汽车传感器论文
汽车节气门位置传感器损坏导致故障排除论文

汽车节气门位置传感器损坏导致故障排除论文概要:作为从事汽车修理的技术人员。
随着汽车行业的发展,如果不及时掌握新技术的话,我们就很快会被淘汰。
所以我们也要与时俱进,随时掌握新的汽车发展动态,学习新的汽车维修技术,实践科学发展观,提升汽车维修水平。
概要:综上所述,通过对广州本田雅阁轿车自动变速器换挡杆被锁止、自动变速器不升档之研究。
我对于节气门位置传感器的损坏导致故障排除的问题有以下两点体会:因为现在的汽车往“傻瓜”化发展,所以此电磁阀为换挡连锁系统中的一个重要部件,是控制单元防愚功能的一个执行器,主要功能是控制换挡杆的锁止机构,使换挡杆只有在满足工作条件的前提下才能移动。
换挡杆锁止电磁阀工作,必须满足以下四个条件:(1)点火开关在“ON”位置;(2)节气门开度不大于10.5%;(3)制动踏板被踩下;(4)换挡杆位于“P”挡。
只要任意一个条件不满足,换挡杆锁止电磁阀将不能动作。
此车采用的是机械式节气门及滑阀式怠速马达,当发动机的怠速高于标准怠速且怠速马达没有进行自学习时,发动机的控制单元就不发送信号至档位锁止电磁阀(变速器控制单元PCM与ECM是一个控制单元),造成换挡杆不能移动。
分析清楚工作原理之后,维修思路就异常清晰,维修也就非常简单了,只需要逐一排查就可以找到故障点。
一、故障诊断与分析接上诊断仪进行检测,没有发现故障代码。
观察发动机数据流,TP值为19%,发动机转速1200r/min,从数据流上看,最明显的是发动机已不在怠速工况运转。
检查制动开关,当踩下制动踏板后制动灯亮,且用检测仪检测变速器控制单元内部有制动踏板信号,说明制动开关工作良好。
该车自动变速器换挡杆的左下方有一个档位锁止开关,通过制动开关的信号输入到变速器的控制单元(ECU/PCM)使档位开关工作,打开档位锁止开关,变速器换挡杆才能移动。
造成该故障的原因一般有四个方面:(1)自动变速器换挡杆锁止机构本身发生故障;(2)制动灯开关及线路故障;(3)节气门位置传感器(节气门体总成)损坏,导致节气门位置传感器怠速信号电压过高;(4)怠速控制阀(IAC)脏污、卡滞在开度大的位置。
汽车维修技师论文【范本模板】

汽车维修技师论文:标题:汽车氧传感器波形信号分析———氧传感器原理分析与故障判断关键词:氧传感器、原理、波形、发动机故障概述:随着汽车排放法规的逐渐严格和对汽车排气污染控制的重视,“电喷”加三元催化器的发动机正成为普遍配置。
这种发动机采用了混合气成分的闭环控制和三元催化反应装置的联合使用技术,是汽油机有效的排气净化方法。
在这一系统中,氧传感器是进行闭环反馈控制的主要元件之一,必不可少。
正常工作时,氧传感器随时测定发动机排气管中的氧含量(浓度),以检测发动机燃烧状况.因此.当发动机出现燃烧故障时,必然引起氧传感器电压信号的变化,这就为通过观察氧传感器的信号波形判断发动机某些故障提供可能。
1.氧传感器的一般作用要使三元催化转化器全面净化CO、HC和NOx这三种有害气体,必须保证混合气浓度始终保持在理论空燃比(14。
7)附近的狭小范围内。
一旦混合气浓度偏离了这个狭小范围,则三元催化转化器净化能力便急剧下降.保证混合气浓度在理论空燃比附近,“电喷”系统和氧传感器的配合是很好的解决方案。
氧传感器检测排气中的氧浓度,并随时向微机控制装置反馈信号。
微机则根据反馈来的信号及时调整喷油量(喷油脉宽),如信号反映混合气较浓,则减少喷油时间;反之.如信号反映混合气较稀,则延长喷油时间.这样使混合气的空燃比始终保持在理论空燃比附近.这就是燃料闭环控制或称燃料反馈控制。
2.氧传感器的正常波形常用的汽车氧传感器有氧化锆式和氧化钛式两种。
