2017届广州市普通高中毕业班模拟考试(文数)
2017年广州市高三一模文科数学试卷及答案

2017年广州市普通高中毕业班文科数学综合测试(一)第Ⅰ卷一、选择题:本小题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.复数21i+的虚部是( )A .2- B .1- C .1 D .22.已知集合}{}{2001x x ax ,+==,则实数a 的值为( )A .1-B .0C .1D .2 3.已知tan 2θ=,且θ∈0,2π⎛⎫⎪⎝⎭,则c o s 2θ=( ) A .45 B .35 C .35- D .45-4.阅读如图的程序框图. 若输入5n =,则输出k 的值为( )A .2B .3C .4D .55.已知函数()122,0,1l o g,0,+⎧≤=⎨->⎩x x f x x x 则()()3=f f ( )A .43 B .23 C .43-D .3- 6.已知双曲线C 222:14x y a -=的一条渐近线方程为230+=x y ,1F ,2F 分别是双曲线C 的左、右焦点,点P 在双曲线C 上, 且12=PF , 则2PF 等于( )A .4B .6C .8D .10 7.四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为( )A .14 B .716C .12 D .9168.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )9.设函数()32f x x ax =+,若曲线()=y f x 在点()()00,P x f x 处的切线方程为0+=x y ,则点P 的坐标为( )A .()0,0B .()1,1-C .()1,1-D .()1,1-或()1,1-10.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥-P ABC 为鳖臑,PA ⊥平面ABC ,2PA AB ==,4AC =,三棱锥-P ABC 的四个顶点都在球O 的球面上,则球O 的表面 积为( )A .8πB .12πC .20πD .24π11.已知函数()()()()s in co =+++ωϕωϕfx x x是奇函数,直线y =与函数()f x 的图象的两个相邻交点的横坐标之差的绝对值为2π,则( )A .()f x 在0,4π⎛⎫⎪⎝⎭上单调递减B .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递减C .()f x 在0,4π⎛⎫⎪⎝⎭上单调递增D .()f x 在3,88ππ⎛⎫⎪⎝⎭上单调递增12.已知函数()1cos 212x f x x x π+⎛⎫=+- ⎪-⎝⎭, 则201612017k k f =⎛⎫ ⎪⎝⎭∑的值为( ) A .2016 B .1008 C .504 D .0 第Ⅱ卷二、填空题:本小题共4题,每小题5分 13.已知向量a ()1,2=,b (),1=-x ,若a //()a b -,则a b ⋅= 14.若一个圆的圆心是抛物线24=x y 的焦点,圆的标准方_____15.满足不等式组⎩⎨⎧≤≤≥-++-a x y x y x 00)3)(1(的点(),x y 组成的图形的面积是5,则实数a 的值是_____ 16.在ABC ∆中,160,1,2ACB BC AC AB ︒∠=>=+,当ABC ∆的周长最短时,BC 的长是 三、解答题:解答应写出文字说明、证明过程或演算步骤 17. 已知数列{}n a 的前n 项和为n S ,且22n n S a =-(*N n ∈)(Ⅰ)求数列{}n a 的通项公式; (Ⅱ) 求数列{}n S 的前n 项和n T18.(本小题满分12分)某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在(]195,210内,则为合格品,否则为不合格品.表1是甲流水线样本的频数分布表,图1是乙流水线样本的频率分布直方图(Ⅰ)根据图1,估计乙流水线生产产品该质量指标值的中位数;(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲、乙两条流水线分别生产出不合格品约多少件? (Ⅲ)根据已知条件完成下面22⨯列联表,并回答是否有85%的把握认为“该企业生产的这种产品的质量指标值与甲,乙两条流水线的选择有关”?附:()()()()()22n ad bc K a b c d a c b d -=++++(其中=+++n a b cd 为样本容量) 19.(本小题满分12分)如图1,在直角梯形ABCD 中,AD //BC ,AB⊥BC ,BD ⊥DC ,点E 是BC 边的中点,将ABD ∆沿BD 折起,使平面ABD ⊥平面BCD ,连接AE ,AC ,DE ,得到如图2所示的几何体 (Ⅰ)求证:AB ⊥平面ADC ; (Ⅱ)若1=AD ,AC 与其在平面ABD 内的正投影所成角的正切值为6,求点B 到平面ADE 的距离 20.(本小题满分12分)已知椭圆)0(1:2222>>=+b a b y a x C 的离心率为23,且过点)1,2(A (Ⅰ)求椭圆C 的方程;(Ⅱ)若Q P ,是椭圆C 上的两个动点,且使PAQ ∠的角平分线总垂直于x 轴,试判断直线PQ 的斜率是否为定值?若是,求出该值;若不是,说明理由 21.