小公因数,列短除式,用最小公因数去除这两个数,得到两个商;第二步:然后找出两个商的最小公因数,用最小公因数去除这两个商,得到新一级的两个商;第三步:以此类推,直到这两个商为互质数(即两个商只有公因数1)为止;第四步:将所有的公因数及最后的两个商相乘,所得积就是我们要求的两个数的最小公倍数。
例:甲数=2×3×7×A,乙数=2×5×7×A,请问当A=()时,甲乙两数的最大公因(约)数是42。
A.2B.3C.5D.7题:求96,30,132的最小公倍数1.30=2×3×5 2. 96=25×5 3. 132=22×3×11所以【96,30,132】=25×3×5×11=5280题:求【150,42】因为(150,42)=21 所以【150,42】=150×42÷21=210题:把一张长60厘米、宽40厘米的长方形纸板剪成边长是整数厘米数的小正方形,且无剩余,最少可以剪成多少块?解:(60,40)=20……这是小正方形的边长。
(60÷20)×(40÷20)=6(块)或用面积计算:(60×40)÷(20×20)=6(块)题:用长5厘米、宽3厘米的长方形纸片摆成一个正方形(中间无空隙),至少要用多少个长方形纸片?解:(5,3)=15(厘米)……这是正方形的边长。
(15÷5)×(15÷3)=15(个)长方形如果一个数能被第二个数整除,那么这两个数的最大公因数是第二个数。
最小公倍数和最大公因数的短除法

最小公倍数和最大公因数的短除法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!引言最小公倍数(LCM)和最大公因数(GCD)是数学中常见的概念,在很多数学问题和实际应用中都起着重要的作用。