以氧化锆式为例,正常情况下当闭环控制时,氧传感器的电压信号大约在0至1V之间波动,平均值约450mv。
当混合气浓度稍浓于理论空燃比时。
氧传感器产生约800mV的高电压信号;当混合气浓度稍稀于理论空燃比时,氧传感器产生接近100mY的低电压信号。
当然,不同类型的氧传感器其实际波形并不完全相同。
朱军老师曾总结说:“一般亚洲和欧洲车氧传感器(博世)信号电压波形上的杂波要少。
尤其是丰田凌志车氧传感器信号电压波形的重复性好.而且对称、清楚,美国车(不是采用亚洲的发动机和电子反馈控制系统)杂波要多。
汽车传感器毕业论文

汽车传感器毕业论文汽车传感器毕业论文随着科技的不断发展,汽车行业也在不断进步和创新。
传感器作为汽车电子系统中的重要组成部分,发挥着关键的作用。
本篇论文将探讨汽车传感器的发展历程、应用领域以及未来的发展趋势。
一、汽车传感器的发展历程汽车传感器的发展可以追溯到20世纪70年代。
当时,汽车制造商开始意识到传感器在提高汽车性能和安全性方面的潜力。
最早应用的传感器是发动机控制系统中的氧气传感器,用于监测排放气体中的氧气含量,以便调整燃油供给量。
随后,各种类型的传感器相继应用于汽车中,包括温度传感器、压力传感器、加速度传感器等。
二、汽车传感器的应用领域1. 发动机控制系统发动机控制系统是汽车传感器最广泛应用的领域之一。
传感器可以监测发动机温度、氧气含量、油压等参数,以便实时调整燃油供给量和点火时机,从而提高燃烧效率和减少排放。
2. 制动系统制动系统是汽车安全性最重要的部分之一。
传感器可以监测制动液位、制动片磨损程度等参数,以便提醒驾驶员及时更换制动片,保证制动系统的正常工作。
3. 环境控制系统环境控制系统包括空调系统和空气质量监测系统。
传感器可以监测车内外温度、湿度等参数,以便调整空调系统的工作状态,提供舒适的驾驶环境。
同时,传感器还可以检测车内空气中的有害气体浓度,保证乘客的健康和安全。
4. 安全辅助系统安全辅助系统是近年来汽车传感器应用的热点领域之一。
传感器可以监测车辆周围的环境信息,如距离、速度等,以便提供智能驾驶辅助功能,如自动紧急制动、盲区监测等,提高行车安全性。
三、汽车传感器的未来发展趋势1. 智能化和网络化随着人工智能和物联网技术的不断发展,汽车传感器将变得更加智能化和网络化。
传感器将能够实现自主学习和决策,从而更好地适应不同的驾驶环境。
同时,传感器之间将能够实现数据共享和协同工作,提高整体系统的性能。
2. 多功能化和集成化传感器的多功能化和集成化是未来的发展趋势。
传感器将不仅仅用于单一的应用领域,而是具备多种功能,如温度、湿度、压力等多个参数的监测。
汽车氧传感器失效方式及引起失效的原因[论文]
![汽车氧传感器失效方式及引起失效的原因[论文]](https://img.taocdn.com/s3/m/5ecceb7ef46527d3240ce029.png)
汽车氧传感器失效方式及引起失效的原因摘要汽车电控汽油喷射发动机中用于燃料系统闭环控制的氧传感器是一个非常重要的电子元器件,是用来监测废气中氧的含量,电压信号反馈给ecu,以控制空燃比保持在14.7。
同时,它又是多种故障信号的代言报警元件,本文主要列出了氧传感器的失效方式和引起失效的原因,以及根据失效后系统报出的故障码反推可能的引起故障的原因,以加深维修人员对氧传感器的认识,提高其对氧传感器故障的识别能力,防止误判的发生。
关键词氧传感器失效方式原因中图分类号:u27 文献标识码:a汽车好开,故障难排,发动机故障灯常亮是困扰维修人员的难题,排除故障先别急于动手,而应根据故障现象分析、判断其成因,这样才能避免盲目性,迅速准确地予以排除,免得乱拆乱卸造成新的故障,发动机故障灯常亮主因是由于氧传感器失效而引起,氧传感器失效方式有很多种,从诊断的角度来看,有氧传感器信号电路失效、氧传感器加热电路失效、氧传感器老化效应引起排放超标失效。
