初中数学:几何图形中的动点与最值问题word版
(word完整版)3最值系列之瓜豆原理

最值系列之瓜豆原理在辅助圆问题中,我们了解了求关于动点最值问题的方式之一-—求出动点轨迹,即可求出关于动点的最值.本文继续讨论另一类动点引发的最值问题,在此类题目中,题目或许先描述的是动点P,但最终问题问的可以是另一点Q,当然P、Q之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值,为常规思路.一、轨迹之圆篇引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系.引例2:如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.考虑:当点P在圆O上运动时,Q点轨迹是?Q【分析】Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P点轨迹都是圆.接下来确定圆心与半径.考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.引例3:如图,△APQ是直角三角形,∠PAQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?Q【分析】考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.【模型总结】为了便于区分动点P、Q,可称点P为“主动点",点Q为“从动点".此类问题的必要条件:两个定量主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠PAQ=∠OAM;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.【思考1】:如图,P是圆O上一个动点,A为定点,连接AP,以AP为一边作等边△APQ.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】Q点满足(1)∠PAQ=60°;(2)AP=AQ,故Q点轨迹是个圆:考虑∠PAQ=60°,可得Q点轨迹圆圆心M满足∠MAO=60°;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.【小结】可以理解AQ由AP旋转得来,故圆M亦由圆O旋转得来,旋转角度与缩放比例均等于AP与AQ的位置和数量关系.【思考2】如图,P是圆O上一个动点,A为定点,连接AP,以AP为斜边作等腰直角△APQ.考虑:当点P在圆O上运动时,如何作出Q点轨迹?【分析】Q点满足(1)∠PAQ=45°;(2)AP:AQ:1,故Q点轨迹是个圆.连接AO,构造∠OAM=45°且AO:AM:1.M点即为Q点轨迹圆圆心,此时任意时刻均有△AOP∽△AMQ.即可确定点Q的轨迹圆.【练习】如图,点P(3,4),圆P半径为2,A(2。
(完整word)圆中最值问题10种求法

圆中最值的十种求法在圆中求最值是中考的常见题型,也是中考中的热点、难点问题,有的学生对求最值问题感到束手无策,主要原因就是对求最值的方法了解不多,思路不够灵活.现对在圆中求最值的方法,归纳如下:一、利用对称求最值1.如图:⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值.[分析]:延长AO交⊙O于D,连接CD交⊙O于P,即此时PA+PC最小,且PA+PC的最小值就等于弦CD的长.解:延长AO交⊙O于D,连接CD交OB于P连接PA,过O作OE⊥CD,垂足为E在△OCD中,因为∠AOC=60°所以∠D=∠C=30°在Rt△ODE中 cos30°=即DE=2×cos30°= 所以CD=2DE=2即PA+PC的最小值为2。
二、利用垂线段最短求最值2.如图:在直角坐标系中,点A的坐标为(-3, -2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则PQ长度的最小值为。
[分析]:连接AQ、PA,可知AQ⊥PQ. 在Rt△PQA中,PQ=,求PQ的最小值转化为求PA的最小值,根据垂线段最短易求PA的最小值为2.解:连接PA、QA因为PQ切⊙A于点Q 所以PQ⊥AQ在Rt△APQ中,PQ2=PA2-AQ2即PQ=又因为A(-3,-2) ,根据垂线段最短。
所以PA的最小值为2所以PQ的最小值=三、利用两点之间线段最短求最值3.如图:圆锥的底面半径为2,母线PB的长为6,D为PB的中点,一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为( )A.B.2 C.3 D.3[分析]:因为圆锥的侧面是曲面蚂蚁从A爬行到点D,不好求爬行的最小值,要把立体图形展开为平面图形,再利用两点之间线段最短来解决问题。
解:圆锥的侧面展开图如图2,连接AB根据题意得:弧AC的长为2πr=2π·2=4π,PA=6因为4π= 所以n=120°即∠APB=60°又因为PA=PB所以△PAB是等边三角形因为D为PB中点所以AD⊥PB PD=DB=3在Rt△PAD中,AD=,故选C。
动点问题最值

A动点问题最值最值问题有四种情形:定点到动点的最值,动点在圆上或直线上,就是点到圆的最近距离,和点到直线的最近距离;三角形两边之和大于第三边的问题,当两边成一直线最大;几条线段之和构成一条线段最小;还有就是对称点最小问题。
一、定点到动点所在圆的最大或最小值,动点在一个定圆上运动,其实质是圆外一点到圆的最大或最小距离,就是定点与圆心所在直线与圆的交点的两个距离。
方法:证明动点在圆上或者去找不变的特殊三角形,证明两个三角形相似,求出某些边的值。
1.如图,△ABC 、△EFG 均是边长为2的等边三角形,点D 是边BC 、EF 的中点,直线AG 、FC 相交于点M .当△EFG 绕点D 旋转时,线段BM 长的最小值是〔〕 A .32-B .13+C .2D .13-提示:点M 在以AC 为直径的圆上2.〔2015•XX 〕如图,已知正方形ABCD 的边长为2,E 是边BC 上的动点,BF ⊥AE 交CD 于点F ,垂足为G ,连结CG .下列说法:①AG >GE ;②AE =BF ;③点G 运动的路径长为π;④CG 的最小值为﹣1.其中正确的说法是②③.〔把你认为正确的说法的序号都填上〕提示:G 在以AB 为直径的圆上:正确答案是:②④3、如图,正方形ABCD 的边长为4cm,正方形AEFG 的边长为1cm ,如果正方形AEFG 绕点A旋转,那么C 、F 两点之间的最小距离为ABC4、如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在直线翻折得到△A′MN,连接A′C,则A′C长度的最小值是5、如图,等腰直角△ACB,AC=BC=5,等腰直角△CDP,且PB=2,将△CDP绕C点旋转. 