(本小题满分12分) 已知函数)0(ln )(>+=a xax x f (Ⅰ)若函数)(x f 有零点,求实数a 的取值范围;(Ⅱ)证明:当e a 2≥时,xex f ->)(请考生在第22~23题中任选一题作答,如果多做,则按所做的第一题计分22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为B3,(1,=-⎧⎨=+⎩x t t y t 为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中, 曲线:2c o s .4⎛⎫=- ⎪⎝⎭πρθC(Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程;(Ⅱ)求曲线C 上的点到直线l 的距离的最大值 23.(本小题满分10分)选修4-5:不等式选讲已知函数()12=+-+-f x x a x a .(Ⅰ)若()13<f ,求实数a 的取值范围;(Ⅱ)若1,≥∈a x R ,求证:()2≥f x .2017年广州市普通高中毕业班文科数学综合测试(一)答案评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数.选择题不给中间分. 一、选择题(1)B (2)A (3)C (4)B (5)A (6)C(7)B (8)D (9)D (10)C (11)D (12)B 二、填空题(13)52- (14)()2212x y +-= (15)3 (16)12+三、解答题 (17) 解:(Ⅰ)当1n =时,1122S a =-,即1122a a =-, (1)分 解得12a =. ………………………………………………………2分当2n ≥时,11(22)n n n n a S S a --=-=-, ………………3分即12n n a a -=, ………………………………………………………4分所以数列{}n a 是首项为2,公比为2的等比数列.……………………………………5分所以122n nn a -=⨯=(n ∈N *). ………………………………………………6分 (Ⅱ) 因为12222n n n S a +=-=-, ………………………………………………8分所以12n n T S S S =++⋅⋅⋅+ ………………………………………………9分2312222n n +=++⋅⋅⋅+- ………………………………………………10分()412212n n ⨯-=-- ………………………………………………11分2242n n +=--. ………………………………………………12分 (18) 解:(Ⅰ)设乙流水线生产产品的该项质量指标值的中位数为x ,因为()(0.480.0120.0320.05250.50.0=++⨯<<+,………………………………………1分 则()()0.0120.0320.05250.0762050.5,x ++⨯+⨯-= ……………………………3分 解得390019x =. ………………………………………4分 (Ⅱ)由甲,乙两条流水线各抽取的50件产品可得,甲流水线生产的不合格品有15件,则甲流水线生产的产品为不合格品的概率为153,5010P ==甲 ………………………5分乙流水线生产的产品为不合格品的概率为()10.0120.02855P =+⨯=乙, ………6分 于是,若某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两条流水线生产的不合格品件数分别为:315000=1500,5000=1000105⨯⨯. …………………………8分(Ⅲ)列联表:…………………………10分 则()2210035060041.3505075253K ⨯-==≈⨯⨯⨯, ……………………………………………11分 因为1.3 2.072,<所以没有85%的把握认为“该企业生产的这种产品的该项质量指标值与甲,乙两条流水线 的选择有关”. ……………………………………………………12分 (19) 解:(Ⅰ) 因为平面ABD ⊥平面BCD ,平面ABD 平面BCD BD =,又BD ⊥DC ,所以DC ⊥平面ABD . …………………………………1分因为AB ⊂平面ABD ,所以DC ⊥AB .......................................2分 又因为折叠前后均有AD ⊥AB ,DC ∩AD D =, (3)分所以AB ⊥平面A D. …………………………………4分(Ⅱ) 由(Ⅰ)知DC ⊥平面ABD ,所以AC 在平面ABD 内的正投影为AD ,即∠CAD 为AC 与其在平面ABD 内的正投影所成角. ……………………………5分 依题意6tan ==∠AD CDCAD , 因为1A D ,=所以6=CD . …………………………6分设()0AB x x =>,则12+=x BD ,因为△ABD ~△BDC ,所以BDDCAD AB =, ………………………………7分即1612+=x x ,=,故3. …………………,AB ⊥AC , E 为BC 由平面几何知识得AE 322BC ==, 同理DE 322==BC ,所以22=∆ADS .…………………………9分因为DC ⊥平面ABD ,所以3331=⋅=-AB DBC D A S CD V . ………………………10分设点B 到平面ADE 的距离为d , 则632131====⋅---BCD A BDE A ADE B ADE V V V S d ,…………………………11分 所以26=d ,即点B 到平面ADE 的距离为26. …………………………12分 (20) 解:(Ⅰ) 因为椭圆C, 且过点()2,1A ,所以22411a b +=,2c a =. ………………………………………………2分因为222a b c =+, 解得28a =, 22b =, ………………………………………………3分 所以椭圆C 的方程为22182x y +=. ……………………………………………4分(Ⅱ)法1:因为PAQ ∠的角平分线总垂直于x 轴, 所以PA 与AQ 所在直线关于直线2x =对称. 