而这些失效方式又根据氧传感器的安装位置分为前(三元催化转化器之前)氧传感器失效和后(三元催化转化器之后)氧传感器故障类型和引起失效的原因故障类型和引起失效的原因失效。
以下列举出氧传感器具体的失效方式和引起失效的原因:1 前氧传感器信号电路故障类型和引起失效的原因(1)最大故障(p0132)、主要体现前氧传感器电压过高,可能存在对电源短路的情况。
(2)最小故障(p0131)、后氧传感器电压高,前氧传感器电压恒低;或者是传感器冷态条件下氧传感器电压过低。
可能存在对地短路的情况。
(3)信号故障(p0134)、长时间氧传感器电压不变(高压),可能信号端断路;或者高温高阻,氧传感器加热后内阻过大,温度升高后电阻应该下降;或者断油时上、后氧传感器电压过高。
(4)不合理故障(p0130)、后氧传感器电压较低,前氧传感器位于高压范围;或者后氧传感器高压,前氧传感器电压的幅值在限定的(低压)范围之内的时间超过一定值;或者氧传感器信号电路对加热电路短路超过一定时间。
传感器的原理及其应用论文范文

传感器的原理及其应用1. 介绍本文将介绍传感器的原理和其在各个领域的应用。
传感器是一种用于检测和测量环境中各种物理量的设备。
它们广泛应用于工业、医疗、环境保护、军事等领域。
本文将首先介绍传感器的工作原理,然后详细讨论传感器在不同领域的应用。
2. 传感器的工作原理传感器的工作原理基于各种物理现象,如光电效应、热敏效应、压电效应等。
以下是几种常见的传感器工作原理:2.1 光电传感器光电传感器利用光电效应测量光的强度和特性。
当光照射到光电传感器上时,光会激发光电元件内的电子,产生电流。
通过测量电流的大小,可以得知光的强度和特性。
光电传感器广泛应用于自动化控制、安防和光通信等领域。
2.2 温度传感器温度传感器根据物质的热敏性质来测量温度。
常见的温度传感器包括热电偶和热电阻。
热电偶利用两种不同金属的电极在不同温度下产生电势差,从而测量温度。
热电阻则根据电阻值随温度变化的特性来测量温度。
温度传感器广泛应用于气象、工业过程控制和家用电器等领域。
2.3 压力传感器压力传感器用于测量压力的大小。
它们通过将压力转化为力或位移,再测量这些参数来得知压力。
常见的压力传感器包括电阻应变式传感器和压电传感器。
电阻应变式传感器根据压力引起的电阻变化来测量压力。
压电传感器则利用压电效应,将压力转化为电荷来测量压力。
压力传感器广泛应用于工业自动化、汽车、航空航天等领域。
2.4 气体传感器气体传感器用于检测环境中的气体浓度。
常见的气体传感器包括气敏传感器和红外线传感器。
气敏传感器基于物质与气体之间的化学反应来测量气体浓度。
红外线传感器利用气体对红外线的吸收特性来测量气体浓度。
气体传感器广泛应用于空气质量监测、工业过程控制和燃气检测等领域。
3. 传感器的应用传感器在各个领域都有广泛的应用。
以下是几个领域中传感器的应用示例:3.1 工业控制在工业控制中,传感器被用于监测和控制生产过程中的各种参数。
例如,温度传感器可用于监测设备和物料的温度,以确保生产过程的稳定性。
汽车ESP常用传感器其接口原理论文

浅谈汽车ESP常用传感器及其接口原理0.引言汽车esp是汽车电控的一个标志性发明。
是在传统的汽车动力学控制系统的基础上增加一个横向稳定控制器,通过控制横向和纵向力的分布和幅度,以便控制任何路况下汽车的动力学运动模式,能在各种工况下提高汽车的动力性能,如制动、滑移、驱动等。