〔1〕求证:AD=PB〔2〕若∠CPB=135°,求BD;〔3〕∠PBC=时,BD∠PBC=时,BD有最小值,并画图说明.分析:在△ABD中有:BD≤AB+AD,当BD=AB+AD时BD最大,此时AB与AD在一条直线上,且AD在BA的延长线上,又△ACB是等腰直角三角形,∠CAB=45°,由〔1〕知∠PBC=∠CAD=180°-45°=135°BD≥AB-AD,当BD=AB-AD时BD最小,此时,AB与AD在一条直线上,且AD在线段AB上,此时∠CAD=45°,所以∠PBC=∠CAD=45°6、如图,△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,∠BAE=135°,AD=1,,F为BE中点.〔1〕求CF的长〔2〕将△ADE绕A旋转一周,求点F运动的路径长;〔3〕△ADE绕点A旋转一周,求线段CF的X围.A BAACCAGDAGDA提示:本题根据中点构造三角形相似,△BOF∽△BAE,且12OF AE==7、如图,AB=4,O为AB中点,⊙O的半径为1,点P是⊙O上一动点,以点P为直角顶点的等腰△PBC〔点P,B,C按逆时针方向排列〕则线段AC的取值X提示:发现定等腰直角△AOC与等腰直角△OBE,从而得到相似。
(完整word版)专题:阿氏圆与线段和最值问题(含答案),推荐文档

专题:阿氏圆与线段和最值问题以阿氏圆(阿波罗尼斯圆)为背景的几何问题近年来在中考数学中经常出现,对于此类问题的归纳和剖析显得非常重要.具体内容如下: 阿氏圆定理(全称:阿波罗尼斯圆定理),具体的描述:一动点P 到两定点A 、B 的距离之比等于定比n m (≠1),则P 点的轨迹,是以定比n m内分和外分定线段AB 的两个分点的连线为直径的圆.这个轨迹最先由古希腊数学家阿波罗尼斯发现,该圆称为阿波罗尼斯圆,简称阿氏圆.定理读起来和理解起来比较枯燥,阿氏圆题型也就是大家经常见到的PA+kPB ,(k ≠1)P 点的运动轨迹是圆或者圆弧的题型.PA+kPB,(k ≠1)P 点的运动轨迹是圆或圆弧的题型阿氏圆基本解法:构造母子三角形相似例题1、问题提出:如图1,在Rt △ABC 中,∠ACB =90°,CB =4,CA =6,⊙C 半径为2,P 为圆上一动点,连结AP 、BP ,求AP +BP 的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP ,在CB 上取点D ,使CD =1,则有==,又∵∠PCD =∠BCP ,∴△PCD ∽△BCP .∴=,∴PD =BP ,∴AP +BP =AP +PD .请你完成余下的思考,并直接写出答案:AP +BP 的最小值为 .(2)自主探索:在“问题提出”的条件不变的情况下,AP +BP 的最小值为 . (3)拓展延伸:已知扇形COD 中,∠COD =90°,OC =6,OA =3,OB =5,点P 是上一点,求2P A +PB 的最小值.【分析】(1)利用勾股定理即可求出,最小值为AD =;(2)连接CP,在CA上取点D,使CD=,则有,可证△PCD∽△ACP,得到PD=AP,即:AP+BP=BP+PD,从而AP+BP的最小值为BD;(3)延长OA到点E,使CE=6,连接PE、OP,可证△OAP∽△OPE,得到EP=2P A,得到2P A+PB=EP+PB,当E、P、B三点共线时,得到最小值.【解答】解:(1)如图1,连结AD,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,在Rt△ACD中,CD=1,AC=6,∴AD==,AP+BP的最小值为,故答案为:;(2)如图2,连接CP,在CA上取点D,使CD=,∴,∵∠PCD=∠ACP,∴△PCD∽△ACP,∴,∴PD=AP,∴AP+BP=BP+PD,∴同(1)的方法得出AP+BP的最小值为BD==.故答案为:;(3)如图3,延长OA到点E,使CE=6,∴OE=OC+CE=12,连接PE、OP,∵OA=3,∴,∵∠AOP=∠AOP,∴△OAP∽△OPE,∴,∴EP=2P A,∴2P A+PB=EP+PB,∴当E、P、B三点共线时,取得最小值为:BE==13.【点评】此题是圆的综合题,主要考查了勾股定理,相似三角形的判定和性质,极值的确定,还考查了学生的阅读理解能力,解本题的关键是根据材料中的思路构造出△PCD ∽△ACP和△OAP∽△OPE,也是解本题的难点.例题2、问题背景如图1,在△ABC中,BC=4,AB=2AC.问题初探请写出任意一对满足条件的AB与AC的值:AB=,AC=.问题再探如图2,在AC右侧作∠CAD=∠B,交BC的延长线于点D,求CD的长.问题解决求△ABC的面积的最大值.【分析】问题初探:设AC=x,则AB=2x,根据三角形三边间的关系知2x﹣x<4且2x+x >4,解之得出x的范围,在此范围内确定AC的值即可得出答案;问题再探:设CD=a、AD=b,证△DAC∽△DBA得==,据此知,解之可得;问题解决:设AC=m、则AB=2m,根据面积公式可得S△ABC=2m,由余弦定理可得cos C,代入化简S△ABC=,结合m的取值范围,利用二次函数的性质求解可得.【解答】解:问题初探,设AC=x,则AB=2x,∵BC=4,∴2x﹣x<4且2x+x>4,解得:<x<4,取x=3,则AC=3、AB=6,故答案为:6、3;问题再探,∵∠CAD=∠B,∠D=∠D,∴△DAC∽△DBA,则==,设CD=a、AD=b,∴,解得:,即CD=;问题解决,设AC=m、则AB=2m,根据面积公式可得S△ABC=AC•BC sin C=2m sin C=2m,由余弦定理可得cos C=,∴S△ABC=2m=2m===由三角形三边关系知<m<4,所以当m=时,S△ABC取得最大值.【点评】本题主要考查三角形三边关系、相似三角形的判定与性质及二次函数的应用,解题的关键是熟练掌握相似三角形的判定与性质、三角形的面积公式、余弦定理及二次函数的性质.例题3、如图,已知AC=6,BC=8,AB=10,⊙C的半径为 4,点D 是⊙C上的动点,连接AD,BD,则12AD BD的最小值为_________【解答】例题4、在△ABC中,AB=9,BC=8,∠ABC=60°,⊙A 的半径为6,P是⊙A上的动点,连接PB,PC,则3PC+2PB的最小值为___________【解答】21练习1.如图,在平面直角坐标系中,点A(4,0),B(4,4),点P在半径为2的圆O上运动,则AP+BP的最小值是.【分析】如图,取点K(1,0),连接OP、PK、BK.由△POK∽△AOP,可得==,推出PK=P A,在△PBK中,PB+PK≥BK,推出PB+P A=PB+PK的最小值为BK的长.