设直线PA 的斜率为k , 则直线AQ 的斜率为k -. ………………………………5分所以直线PA 的方程为()12y k x -=-,直线AQ 的方程为()12y k x -=--.设点(),P P P x y , (),Q Q Q x y ,由()2212,1,82y k x x y -=-⎧⎪⎨+=⎪⎩消去y ,得()()222214168161640k x k k x k k +--+--=. ①因为点()2,1A 在椭圆C 上, 所以2x =是方程①的一个根, 则2216164214P k k x k --=+,……………………………………………6分所以2288214P k k x k --=+. ……………………………………………7分同理2288214Q k k x k +-=+. ……………………………………………8分所以21614P Q kx x k-=-+. ……………………………………………9分又()28414P Q P Q ky y k x x k -=+-=-+. ……………………………………………10分所以直线PQ 的斜率为12P Q PQ P Qy y k x x -==-. …………………………………………11分所以直线PQ 的斜率为定值,该值为12. ……………………………………………12分 法2:设点()()1122,,,P x y Q x y , 则直线PA 的斜率1112PA y k x -=-, 直线QA 的斜率2212QA y k x -=-. 因为PAQ ∠的角平分线总垂直于x 轴, 所以PA 与AQ 所在直线关于直线2x =对称. 所以P A Q k k=-, 即1112y x --22102y x -+=-,① ………………………………………5分 因为点()()1122,,,P x y Q x y 在椭圆C 上,所以2211182x y +=,② 2222182x y +=. ③ 由②得()()22114410x y -+-=, 得()111112241y x x y -+=--+, ④ ………………………6分 同理由③得()222212241y x x y -+=--+,⑤ (7)分由①④⑤得()()12122204141x x y y +++=++,化简得()()12211212240x y x y x x y y ++++++=, ⑥ ……………………………8分 由①得()()12211212240x y x y x x y y +-+-++=, ⑦ ……………………………9分⑥-⑦得()12122x x y y +=-+. …………………………………………10分 ②-③得22221212082x x y y --+=,得()12121212142y y x x x x y y -+=-=-+. …………………11分所以直线PQ 的斜率为121212PQy y k x x -==-为定值. …………………………………12分法3:设直线PQ 的方程为y k x b=+,点()()1122,,,P x y Q x y , 则1122,y kx b y kx b =+=+, 直线PA 的斜率1112PAy k x -=-, 直线QA 的斜率2212QAy k x -=-. ………………………5分 因为PAQ ∠的角平分线总垂直于x 轴, 所以PA 与AQ 所在直线关于直线2x =对称. 所以P Ak k =-, 即1112y x --2212y x -=--, ……………………………………………6分 化简得()()12211212240x y x y x x y y +-+-++=.把1122,y kx b y kx b =+=+代入上式, 并化简得 ()()1212212440k x x bk x x b +--+-+=.(*) …………………………………7分由22,1,82y kx b x y =+⎧⎪⎨+=⎪⎩消去y 得()222418480k x kbx b +++-=, (**)则2121222848,4141kb b x x x x k k -+=-=++, ……………………………………………8分代入(*)得()()2222488124404141k b kb b k b k k -----+=++, ……………………………9分整理得()()21210k b k -+-=, 所以12k =或12b k =-. ……………………………………………10分若12b k =-, 可得方程(**)的一个根为2,不合题意. ………………………………11分 若12k =时, 合题意. 所以直线PQ 的斜率为定值,该值为12. ……………………………………………12分 (21) 解:(Ⅰ)法1: 函数()ln af x x x =+的定义域为()0,+∞. 由()ln af x x x=+, 得()221a x af x x x x-'=-=. ……………………………………1分因为0a >,则()0,x a ∈时,()0f x '<;(),x a ∈+∞时, ()0f x '>.所以函数()f x 在()0,a 上单调递减, 在(),a +∞上单调递增. ………………………2分当x a =时,()minln 1f x a =+⎡⎤⎣⎦. …………………………………………………3分当ln 10a +≤, 即0a <≤1e时, 又()1ln10=+=>f a a , 则函数()f x 有零点. …4分所以实数a 的取值范围为10,e ⎛⎤ ⎥⎝⎦. ……………………………………………………5分法2:函数()ln af x x x =+的定义域为()0,+∞. 