其电子部件主要包括电子控制单元(ecu)、方向盘传感器、纵向加速度传感器、横向加速度传感器、横摆角速度传感器、轮速传感器等。
作为保证行车安全的一个重要电控系统,其各个传感器的正常工作是进行有效控制的基础。
1.esp常用传感器介绍1.1方向盘转角传感器esp通过计算方向盘转角的大小和转角变化速率来识别驾驶员的操作意图。
方向盘转角传感器将方向盘转角转换为一个可以代表驾驶员期望的行驶方向的信号,方向盘转角一般是根据光电编码来确定的,安装在转向柱上的编码盘上包含了经过编码的转动方向、转角等信息。
这一编码盘上的信息由接近式光电耦合器进行扫描。
接通点火开关并且方向盘转角传感器转过一定角度后,处理器可以通过脉冲序列来确定当前的方向盘绝对转角。
方向盘转角传感器与ecu的通讯一般通过can总线完成。
1.2横摆角速度传感器横摆角速度传感器检测汽车沿垂直轴的偏转,该偏转的大小代表汽车的稳定程度。
如果偏转角速度达到一个阈值,说明汽车发生测滑或者甩尾的危险工况,则触发esp控制。
当车绕垂直方向轴线偏转时,传感器内的微音叉的振动平面发生变化,通过输出信号的变化计算横摆角速度。
1.3纵向/横向加速度传感器esp中的加速度传感器有沿汽车前进方向的纵向加速度传感器和垂直于前进方向的横向加速度传感器,基本原理相同,只是成90°夹角安装。
esp一般使用微机械式加速度传感器,在传感器内部,一小片致密物质连接在一个可以移动的悬臂上,可以反映出汽车的纵向/横向加速度的大小,其输出在静态时为2.5v左右,正的加速度对应正的电压变化,负的加速度对应负的电压变化,每1.0~1.4v对应1g的加速度变化,具体参数因传感器不同而有所不同。
毕业论文—起亚-狮跑传感器的检测与维修

毕业论文(设计)课题名称起亚狮跑传感器的检测与维修姓名 _____ _系部机电工程系班级 ______ 汽修大专081班______ 学号_____ D0******* _指导教师姓名_____ _答辩时间_____ 2011.05.30 _起亚-狮跑传感器的检测与维修摘要:本文对起亚汽车发动机控制系统中常用的传感器作了简介,并就起亚汽车各系列轿车中发动机有关传感器故障产生的原因及对汽车发动机的影响,提出了检测、维护方法。
以及对现代汽车传感器的发展趋势作了介绍。
关键字:起亚狮跑;传感器;检测;维修。
目录第一章引言 (3)第二章发动机常见传感器及作用 (6)第三章氧感器的故障与检测 (12)(1)氧传感器的作用及其故障原因(2)氧传感器的故障诊断第四章迈腾1.8 TSI轿车自动空调系统检修案例 (15)第五章现代汽车传感器的发展趋势 (17)结束语 (18)参考文献第一章引言东风悦达起亚汽车有限公司系由东风汽车公司、江苏悦达投资股份有限公司、韩国起亚自动车株式会社共同组建的中外合资轿车制造企业。
主产品SOUL秀尔、Forte福瑞迪、赛拉图/赛拉图欧风、RIO锐欧、狮跑、K5、智跑系列车型均引自韩国起亚,以先进技术精心打造,竞争力极强。
随着国内汽车消费市场的扩大以及人们用车理念的日益多元化,要更好地应对不断变化的市场,必须有更新、更全面的产品矩阵。
2007年12月8日,东风悦达起亚第二工厂正式投产。
新工厂总投资68亿人民币,建筑面积364,792平方米,员工逾3,100人,具备年产30万辆整车的产能规模。
随着第二工厂的投产,东风悦达起亚至2011年将具备年产43万辆的产能,成为一家大型现代化、综合性乘用车制造企业。
秉承“挑战、精诚、和合、超越”的企业理念,东风悦达起亚全体员工将以顾客至上为宗旨,不断挖掘企业蓬勃的创造力,在“激情超越梦想”的品牌精神鼓舞下,向中国消费者奉献安全环保、超越期望的汽车产品以及完善的售后服务,为消费者创造更美好、更便捷的汽车生活。
汽车方面的毕业论文范文