【解答】解:如图,取点K(1,0),连接OP、PK、BK.∵OP=2,OA=4,OK=1,∴==,∵∠POK=∠AOP,∴△POK∽△AOP,∴==,∴PK=P A,∴PB+P A=PB+PK,在△PBK中,PB+PK≥BK,∴PB+P A=PB+PK的最小值为BK的长,∵B(4,4),K(1,0),∴BK==5.故答案为5.【点评】本题考查坐标与图形的性质、相似三角形的判定和性质、三角形的三边关系、两点之间的距离公式等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考填空题中的压轴题.2.如图,正方形ABCD的边长为4,⊙B的半径为2,P为⊙B上的动点,则PD+PC的最小值等于.【分析】在BC上截取BE=1,连接BP,PE,由正方形的性质可得BC=4=CD,BP=2,EC=3,可证△PBE∽△CBP,可得PE=PC,即当点D,点P,点E三点共线时,PD+PE 有最小值,即PD+PC有最小值,【解答】解:如图,在BC上截取BE=1,连接BP,PE,∵正方形ABCD的边长为4,⊙B的半径为2,∴BC=4=CD,BP=2,EC=3∵,且∠PBE=∠PBE∴△PBE∽△CBP∴∴PE=PC∴PD+PC=PD+PE∴当点D,点P,点E三点共线时,PD+PE有最小值,即PD+PC有最小值,∴PD+PC最小值为DE==5故答案为:5【点评】本题考查了正方形的性质,圆的有关知识,相似三角形的判定和性质,添加恰当的辅助线构造相似三角形是本题的关键.3.如图,四边形ABCD为边长为4的正方形,⊙B的半径为2,P是⊙B上一动点,则PD+ PC的最小值为;PD+4PC的最小值为.【分析】①如图,连接PB、在BC上取一点E,使得BE=1.只要证明△PBE∽△CBP,可得==,推出PD+PC=PD+PE,再根据三角形的三边关系PE+PD≤DE即可解决问题;②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.只要证明△PBE∽△DBP,可得==,推出PE=PD,推出PD+4PC=4(PD+PC)=4(PE+PC),根据三角形的三边关系PE+PC≤EC即可解决问题;【解答】解:①如图,连接PB、在BC上取一点E,使得BE=1.∵PB2=4,BE•BC=4,∴PB2=BE•BC,∴=,∵∠PBE=∠CBP,∴△PBE∽△CBP,∴==,∴PD+PC=PD+PE,∵PE+PD≤DE,在Rt△DCE中,DE==5,∴PD+PC的最小值为5.②连接DB,PB,在BD上取一点E,使得BE=,连接EC,作EF⊥BC于F.∵PB2=4,BE•BD=×4=4,∴BP2=BE•BD,∴=,∵∠PBE=∠PBD,∴△PBE∽△DBP,∴==,∴PE=PD,∴PD+4PC=4(PD+PC)=4(PE+PC),∵PE+PC≥EC,在Rt△EFC中,EF=,FC=,∴EC=,∴PD+4PC的最小值为10.故答案为5,10.【点评】本题考查轴对称最短问题、正方形的性质、相似三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,学会根据相似三角形解决问题,属于中考填空题中的压轴题.4.如图,半圆的半径为1,AB为直径,AC、BD为切线,AC=1,BD=2,P为上一动点,求PC+PD的最小值.【分析】如图当A、P、D共线时,PC+PD最小,根据PC+PD=PM+PD=DM=AD﹣AM即可计算.【解答】解:如图当A、P、D共线时,PC+PD最小.理由:连接PB、CO,AD与CO交于点M,∵AB=BD=4,BD是切线,∴∠ABD=90°,∠BAD=∠D=45°,∵AB是直径,∴∠APB=90°,∴∠P AB=∠PBA=45°,∴P A=PB,PO⊥AB,∵AC=PO=2,AC∥PO,∴四边形AOPC是平行四边形,∴OA=OP,∠AOP=90°,∴四边形AOPC是正方形,∴PM=PC,∴PC+PD=PM+PD=DM,∵DM⊥CO,∴此时PC+DP最小=AD﹣AM=2﹣=.【点评】本题考查切线的性质、轴对称﹣最短问题、正方形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是找到点P的位置,学会通过特殊点探究问题,找到解题的突破口,属于中考常考题型.5.如图,在Rt△ABC中,∠A=30°,AC=8,以C为圆心,4为半径作⊙C.(1)试判断⊙C与AB的位置关系,并说明理由;(2)点F是⊙C上一动点,点D在AC上且CD=2,试说明△FCD~△ACF;(3)点E是AB边上任意一点,在(2)的情况下,试求出EF+F A的最小值.【分析】(1)结论:相切.作CM⊥AB于M.,只要证明CM=4,即可解决问题;(2)由CF=4,CD=2,CA=8,推出CF2=CD•CA,推出=,由∠FCD=∠ACF,即可推出△FCD∽△ACF;(3)作DE′⊥AB于E′,交⊙C于F′.由△FCD∽△ACF,可得==,推出DF=AC,推出EF+AF=EF+DF,所以欲求EF+AF的最小值,就是要求EF+DF 的最小值;【解答】(1)解:结论:相切.理由:作CM⊥AB于M.在Rt△ACM中,∵∠AMC=90°,∠CAM=30°,AC=8,∴CM=AC=4,∵⊙O的半径为4,∴CM=r,∴AB是⊙C的切线.(2)证明:∵CF=4,CD=2,CA=8,∴CF2=CD•CA,∴=,∵∠FCD=∠ACF,∴△FCD∽△ACF.(3)解:作DE′⊥AB于E′,交⊙C于F′.∵△FCD∽△ACF,∴==,∴DF=AC,∴EF+AF=EF+DF,∴欲求EF+AF的最小值,就是要求EF+DF的最小值,当E与E′,F与F′重合时,EF+DF的值最小,最小值=DE′=AD=3.【点评】本题考查圆综合题、切线的判定和性质、相似三角形的判定和性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,正确切线的证明方法,学会正确寻找相似三角形解决问题,学会利用垂线段最短解决问题,属于中考压轴题.6.问题提出:如图1,在等边△ABC中,AB=12,⊙C半径为6,P为圆上一动点,连结AP,BP,求AP+BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB 上取点D,使CD=3,则有==,又∵∠PCD=∠BCP,∴△PCD∽△BCP,∴=,∴PD=BP,∴AP+BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:如图3,矩形ABCD中,BC=7,AB=9,P为矩形内部一点,且PB=3,AP+PC的最小值为.(3)拓展延伸:如图4,扇形COD中,O为圆心,∠COD=120°,OC=4,OA=2,OB=3,点P是上一点,求2P A+PB的最小值,画出示意图并写出求解过程.