2014-2015学年七年级数学下册 第一章 第5节 平方差公式

合集下载

北师大版数学七年级下册1.5《平方差公式》说课稿1

北师大版数学七年级下册1.5《平方差公式》说课稿1

北师大版数学七年级下册1.5《平方差公式》说课稿1一. 教材分析《平方差公式》是北师大版数学七年级下册第1章第5节的内容。

这一节主要介绍平方差公式的概念、推导过程及其应用。

平方差公式是初等数学中的一个重要公式,它不仅在代数学习中占有重要地位,而且在解决实际问题中也有着广泛的应用。

本节课的内容为后续学习完全平方公式、二次方程等知识打下基础。

二. 学情分析七年级的学生已经掌握了有理数的乘法运算,对因式分解有一定的了解。

但是,对于平方差公式的推导过程和应用,他们可能还比较陌生。

因此,在教学过程中,我需要从学生的实际出发,引导他们通过观察、分析、归纳等方法,自主探索并掌握平方差公式。

三. 说教学目标1.知识与技能目标:让学生掌握平方差公式的概念和推导过程,能够运用平方差公式进行简单的计算和问题求解。

2.过程与方法目标:通过观察、分析、归纳等方法,培养学生自主探索和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于挑战、积极进取的精神。

四. 说教学重难点1.教学重点:平方差公式的推导过程和应用。

2.教学难点:平方差公式的推导过程,以及如何运用平方差公式解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动、启发式教学法,引导学生通过观察、分析、归纳等方法,自主探索平方差公式。

2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合几何画板等软件,直观展示平方差公式的推导过程。

六. 说教学过程1.导入:通过一个实际问题,引发学生对平方差公式的思考,激发他们的学习兴趣。

2.自主探索:引导学生观察、分析实际问题,鼓励他们尝试用自己的方法解决。

3.小组讨论:学生分组讨论,分享各自的方法和思路,互相学习,共同进步。

4.讲解与示范:教师对学生的方法进行点评,并进行平方差公式的讲解和示范。

5.练习与反馈:学生进行课堂练习,教师及时给予反馈,巩固所学知识。

6.拓展与应用:引导学生运用平方差公式解决实际问题,提高他们的应用能力。

(新)北师大版七年级数学下册1.5《平方差公式》课件(精品)

(新)北师大版七年级数学下册1.5《平方差公式》课件(精品)

目录 contents
课前小测
课堂精讲
课后作业
目录 contents
课前小测
Listen attentively
课前小测
知识小测 1.(2016春•无锡期中)如图: 内、外两个四边形都是正方形,阴影部分的宽为3, 且面积为51,则内部小正方形的面积是( B) A.47 B.49 C.51 D.53 2.(2016春•保定期中)通过计算几何图形的面 积可表示代数恒等式,图中可表示的代数恒等式是 (D) A.(a﹣b)2=a2﹣2ab+b2 B.(a+b)2=a2+2ab+b2 C.2a(a+b)=2a2+2ab D.(a+b)(a﹣b)=a2﹣b2
Listen attentively
பைடு நூலகம்
课后作业
(3)原式=(3a)2﹣(2b)2 =9a2﹣4b2. (4)原式=(﹣y)2﹣(2x)2=y2﹣4x2. (5)原式=(2x+7)(2x﹣7) =4x2﹣49. (6)原式=(﹣2a)2﹣(3b)2=4a2﹣9b2.
Listen attentively
Listen attentively
课前小测
7.(2015秋•藁城区期末)从边长为a的大正方形 纸板中挖去一个边长为b的小正方形纸板后,将其 裁成四个相同的梯形(如图甲),然后拼成一个平 行四边形(如图乙).那么通过计算两个图形阴影 部分的面积,可以验证的公式 为 a2﹣b2=(a+b)(a﹣b) .
Listen attentively
课前小测
3.三个连续的奇数,若中间一个为a,则它们的 积为( A) A.a3﹣4a B.a3﹣6a C.4a3﹣a D.4a3﹣6a 4.(2015春•山亭区月考)若x+y=1007.5, x﹣y=2,则代数式x2﹣y2的值是 4030 . 5.利用平方差公式计算: 2001×1999= 3666666. 6.计算:20022﹣2001×2003= 1 .