汽车方面的毕业论文题目:智能汽车自动驾驶系统的安全性分析摘要随着人工智能和物联网技术的飞速发展,智能汽车自动驾驶系统正逐步成为未来交通的核心技术。
本文全面分析了智能汽车自动驾驶系统的安全性问题,揭示了传感器故障、算法缺陷、通信中断及定位误差等关键挑战。
针对这些问题,本文提出了一系列提升策略与技术,包括采用高可靠性和高精度的传感器技术、优化算法模型和人工智能技术、增强通信技术的安全性和稳定性以及提升定位精度等。
通过文献综述、理论分析和实验验证,本文证实了这些策略与技术在提高智能汽车自动驾驶系统安全性方面的有效性。
实验结果显示,优化后的传感器和定位技术显著提升了系统对环境信息的感知和定位精度,而先进的算法模型和通信技术则增强了系统的决策和通信稳定性。
然而,自动驾驶技术的复杂性和不确定性仍需持续关注,未来研究应聚焦于传感器技术、算法模型、通信技术以及评估体系的进一步优化和创新。
关键词:智能汽车自动驾驶系统;安全性分析;传感器技术;算法模型;通信技术;定位技术;实验验证目录摘要 (1)第一章引言 (3)1.1 研究背景与意义 (3)1.2 国内外研究现状 (4)1.3 研究内容与方法 (5)第二章智能汽车自动驾驶系统概述 (7)2.1 系统基本原理 (7)2.2 系统组成部分 (7)2.3 系统主要功能 (8)第三章智能汽车自动驾驶系统安全性问题 (10)3.1 系统安全性问题分析 (10)3.2 安全性问题产生原因 (11)第四章安全性提升策略与技术 (13)4.1 提升策略 (13)4.2 关键技术 (14)第五章实验与分析 (15)5.1 实验设计 (15)5.2 实验结果 (16)5.3 结果分析 (17)第六章结论与展望 (18)6.1 研究结论 (18)6.2 研究展望 (19)第一章引言1.1 研究背景与意义随着科技的日新月异,人工智能和物联网技术已全方位地融入我们的生活,尤其智能汽车自动驾驶系统更是现阶段汽车行业的研究焦点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新型汽车传感器
073621053 陈鲁
【摘要】:车用传感器是汽车计算机系统的输入装置,它把汽车运行中各种工况信息,如车速、各种介质的温度、发动机运转工况等,转化成电讯号输给计算机,以便发动机处于最佳工作状态。
车用传感器很多,判断传感器出现的故障时,不应只考虑传感器本身,而应考虑出现故障的整个电路。
因此,在查找故障时,除了检查传感器之外,还要检查线束、插接件以及传感器与电控单元之间的有关电路。
【关键词】:车用传感器;汽车运用;现代汽车发展
引言
现代汽车技术发展特征之一就是越来越多的部件采用电子控制。
根据传感器的作用,可以分类为测量温度、压力、流量、位置、气体浓度、速度、光亮度、干湿度、距离等功能的传感器,它们各司其职,一旦某个传感器失灵,对应的装置工作就会不正常甚至不工作。
因此,传感器在汽车上的作用是很重要的。
基本特性
一、传感器特性
传感器是指能感受规定的物理量,并按一定规律转换成可用输入信号的器件或装置。
简单地说,传感器是把非电量转换成电量的装置。
传感器通常由敏感元件、转换元件和测量电路三部分组成。
1)、敏感元件是指能直接感受(或响应)被测量的部分,即将被测量通过传感器的敏感元件转换成与被测量有确定关系的非电量或其它量。
2)、转换元件则将上述非电量转换成电参量。
二、发动机常用传感器工作机理
一)磁电效应
根据法拉第电磁感应定律,N匝线圈在磁场中运动,切割磁力线(或线圈所在磁场的磁通变化)时,线圈中所产生的感应电动势的大小取决于穿过线圈的磁通的变化率,
直线移动式磁电传感器