【分析】(1)由等边三角形的性质可得CF=6,AF=6,由勾股定理可求AD的长;(2)在AB上截取BF=1,连接PF,PC,由,可证△ABP∽△PBF,可得PF=AP,即AP+PC=PF+PC,则当点F,点P,点C三点共线时,AP+PC的值最小,由勾股定理可求AP+PC的值最小值;(3)延长OC,使CF=4,连接BF,OP,PF,过点F作FB⊥OD于点M,由,可得△AOP∽△POF,可得PF=2AP,即2P A+PB=PF+PB,则当点F,点P,点B三点共线时,2AP+PB的值最小,由勾股定理可求2P A+PB的最小值.【解答】解:(1)解:(1)如图1,连结AD,过点A作AF⊥CB于点F,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,∵AC=12,AF⊥BC,∠ACB=60°∴CF=6,AF=6∴DF=CF﹣CD=6﹣3=3∴AD==3∴AP+BP的最小值为3(2)如图,在AB上截取BF=1,连接PF,PC,∵AB=9,PB=3,BF=1∴,且∠ABP=∠ABP,∴△ABP∽△PBF,∴∴PF=AP∴AP+PC=PF+PC,∴当点F,点P,点C三点共线时,AP+PC的值最小,∴CF===5∴AP+PC的值最小值为5,(3)如图,延长OC,使CF=4,连接BF,OP,PF,过点F作FB⊥OD于点M,∵OC=4,FC=4,∴FO=8,且OP=4,OA=2,∴,且∠AOP=∠AOP∴△AOP∽△POF∴∴PF=2AP∴2P A+PB=PF+PB,∴当点F,点P,点B三点共线时,2AP+PB的值最小,∵∠COD=120°,∴∠FOM=60°,且FO=8,FM⊥OM∴OM=4,FM=4∴MB=OM+OB=4+3=7∴FB==∴2P A+PB的最小值为.【点评】此题是圆的综合题,主要考查了圆的有关知识,勾股定理,相似三角形的判定和性质,极值的确定,还考查了学生的阅读理解能力,解本题的关键是根据材料中的思路构造出相似三角形,也是解本题的难点.7.(1)如图1,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD+的最小值和PD﹣的最大值;(2)如图2,已知正方形ABCD的边长为9,圆B的半径为6,点P是圆B上的一个动点,那么PD+的最小值为,PD﹣的最大值为.(3)如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B 上的一个动点,那么PD+的最小值为,PD﹣的最大值为.【分析】(1)如图1中,在BC上取一点G,使得BG=1.由△PBG∽△CBP,推出==,推出PG=PC,推出PD+PC=DP+PG,由DP+PG≥DG,当D、G、P 共线时,PD+PC的值最小,最小值为DG==5.由PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=5;(2)如图3中,在BC上取一点G,使得BG=4.解法类似(1);(3)如图4中,在BC上取一点G,使得BG=4,作DF⊥BC于F.解法类似(1);【解答】解:(1)如图1中,在BC上取一点G,使得BG=1.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==5.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=5.(2)如图3中,在BC上取一点G,使得BG=4.∵==,==,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG==.∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大,最大值为DG=.故答案为,(3)如图4中,在BC上取一点G,使得BG=1,作DF⊥BC于F.∵==2,==2,∴=,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴==,∴PG=PC,∴PD+PC=DP+PG,∵DP+PG≥DG,∴当D、G、P共线时,PD+PC的值最小,最小值为DG,在Rt△CDF中,∠DCF=60°,CD=4,∴DF=CD•sin60°=2,CF=2,在Rt△GDF中,DG==∵PD﹣PC=PD﹣PG≤DG,当点P在DG的延长线上时,PD﹣PC的值最大(如图2中),最大值为DG=.故答案为,.【点评】本题考查圆综合题、正方形的性质、菱形的性质、相似三角形的判定和性质、两点之间线段最短等知识,解题的关键是学会构建相似三角形解决问题,学会用转化的思想思考问题,把问题转化为两点之间线段最短解决,题目比较难,属于中考压轴题.8.如图,抛物线y=﹣x2+bx+c与直线AB交于A(﹣4,﹣4),B(0,4)两点,直线AC:y=﹣x﹣6交y轴于点C.点E是直线AB上的动点,过点E作EF⊥x轴交AC于点F,交抛物线于点G.(1)求抛物线y=﹣x2+bx+c的表达式;(2)连接GB,EO,当四边形GEOB是平行四边形时,求点G的坐标;(3)在(2)的前提下,y轴上是否存在一点H,使∠AHF=∠AEF?如果存在,求出此时点H的坐标,如果不存在,请说明理由.【分析】(1)把A、B点的坐标分别代入代入y=﹣x2+bx+c得关于b、c的方程组,然后解方程组求出b、c,从而得到抛物线的解析式;(2)先利用待定系数法求出直线AB的解析式为y=2x+4,设G(x,﹣x2﹣2x+4),则E(x,2x+4),根据平行四边形的判定,当GE=OB时,且点G在点E的上方,四边形GEOB为平行四边形,从而得到﹣x2﹣2x+4﹣(2x+4)=4,然后解方程即可得到此时G 点坐标;(3)先确定C(0,﹣6),再利用勾股定理的逆定理证明△BAC为直角三角形,∠BAC =90°,接着根据圆周角定理,由∠AHF=∠AEF可判断点H在以EF为直径的圆上,EF的中点为M,如图,设H(0,t),由于E(﹣2,0),F(﹣2,﹣5),则M(﹣2,﹣),然后根据HM=EF得到22+(t+)2=×52,最后解方程即可得到H点的坐标.【解答】解:(1)把A(﹣4,﹣4),B(0,4)代入y=﹣x2+bx+c得,解得,∴抛物线的解析式为y=﹣x2﹣2x+4;(2)设直线AB的解析式为y=kx+m,把A(﹣4,﹣4),B(0,4)代入得,解得,∴直线AB的解析式为y=2x+4,设G(x,﹣x2﹣2x+4),则E(x,2x+4),∵OB∥GE,∴当GE=OB时,且点G在点E的上方,四边形GEOB为平行四边形,∴﹣x2﹣2x+4﹣(2x+4)=4,解得x1=x2=﹣2,此时G点坐标为(﹣2,4);(3)存在.