北师大版七年级下册1.5平方差公式课件

北师大版七年级下册1.5平方差公式课件

小试牛刀
计算: (1) (x+2y)(x-2y)+(x+1)(x-1) = x2-(2y)2 +x2-1 = x2-4y2+x2-1 = 2x2-4y2-1 (2) (3mn+1)(3mn-1)-8m2n2 = (3mn)2-12 -8m2n2 = 9m2n2-1 -8m2n2
= m2n2-1
两数和与这两数差 的积,等于他们的 平方差
宽是 a-b ,它的面积是(a+b)(a-b.)
b
b
(3) 比较(1)(2)的结果,他们有
什么关系?
题后反思:
(a+b)(a-b) = a2-b2
1.根据面积相等验证
2.数形结合思想
如图,在边长为 a 的正方形中剪去 一 个边长为 b的小正方形 (a>b ),把剩下的部分拼成一个梯形, 分别计算两个图形阴
=a4
=a4
(2)(2x-5)(2x+5)-2x(2x-3) (2)(2x-5)(2x+5)-2x(2x-3)
=(2x)2-25-(4x2 -6x) =4x2-25-4x2+6x
=4x2+10x-10x-25-4x2+6x =6x-25
=6x-25
1. 利用平方差公式可以简便整式的乘法运算,但要注意 视察是否能够使用平方差公式. 2.在去括号与合并同类项时要特别注意括号与符号, 尤 其要注意括号前面是负号, 去掉括号后各项都要改变 符号. 3. 结果一 定要化简.
(1)103×97
=(100+3)(100-3) =1002-32
(2)118×122
=(120-2)(120+2) =1202-22=9991源自=14396题后反思:

七年级数学下册《1.5.2 平方差公式》课件 (新版)北师大版

七年级数学下册《1.5.2 平方差公式》课件 (新版)北师大版
七年级下册
1.5.2 平方差公式
1
1、平方差公式:
(a+b)(a-b)=a2-b2
2、公式的结构特点: 左边是两个二项式的乘积,即两数和与这两数差的积;右边是两数的 平方差。
2
3、应用平方差公式的注意事项:
1)注意平方差公式的适用范围
2)字母a、b可以是数,也可以是整式
3)注意计算过程中的符号和括号
12
自我检测
计算: 1)2001×1999 -20002
2)(3mn+1)(3mn-1)-8m2n2
3)( 1 2
x 2)
(1 2
x
2)
-
1 4
(x+8)
x
13
课堂小结
本节课你有哪些收获? 还有那些困惑?
14
作业
1. 教材习题1.10 2. 拓展作业: 计算:(21+1)( 22+1)(24+1)(28+1)(216+1)(232+1)(264+1)
3
活动探究一
a
b
如图,边长为a的大正方形中有一个边长为b的小正方形.
4
活动探究一
a
b
(1)请表示图中阴影部分的面积
5
活动探究一
a
a
b
b
图1-3
图1-4
(2)小颖将阴影部分拼成了一个长方形,如图1-4,这个长 方形的长和宽分别是多少?你能表示出它的面积吗?
6
活动探究一
a
a
b 图1-3
b 图1-4
9
练一练
计算: (1)704×696 ; (2)9.9 ×10.1
10

北师大版七年级数学下册第1章第5节平方差公式课件

北师大版七年级数学下册第1章第5节平方差公式课件
1、2218 ?
2、10199 ?
主持人话音刚落,就立刻有一个学生站起 来抢答说:“第一题等于396,第二题等于 9999”其速度之快,简直就是脱口而出.同 学们,你知道是如何计算的吗?你想不想掌 握他的简便、快捷的运算招数呢?
a
b
ab
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
Hale Waihona Puke 条件化简结果新知学习
平方差公式 (a+b)(a-b) = a2-b2
你能用文字语言表示所发现的规律吗?
语言表述:
两个数的和与这两个数的差的积, 等于这两个数的平方差
新知学习
(a+b)(a-b)=a2-b2
用相同数的平 相同 一对 方做被减数 的数 相反数
公式基本特征:
1、两大项(即同号项、异号项)
1.5平方差公式
图形法则 相同相反 混合计算 实际应用
学习目标
1.体验平方差的法则推导,能画出图形的推导过程。 2.能熟练判断使用平方差的条件,计算混算结果。 3.能利用平方差解决简单的应用问题。 4.学会小组合作,解决遇到的代数与几何问题。 5.学会独立思考,练习理解,增强自信心。
情境引入
在一次智力抢答中,主持人提供了两道题:
a
a ba b a2 b2
根据平方差公式,在图中标注字母a,b.
根据图形,你能得到 的等式为:
新知探究
计算下列多项式的积,你能发现什么规律?
(1)(x+1)(x-1)=______x_2_-_1__;
(2)(m+2)(m-2)=_____m_2_-_4__;