直线移动式磁电传感器由永久磁铁、线圈和传感器壳体等组成
当壳体随被测振动体一起振动且在振动频率远大于传感器的固有频率时,由于弹簧较软,运动件质量相对较大,运动件来不及随振动体一起振动(静止不动)。
此时,磁铁与线圈之间的相对运动速度接近振动体的振动速度。
转动式磁电传感器
软铁、线圈和永久磁铁固定不动。
由导磁材料制成的测量齿轮安装在被测旋转体上,每转过一个齿,测量齿轮与软铁之间构成的磁路磁阻变化一次,磁通也变化一次。
线圈中感应电动势的变化频率(脉冲数)等于测量齿轮上的齿数和转速的乘积。
二)霍耳式传感器
1.霍耳效应
半导体或金属薄片置于磁场中,当有电流(与磁场垂直的薄片平面方向)流过时,在垂直于磁场和电流的方向上产生电动势,这种现象称为霍耳效应。
2.霍耳元件
目前常用的霍耳材料锗(Ge)、硅(Si)、锑化铟(InSb)、砷化铟(InAs)等。
N型锗容易加工制造,霍耳系数、温度性能、线性度较好;P型硅的线性度最好,霍耳系数、温度性能同N型锗,但电子迁移率较低,带负载能力较差,通常不作单个霍耳元件。
三)压电式传感器
1.压电效应
对某些电介质沿着一定方向加力而使其变形时,在一定表面上产生电荷,当外力撤除后,又恢复到不带电状态,这种现象称为正压电效应。
在电介质的极化方向施加电场,电介质会在一定方向上产生机械变形或机械压力,当外电场去除后,变形或应力随之消失,此现象称为逆压电效应。
2.压电元件
压电式传感器是物性型的、发电式传感器。
常用的压电材料有石英晶体(SiO2)和人工合成的压电陶瓷。
压电陶瓷的压电常数是石英晶体的几倍,灵敏度较高。
四)光电式传感器
1.光电效应
当光线照射物体时,可看作一串具有能量E的光子轰击物体,如果光子的能量足够大,物质内部电子吸收光子能量后,摆脱内部力的约束,发生相应电效应的物理现象,称为光电效应。
1)在光线作用下,电子逸出物体表面的现象,称为外光电效应,如光电管、光电倍增管等。
2)在光线作用下,物体的电阻率改变的现象,称为内光电效应,如光敏电阻、光敏二极管、光敏三极管、光敏晶闸管等。
3)在光线作用下,物体产生一定方向电动势的现象,称为光生伏特现象,如光电池(属于对感光面入射光点位置敏感的器件)等。
2.光敏电阻
光敏电阻受到光线照射时,电子迁移,产生电子—空穴对,使电阻率变小。
光照越强,阻值越低。
入射光线消失,电子—空穴对恢复,电阻值逐渐恢复原值。
3.光敏管
光敏管(光敏二极管、光敏三极管、光敏晶闸管等)属于半导体器件。
4.电致发光
固体发光材料在电场激发下产生的发光现象称为电致发光。
电致发光是将电能直接转换成光能的过程。
发光二极管(LED)是以特殊材料掺杂制成的半导体电致发光器件。
当其PN结正向偏置时,由于电子—空穴复合时产生过剩能量,该能量以光子形式放出而发光。
五)热电式传感器
1.热电效应
将两种不同性质的金属导体A、B接成一个闭合回路,如果两接合点温度不相等(T0≠T),则在两导体间产生电动势,并且回路中有一定大小的电流存在,此现象称为热电效应。
2.热电阻传感器
热电阻材料通常为纯金属,广泛使用的是铂、铜、镍、铁等
3.热敏电阻传感器
热敏电阻用半导体制成,与金属热电阻相比有以下特点:
1)电阻温度系数大,灵敏度高;
2)结构简单,体积小,易于点测量;
3)电阻率高,且适合动态测量;
4)阻值与温度变化的关系是非线性的;
5)稳定性较差。
传感器在发动机上的应用
发动机控制系统用传感器是整个汽车传感器的核心,种类很多,包括温度传感器、压力传感器、位置和转速传感器、流量传感器、气体浓度传感器和爆震传感器等。
这些传感器向发动机的电子控制单元(ECU)提供发动机的工作状况信息,供ECU对发动机工作状况进行精确控制,以提高发动机的动力性、降低油耗、减少废气排放和进行故障检测。