当x=0时,y=﹣x﹣6=﹣6,则C(0,﹣6),∵AB2=42+82=80,AC2=42+22=20,BC2=102=100,∴AB2+AC2=BC2,∴△BAC为直角三角形,∠BAC=90°,∵∠AHF=∠AEF,∴点H在以EF为直径的圆上,EF的中点为M,如图,设H(0,t),∵G(﹣2,4),∴E(﹣2,0),F(﹣2,﹣5),∴M(﹣2,﹣),∵HM=EF,∴22+(t+)2=×52,解得t1=﹣1,t2=﹣4,∴H点的坐标为(0,﹣1)或(0,﹣4).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和平行四边形的判定;会利用待定系数法求函数解析式;会利用勾股定理的逆定理证明直角三角形,能运用圆周角定理判断点在圆上;理解坐标与图形的性质,记住两点间的距离公式.9.如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若=,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+E′B的最小值.【分析】(1)令y=0,求出抛物线与x轴交点,列出方程即可求出a,根据待定系数法可以确定直线AB解析式.(2)由△PNM∽△ANE,推出=,列出方程即可解决问题.(3)在y轴上取一点M使得OM′=,构造相似三角形,可以证明AM′就是E′A+E′B的最小值.【解答】解:(1)令y=0,则ax2+(a+3)x+3=0,∴(x+1)(ax+3)=0,∴x=﹣1或﹣,∵抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),∴﹣=4,∴a=﹣.∵A(4,0),B(0,3),设直线AB解析式为y=kx+b,则,解得,∴直线AB解析式为y=﹣x+3.(2)如图1中,∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∴=,∵NE∥OB,∴=,∴AN=(4﹣m),∵抛物线解析式为y=﹣x2+x+3,∴PN=﹣m2+m+3﹣(﹣m+3)=﹣m2+3m,∴=,解得m=2.(3)如图2中,在y轴上取一点M′使得OM′=,连接AM′,在AM′上取一点E′使得OE′=OE.∵OE′=2,OM′•OB=×3=4,∴OE′2=OM′•OB,∴=,∵∠BOE′=∠M′OE′,∴△M′OE′∽△E′OB,∴==,∴M′E′=BE′,∴AE′+BE′=AE′+E′M′=AM′,此时AE′+BE′最小(两点间线段最短,A、M′、E′共线时),最小值=AM′==.【点评】本题考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM′就是E′A+E′B的最小值,属于中考压轴题.。
(完整word版)初中几何最值问题

初中几何最值问题例题精讲一、三点共线1、构造三角形【例 1】在锐角VABC中, AB=4,BC=5,∠ ACB=45°,将△ABC 绕点 B 按逆时针方向旋转,获取△A1BC1.点E 为线段 AB 中点,点 P 是线段 AC 上的动点,在△ABC 绕点 B 按逆时针方向旋转过程中,点P 的对应点是点 P1,求线段 EP1长度的最大值与最小值.C1P1 AEPA 1B C 【牢固】以平面上一点O 为直角极点,分别画出两个直角三角形,记作△AOB和△COD,其中∠ ABO=∠DCO =30 °.如图,若 BO= 3 3,点 N 在线段 OD 上,且 NO=2.点 P 是线段 AB 上的一个动点,在将△AOB 绕点 O 旋转的过程中,线段 PN 长度的最小值为 _______,最大值为 _______.AO P OBN NC DC D备用图【例 2】如图,MON 90°,矩形ABCD 的极点 A. B 分别在边OM , ON 上,当 B 在边 ON 上运动时, A 随之在边 OM 上运动,矩形ABCD 的形状保持不变,其中AB=2, BC=1,运动过程中,点 D 到点O 的最大距离为 __________【牢固】已知:△AOB 中, AB OB 2 ,△COD 中,CD OC 3 ,∠ABO ∠DCO .连接AD 、BC ,点 M 、N、 P 分别为OA、OD、BC的中点.若 A 、O、C三点在同素来线上,且∠ ABO 2 ,固定△AOB ,将△ COD 绕点 O 旋转,则PM的最大值为____________B AMOP NDC【牢固】在平面直角坐标系xOy 中,点 A 、 B 分别在x轴、y轴的正半轴上,点M为线段AB的中点.点D 、E 分别在x轴、y轴的负半轴上,且DE AB 10 .以 DE 为边在第三象限内作正方形DGFE ,央求出线段MG 长度的最大值,并直接写出此时直线MG 所对应的函数的剖析式.yBMD O A xGEF【例 3 】如图,已知 A( 1, y ) ,B(2, y 2 ) 为反比率函数1P(x,0) 在x正半轴上运y图像上的两点,动点2 1 x动,当线段AP与线段BP之差达到最大时,点P的坐标是 _________yABO P x2、轴对称【例 1】求x 3 2 2 1 的最小值4x【例 2】ABE ,CD CD 是半径为5的MN 于点F,P为e O 的两条弦,EF 上任意一点,则AB 8 ,PA+PCCD 6 ,的最小值为MN 为直径,_________AB MN 于点ACM NE O P FDB【牢固】设半径为 1 的半圆的圆心为O ,直径为AB , C、 D 是半圆上两点,若弧AC 的度数为96 °,弧 BD的度数为36°,动点P在直径AB上,则CP+PD的最小值是 _______【牢固】设正三角形 ABC 的边长是2, M 是 AB 边上的中点, P 是边 BC 上任意一点,则PA+PM 的最大值为 _______,最小值为 ________【例 3】如图,已知等边△ABC 的边长为1, D、E、 F 分别是 AB、 BC、 AC 边上的点(均不与点A、 B、 C 重合),记△ DEF的周长为p .若D、E、F分别是AB、BC、AC边上任意点,则p的取值范围是.ADFB EC【例 4】如图 1,在平面直角坐标系中,抛物线y=— x2+ 2x+ 3 与 x 轴交于 A.B 两点,与y 轴交于点C,点D 是抛物线的极点.(1)求直线 AC 的剖析式及 B. D 两点的坐标;( 2)请在直线AC 上找一点M,使△BDM 的周长最小,求出点M 的坐标.图 1【例 5】如图,直线y 3 分别交 x 轴、 y 轴于 C、A 两点,将射线 AM 绕点 A 顺时针旋转 45°获取射x 23线A N, D 为 AM 上的动点, B 为 AN 上的动点,点 C 在∠ MAN 的内部.(1)当 AM∥ x 轴,且四边形 ABCD 为梯形时,求△ BCD 的面积;(2)求△BCD 周长的最小值;( 3)当△BCD 的周长获取最小值,且BD 5 2时,求△ BCD 的面积.3yA yAyA2 2 2D1 M 1 1O 123C 4x O 123C 4x O 12 3 C 4x BN备用图备用图【例 6】在直角坐标系中, A 1, 2 , B 4, 1 , C m,0 , D n, n 为四边形的 4 个极点,当四边形ABCD 的周长最短时,m_________nyODC xBA【牢固】如图1,抛物线 y= ax2+ bx+ c( a≠0)的极点为 C( 1, 4),交 x 轴于 A、 B 两点,交 y 轴于点 D,其中点 B 的坐标为( 3, 0)。