平方差公式

平方差公式

平方差公式平方差公式教材分析平方差公式》是北师大版七年级下册《数学》教材的一部分,属于义务教育课程标准实验教科书。

在此之前,教材已经安排了《有理数及运算》、《字母表示数》等内容。

在本节内容前,还安排了平方差公式产生的背景,使学生经历过实际问题“符号化”的过程,有了一定的符号感,为探索“平方差公式”奠定了基础。

学生分析学生在前面的研究中,已经研究了整式的有关内容,并经历了用字母表示数量关系的过程,有了一定的符号感。

经过一个学期的培养,学生已经具备了小组合作、交流的能力。

本节课的教学能培养学生的推理能力,使学生通过大胆而又合情合理的推理,有条理地表达自己的思考过程。

教学目标1、经历探索平方差公式的过程,进一步发展符号感和推理能力。

2、会推导平方差公式,并能运用公式进行简单的计算。

3、认识平方差公式及其几何背景。

4、在合作、交流和讨论中发掘知识,并体验研究的乐趣。

教学重点:体会公式的发现的推导过程,理解公式的本质,并会运用公式进行简单的计算。

教学难点:从广泛意义上理解公式中的字母含义。

课前准备1、为每位学生准备一张正方形纸片(边长为15cm)。

2、教师准备两张正方形(一大一小)纸板和三块矩形纸板。

3、多媒体课件。

教学流程一、创设问题情境,引导学生观察、设想。

教师发给每个学生一张正方形纸片(边长15cm),并用多媒体课件(或用正方形纸板)显示正方形。

教师问道:在一块45的红色正方形纸板上,因为工作需要,中间挖去一块边长为15的正方形(如图),请问剩下红色部分的面积有多少平方厘米?刚开始小的正方形可以随意摆放在红色正方形的任何位置。

)小组讨论:1.可以用大正方形面积减去小正方形面积得到。

2.可以把剩下红色部分切割成几个矩形来计算。

教师进一步问道:从今天的问题来看,用哪一种方法比较好?你们小组能列出算式吗?或许有学生能迅速列出算式,得出答案是1800平方厘米。

教师要求学生在他们手上的正方形纸的角落上画一个小正方形,可规定连长为3cm。

【最新】北师大版七年级数学下册第一章《平方差公式》公开课课件.ppt

【最新】北师大版七年级数学下册第一章《平方差公式》公开课课件.ppt
THE END 17、一个人如果不到最高峰,他就没有片刻的安宁,他也就不会感到生命的恬静和光荣。2021/1/112021/1/112021/1/112021/1/11
谢谢观看
(3)(a+2b)(2b+a);
(4)(a−b)(a+b) ;(5)
总结升华
1.知识方面: 平方差公式的推导及应用, 特别注意公式的结构特点。
2.数学思想方面: (1)由特殊到一般思想; (2)归纳推理思想。
课堂评价
学科班长:1.回扣目标 总结收获 2.评出优秀小组和个人
课后完成训练题并整理巩固
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
(1)公式左边:两个二项式的积且左 边两括号内有一项完全相同、另 结一项符号相反[互为相反数(式)].

特(2) 公式右边是这两个数的平方差

(3) 公式中的 a和b 可以代表数, 也可以是代数式.
练习 下列式子可用平方差公式计算 吗? 为什么? 如果能够,怎样计算?
(1) (a+b)(a−b) (2)(a−b)(b−a) ;
7组
例2 (书面展示)

北师大版初中数学七年级下册1.5平方差公式(教案)

北师大版初中数学七年级下册1.5平方差公式(教案)
此外,课后我计划收集学生的反馈和作业,以了解他们对平方差公式的掌握程度,并针对存在的问题进行针对性的辅导。同时,我也会继续探索更多有效的教学方法和策略,以提高学生们对数学学科的兴趣和核心素养。
3.培养学生的数学建模素养:通过解决实际问题,让学生学会运用数学知识建立模型,提高解决实际问题的能力,体会数学在生活中的应用价值。
本节课将紧密围绕核心素养目标,注重培养学生的逻辑推理、数学运算和数学建模能力,使学生在掌握知识的同时,提升学科素养。
三、教学难点与重点
1.教学重点
-核心知识:平方差公式(a+b)(a-b)=a²-b²的推导与应用。
北师大版初中数学七年级下册1.5平方差公式(教案)
一、教学内容
本节课选自北师大版初中数学七年级下册第一章第五节《平方差公式》。教学内容主要包括以下两个方面:
1.平方差公式的推导与应用:通过实际问题和具体例子的分析,引导学生发现并理解平方差公式:(a+b)(a-b)=a²-b²。
2.运用平方差公式进行简便计算:培养学生运用平方差公式解决实际问题的能力,提高计算速度和准确性,并能解决一些简单的实际问题。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平方差公式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
五、教学反思
今天在教授平方差公式这一部分内容时,我发现学生们对公式的推导和应用过程产生了浓厚的兴趣。在导入新课环节,通过日常生活中的实际问题,成功引起了学生的好奇心,这为后续的教学奠定了良好的基础。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档