1.温度传感器
温度传感器主要用于检测发动机温度、吸入气体温度、冷却水温度、燃油温度以及催化温度等。
温度用传感器有线绕电阻式、热敏电阻式和热偶电阻式三种主要类型。
三种类型传感器各有特点,其应用场合也略有区别。
线绕电阻式温度传感器的精度高,但响应特性差;热敏电阻式温度传感器灵敏度高,响应特性较好,但线性差,适应温度较低;热偶电阻式温度传感器的精度高,测量温度范围宽,但需要配合放大器和冷端处理一起使用。
2.压力传感器
压力传感器主要用于检测气缸负压、大气压、涡轮发动机的升压比、气缸内压、油压等。
吸气负压式传感器主要用于吸气压、负压、油压检测。
汽车用压力传感器应用较多的有电容式、压阻式、差动变压器式(LVDT)、表面弹性波式(SAW)。
3.流量传感器
流量传感器主要用于发动机空气流量和燃料流量的测量。
空气流量的测量用于发动机控制系统确定燃烧条件、控制空燃比、起动、点火等。
空气流量传感器有旋转翼片式(叶片式)、卡门涡旋式、热线式、热膜式等四种类型。
旋转翼片式(叶片式)空气流量计结构简单,测量精度较低,测得的空气流量需要进行温度补偿;卡门涡旋式空气流量计无可动部件,反映灵敏,精度较高,也需要进行温度补偿;热线式空气流量计测量精度高,无需温度补偿,但易受气体脉动的影响,易断丝;热膜式空气流量计和热线式空气流量计测量原理一样,但体积少,适合大批量生产,成本低。
4.位置和转速传感器
位置和转速传感器主要用于检测曲轴转角、发动机转速、节气门的开度、车速等。
目前汽车使用的位置和转速传感器主要有交流发电机式、磁阻式、霍尔效应式、簧片开关式、光学式、半导体磁性晶体管式等,其测量范围0 ~360 ,精度0.5 以下,测弯曲角达 0.1 。
5.气体浓度传感器
气体浓度传感器主要用于检测车体内气体和废气排放。
其中,最主要的是氧传感器,实用化的有氧化锆传感器(使用温度-40℃~900℃,精度1%)、氧化锆浓差电池型气体传感器(使用温度300℃~800℃)、固体电解质式氧化锆气体传感器(使用温度0℃~400℃,精度0.5%),另外还有二氧化钛氧传感器。
和氧化锆传
感器相比,二氧化钛氧传感器具有结构简单、轻巧、便宜,且抗铅污染能力强的特点。
6.爆震传感器
爆震传感器用于检测发动机的振动,通过调整点火提前角控制和避免发动机发生爆震。
可以通过检测气缸压力、发动机机体振动和燃烧噪声等三种方法来检测爆震。
爆震传感器有磁致伸缩式和压电式。
磁致伸缩式爆震传感器的使用温度为-40℃~125℃,频率范围为5~10kHz;压电式爆震传感器在中心频率5.417kHz处,其灵敏度可达200mV/g,在振幅为0.1g~10g范围内具有良好线性度。
7.24GHz雷达传感器
24GHz雷达传感器用于汽车防撞安装系统,通过发射雷达波来判断前方出现的物体大小,距离和移动速度,进而通过显示器或与汽车制动系统进行配合,避免汽车与前方物体相撞。
传感器发射频率在24.125GHz左右,可以调节的频率范围在50KHz左右。
精度在国外精度可以达到毫米级别。
传感器在控制系统中的应用状况
汽车传感器行业前景展望
随着微电子技术的发展和电子控制系统在汽车上的应用迅速增加,汽车传感器市场需求将保持高速增长,微型化、多功能化、集成化和智能化的传感器将逐步取代传统的传感器,成为汽车传感器的主流。
参考文献
[1]宋年秀,张俊祥,刘超..汽车传感器原理与检测200问.太原:太原理工大
学,2009
[2]郁有文,常健,程继红.传感器原理及工程应用.西安:西安电子科技大
学,2008.07
[3] 贺建波,贺展开.汽车传感器的检测——现代汽车技术丛书. 北京:机
械工业出版社,2005.02。