中考数学压轴题动点问题专题复习--几何最值问题

中考数学动点问题专题复习--几何最值问题(2)垂线段最短(延伸:斜边大于直角边)方法技巧归纳类型一:在直线1上找到一点P,使得PA+PB最短做法如图,连接A、B与的交点即为所求类型二:在直线1上找到一点P,使得PA+PB最短做法如图,做点B关于直线1的对称点B,连接AB与的交点即为点P注:因为A、B两点是固定的,所以当题目要求找到一点P使得△PAB的周长最小时,做法也是样的类型三:在直线上找到两点EF(点E在点F的左侧),EF的距离是定值,使得AE+EF+FB最小做法如图,过A做AA'∥且AA'=EF,做B关于直线的对称点B",连接A'B'与直线z的交点即为F,过A做A'F的平行线与直线1的交点即为点E注:同样地,因为AB两点是固定的,所以当题目要求使得四边形AEFB周长最小时,也是用同样的方法类型四:直线a与直线b平行,在直线a上找到一点A,过点A作直线b的垂线交于点B,如何确定点A的位置可以使PA+AB+BQ最短做法如图,做PD垂直直线b交直线a于点C,交直线b于点D,在PD上截取PE=CD,连接EQ,EQ与直线b的交点即为点B,过点B做直线a的垂线,交点即为点A,连接PA即可(这种方法在实际生活中的应用就是著名的修桥问题)类型五:在直线l 上找到一点M ,使得|MA - MB|最小;直线l 上找到一点N ,使得|NA - NB|最大做法如图,做AB 的中垂线与直线相交,交点即为M ,此时|MA - MB|有最小值0;延长BA 与直线1相交,交点即为N ,此时|NA - NB|有最大值为AB类型六:点P 是∠AOB 内部一点,在OA 上找到一点M ,OB 上找到一点N 使得三角形PMN 的周长最小做法如图,分别作点P 关于OA 、OB 的对称点1P ,2P ,连接21P P ,与OA 的交点即为M ,与OB 的交点即为N.此时,三角形PMN 的周长最短类型七:点P 是∠AOB 内部一点,在OA 上找到一点M ,过点M 作MN 垂直OB 交OB 于点N ,使得PM+MN 的最小做法如图,作点P 关于OA 的对称点Q ,做QN 垂直OB 于N ,则QN 与OA 的交点即为M经典例题精讲例1.在正方形ABCD中, AB=4,M是DC上的一点,且DM=1,N是AC上的动点, (1)求DN+MN的最小值与最大值. (2)求|DN - NM|的最小值与最大值.例2.(山东东营中考)如图5-2-15,已知形ABCD的周长为16,面积为8,E 为AB的动点,若P为对角线BD上一动点,则EP+AP的最小值为()例3.(辽宁营口中考)如图所示,点P是∠AOB内任意一点,OP=5cm,点M和点N分别是射线OA和射线OB上的动点,△PMN周长的最小值是5cm,则∠AOB的度数是()例4.(福建荔城区二模)如图8-6-11所示在边长为10的菱形ABCD中,对角线BD=6.点E是AB的中点,P,Q是BD上的动点,且始终保持PQ=2.则四边形AEPQ周长的最小值为()例5. 如图,已知直线21//l l ,直线之间的距离为8,点P 到直线1l 的距离为6,例6.(山东日照模拟)如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD+PE 的和最小,则这个最小值为( )例7. (安徽中考)如图,在矩形ABCD 中,AB=5,AD=3,动点P 满足3S △PAB=S 矩形ABCD ,则点P 到A 、B 两点距离之和PA+PB 的最小值为() A.29 B.34 C.52 D.41CA B例8.在直角坐标系中有A,B 两点,要在y 轴上找一点C,使得它到A,B 的距离之和最小,现有如下四种方案,其中正确的是( )例9.如图,正△ABC 的边长为2,过点B 的直线L ⊥AB,且△ABC 与''BC A 关于直线l 对称,D 为线段BC’上一动点,则AD+CD 的最小值是( )例12. 如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两例13.如图所示,在三角形纸片ABC中,已知∠ABC=90°,AC=5,BC=4.过点A 作直线l平行于BC,折叠三角形纸片AB,使直角顶点B落在直线l上的点P处,折痕为MN.当点P在直线l上移动时,折痕的端点M,N也随之移动,若限定端点MN分别在AB,BC边上(包括端点)移动,则线段AP长度的最大值与最小值之差为()A.7B.6C.6+17D.1例14.如图,四边形ABCD中,AC⊥BD相交于E,且EC>EA,ED﹤EB,,求证:.BC+AD>AB+CD例15.如图,矩形ABCD 是一个长为1000米、宽为600米的货场,A 、D 是入口.现拟在货场内建一个收费站P,在铁路线BC 段上建一个发货站台H,设铺设公路AP 、DP 及PH 之长度和为L.(1)求L 的最小值.(2)请指出当l 取最小值时,收费站P 和发货站台H 的几何位置.例16. 如图 , E , F 是正方形 ABCD 的边 AD 上两个动点,满足 连接 CF 交 BD 于点 G ,连接 BE 交 于点 H .若正方形的边长为 2 ,则线段 长度的最小值是_________.BC 上的动点,BEF ∆沿直线EF 翻折到EF B '∆,连结'DB ,C B ',.当B D '最短时,则CF B 'sin ∠=______例18.如图1,平行四边形ABCD 中,BC AE ⊥于E,AD AE =,AB EG ⊥于G,延长GE 、DC 交于点F,连接AF.(2)求证:FC BG EG +=;沿ME 翻折得ME G '∆,连接'DG ,试求当'DG 取得最小值时GM 的长.。
2021学年初二数学专题几何模型--第1讲-几何动点最值问题1--(有详解)

几何模型------动点最值问题教学内容 入门测试1、如图,等边三角形ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点.若AE=2,当EF+CF 取得最小值时,则∠ECF 的度数为( C )A.15°B.22.5°C.30°D.45°2、如图所示,正方形ABCD 的面积为36,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD+PE 的和最小,则这个最小值为( A )3、4、A.6 B.8 C.9 D.12知识导学几何最值问题所涉及到原理{几何最值问题{1.两点之间线段最短2.垂线段最短3.三角形两边之差小于第三边(由1推导而来)4.圆外一点到圆上距离最值问题(由1推导而来)分类 细分 大致分析思路一线线段最值 单动点型 1、关键是找到动点的运动轨迹2、再利用最短路径原理解题双动点型 利用等量代换、和差关系、勾股定理或三角形边角关系转化为单动点问题知识讲解知识点一:单线段的最值问题【知识梳理】类型一:动点轨迹--直线型考法指导动点轨迹为一条直线时,利用“垂线段最短”求最值。
(1)当动点轨迹确定时可直接运用垂线段最短求最值(2)当动点轨迹不易确定是直线时,可通过以下三种方法进行确定①观察动点运动到特殊位置时,如中点,端点等位置时是否存在动点与定直线的端点连接后的角度不变,若存在该动点的轨迹为直线。
②当某动点到某条直线的距离不变时,该动点的轨迹为直线。
③当一个点的坐标以某个字母的代数式表示时,若可化为一次函数,则点的轨迹为直线。
类型二:动点轨迹--圆或圆弧型(初三学了圆之后再讲)类型三:动点轨迹--不确定型考法指导动点轨迹非圆或直线时,基本上将此线段转化为一个三角形中,(1)利用三角形两边之和大于第三边,两边之差小于第三边求最值。
(2)在转化较难进行时,可借助直角三角形斜边上的中线及中位线或构建全等图形进一步转化求最值。
初中数学几何最值存在性问题(word版+详解答案)

几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。
几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。
【解题攻略】最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,PA与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题.【解题类型及其思路】解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。
【典例指引】类型一【确定线段(或线段的和,差)的最值或确定点的坐标】【典例指引1】(2018·天津中考模拟)如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x 轴、y轴的正半轴上.点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC 交于点E.(I)证明:EO=EB;(Ⅱ)点P是直线OB上的任意一点,且△OPC是等腰三角形,求满足条件的点P的坐标;(Ⅲ)点M是OB上任意一点,点N是OA上任意一点,若存在这样的点M、N,使得AM+MN最小,请直接写出这个最小值.【举一反三】(2020·云南初三)如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.类型二【确定三角形、四边形的周长的最值或符合条件的点的坐标】【典例指引2】(2020·重庆初三期末)如图,抛物线2y ax bx =+(0a >)与双曲线k y x =相交于点A 、B ,已知点A 坐标()1,4,点B 在第三象限内,且AOB ∆的面积为3(O 为坐标原点).(1)求实数a 、b 、k 的值;(2)在该抛物线的对称轴上是否存在点P 使得POB ∆为等腰三角形?若存在请求出所有的P 点的坐标,若不存在请说明理由.(3)在坐标系内有一个点M ,恰使得MA MB MO ==,现要求在y 轴上找出点Q 使得BQM ∆的周长最小,请求出M 的坐标和BQM ∆周长的最小值.【举一反三】(2019·重庆实验外国语学校初三)如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C .(1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.类型三 【确定三角形、四边形的面积最值或符合条件的点的坐标】【典例指引3】(2019·甘肃中考真题)如图,已知二次函数y =x 2+bx+c 的图象与x 轴交于点A (1,0)、B (3,0),与y 轴交于点C .(1)求二次函数的解析式;(2)若点P 为抛物线上的一点,点F 为对称轴上的一点,且以点A 、B 、P 、F 为顶点的四边形为平行四边形,求点P 的坐标;(3)点E 是二次函数第四象限图象上一点,过点E 作x 轴的垂线,交直线BC 于点D ,求四边形AEBD 面积的最大值及此时点E 的坐标.【举一反三】(2019·内蒙古中考真题)如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴;(2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.(4)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以,,,B C M N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【新题训练】1.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴,y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F、E的坐标.2.(2019·江苏中考真题)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.(1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为_____;(2)如图2,当PB=5时,若直线l//AC,则BB’的长度为;(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.3.(2019·湖南中考真题)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y 轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为212时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.4.(2018·江苏中考真题)如图,在平面直角坐标系中,一次函数y=﹣23x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.5.(2020·江苏初三期末)已知二次函数223y x x =--+的图象和x 轴交于点A 、B ,与y 轴交于点C ,点P 是直线AC 上方的抛物线上的动点.(1)求直线AC 的解析式.(2)当P 是抛物线顶点时,求APC ∆面积.(3)在P 点运动过程中,求APC ∆面积的最大值.6.(2020·江苏初三期末)如图,抛物线265y ax x =+-交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为()5,0,直线5y x =-经过点B 、C .(1)求抛物线的函数表达式;(2)点P 是直线BC 上方抛物线上的一动点,求BCP ∆面积S 的最大值并求出此时点P 的坐标;(3)过点A 的直线交直线BC 于点M ,连接AC ,当直线AM 与直线BC 的一个夹角等于ACB ∠的3倍时,请直接写出点M 的坐标.7.(2019·石家庄市第四十一中学初三)如图,在平面直角坐标系中,抛物线y =x (x ﹣b )﹣与y 轴相交于A 点,与x 轴相交于B 、C 两点,且点C 在点B 的右侧,设抛物线的顶点为P .(1)若点B 与点C 关于直线x =1对称,求b 的值;(2)若OB =OA ,求△BCP 的面积;(3)当﹣1≤x≤1时,该抛物线上最高点与最低点纵坐标的差为h ,求出h 与b 的关系;若h 有最大值或最小值,直接写出这个最大值或最小值.8.(2020·江西初三期中)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.9.(2020·山东初三期末)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD 的解析式;(2)求抛物线的解析式;(3)将直线CD 绕点C 逆时针方向旋转45°所得直线与抛物线相交于另一点E ,求证:△CEQ ∽△CDO ; (4)在(3)的条件下,若点P 是线段QE 上的动点,点F 是线段OD 上的动点,问:在P 点和F 点移动过程中,△PCF 的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由. 10.(2020·盘锦市双台子区第一中学初三月考)如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P 使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.11.(2020·四川初三)如图,一次函数122y x =-+的图像与坐标轴交于A 、B 两点,点C 的坐标为(1,0)-,二次函数2y ax bx c =++的图像经过A 、B 、C 三点.(1)求二次函数的解析式(2)如图1,已知点(1,)D n 在抛物线上,作射线BD ,点Q 为线段AB 上一点,过点Q 作QM y ⊥轴于点M ,作QN BD ⊥于点N ,过Q 作//QP y 轴交抛物线于点P ,当QM 与QN 的积最大时,求点P 的坐标;(3)在(2)的条件下,连接AP ,若点E 为抛物线上一点,且满足APE ABO ∠=∠,求点E 的坐标.12.(2019·广东初三)如图,已知抛物线y =﹣3x 2+bx +c 与x 轴交于原点O 和点A (6,0),抛物线的顶点为B .(1)求该抛物线的解析式和顶点B 的坐标;(2)若动点P 从原点O 出发,以每秒1个长度单位的速度沿线段OB 运动,设点P 运动的时间为t (s ).问当t 为何值时,△OPA 是直角三角形?(3)若同时有一动点M 从点A 出发,以2个长度单位的速度沿线段AO 运动,当P 、M 其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t (s ),连接MP ,当t 为何值时,四边形ABPM 的面积最小?并求此最小值.13.(2019·山东初三期中)如图,已知抛物线经过两点A (﹣3,0),B (0,3),且其对称轴为直线x =﹣1.(1)求此抛物线的解析式.(2)若点Q 是对称轴上一动点,当OQ +BQ 最小时,求点Q 的坐标.(3)若点P 是抛物线上点A 与点B 之间的动点(不包括点A ,点B ),求△PAB 面积的最大值,并求出此时点P 的坐标.14.(2019·四川中考真题)如图,抛物线212y x bx c =-++过点(3,2)A ,且与直线72y x =-+交于B 、C两点,点B 的坐标为(4,)m .(1)求抛物线的解析式;(2)点D 为抛物线上位于直线BC 上方的一点,过点D 作DE x ⊥轴交直线BC 于点E ,点P 为对称轴上一动点,当线段DE 的长度最大时,求PD PA +的最小值;(3)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ︒∠=?若存在,求点Q 的坐标;若不存在,请说明理由.15.(2019·天津中考真题)已知抛物线2y x bx c =-+(b c ,为常数,0b >)经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点.(Ⅰ)当2b =时,求抛物线的顶点坐标;(Ⅱ)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值;(Ⅲ)点1(,)2QQ b y+在抛物线上,当22AM QM+的最小值为3324时,求b的值.16.(2019·湖南中考真题)如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为610?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL 平分矩形的面积时,求抛物线平移的距离.17.(2019·辽宁中考真题)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点.(1)求直线DE和抛物线的表达式;(2)在y 轴上取点F (0,1),连接PF ,PB ,当四边形OBPF 的面积是7时,求点P 的坐标;(3)在(2)的条件下,当点P 在抛物线对称轴的右侧时,直线DE 上存在两点M ,N (点M 在点N 的上方),且MN =22,动点Q 从点P 出发,沿P→M→N→A 的路线运动到终点A ,当点Q 的运动路程最短时,请直接写出此时点N 的坐标.18.(2019·湖南中考真题)已知抛物线2(0)y ax bx c a =++≠过点(1,0)A ,(3,0)B 两点,与y 轴交于点C ,=3OC .(1)求抛物线的解析式及顶点D 的坐标;(2)过点A 作AM BC ⊥,垂足为M ,求证:四边形ADBM 为正方形;(3)点P 为抛物线在直线BC 下方图形上的一动点,当PBC ∆面积最大时,求点P 的坐标; (4)若点Q 为线段OC 上的一动点,问:12AQ QC +是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。