由()ln 0af x x x=+=, 得ln a x x =-. …………………………………………………1分令()ln g x x x =-,则()()ln 1g x x '=-+.当10,x e ⎛⎫∈ ⎪⎝⎭时, ()0g x '>; 当1,x e ⎛⎫∈+∞ ⎪⎝⎭时, ()0g x '<.所以函数()g x 在10,e ⎛⎫ ⎪⎝⎭上单调递增, 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减. ……………………2分 故1x e=时, 函数()g x 取得最大值1111ln g e e e e ⎛⎫=-= ⎪⎝⎭. …………………………3分因而函数()ln af x x x=+有零点, 则10a e<≤. ………………………………………4分所以实数a 的取值范围为10,e ⎛⎤ ⎥⎝⎦. …………………………………………………5分(Ⅱ) 要证明当2a e≥时, ()->x f x e , 即证明当0,x >2a e ≥时, ln x ax e x-+>, 即ln x x x a xe -+>.………………………6分 令()ln h x x x a =+, 则()ln 1h x x '=+.当10x e <<时, ()0f x '<;当1x e >时,()0f x '>.所以函数()h x 在10,e ⎛⎫ ⎪⎝⎭上单调递减, 在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增. 当1x e=时,()min1h x a e=-+⎡⎤⎣⎦. ……………………………………………………7分于是,当2a e≥时, ()11.h x a e e ≥-+≥ ① ……………………………………8分 令()xx xe ϕ-=, 则()()1x x x x e xe e x ϕ---'=-=-.当01x <<时,()0f x '>;当1x >时,()0f x '<. 所以函数()x ϕ在()0,1上单调递增, 在()1,+∞上单调递减.当1x =时,()max1x eϕ=⎡⎤⎣⎦. ……………………………………………………9分于是,当0x >时,()1.x e ϕ≤② ……………………………………………………10分显然, 不等式①、②中的等号不能同时成立. …………………………………11分 故当2a e≥时,()->x f x e . ……………………………………………………12分 (22)解: (Ⅰ)由3,1,=-⎧⎨=+⎩x t y t消去t 得40+-=x y , ………………………………………1分所以直线l 的普通方程为40+-=x y . ………………………………………2分由4⎛⎫=-⎪⎝⎭πρθcos cos sin sin 2cos 2sin 44⎫=+=+⎪⎭ππθθθθ,……3分得22cos 2sin =+ρρθρθ. ………………………………………4分将222,cos ,sin =+==ρρθρθx y x y 代入上式,得曲线C 的直角坐标方程为2222+=+x y x y , 即()()22112-+-=x y . ………5分(Ⅱ)法1:设曲线C上的点为()1c o ,12s i nααP , ………………………………6分 则点P 到直线l的距离为2s i n 4-=d …………………………7分=………………………………………8分当sin 14⎛⎫+=- ⎪⎝⎭πα时, max =d , ………………………………………9分所以曲线C 上的点到直线l 的距离的最大值为分法2: 设与直线l 平行的直线为:0l x y b '++=, ………………………………………6分当直线l '与圆C 相切时,得=, ………………………………………7分解得0b =或4b =-(舍去), 所以直线l '的方程为0x y +=. ………………………………………8分所以直线l 与直线l '的距离为d ==. …………………………………9分所以曲线C 上的点到直线l 的距离的最大值为分(23)解: (Ⅰ)因为()13<f ,所以123+-<a a . ………………………………………1分① 当0≤a 时,得()123-+-<a a ,解得23>-a ,所以203-<≤a ; ……………2分② 当102<<a 时,得()123+-<a a ,解得2>-a ,所以102<<a ; ……………3分③ 当12a ≥时,得()123--<a a ,解得43<a ,所以1423a ≤<; ……………4分综上所述,实数a 的取值范围是24,33⎛⎫- ⎪⎝⎭. ………………………………………5分(Ⅱ) 因为1,≥∈a x R , 所以()()()121=+-fxx……………………………7分31=-a ……………………………………………………………………8分31=-a ……………………………………………………………………9分2≥. ……………………………………………………………………10分。
2017年广州一模(文数)试题及答案

2017年广州一模(文数)试题及答案2017年广州市一模(文科数学)第I卷一、选择题:本小题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)复数右的虚部是(B) 135(4)阅读如图的程序框图. 的值为(A) 2(D)(5)已知函数f x2 2 (6)已知双曲线cA (C)1(2)已知集合(A) 1(D) 22x x ax 0 0,1 ,贝V实数a的值为(B) 0(C)(3)已知tan(D ) 22,且0,2,则cos21Jlog2 x,(C )输(B)x35x(A ) 3( B ) 2 ( c )2七i 的一条渐近线方程为a 42x 3y 0,»F 2分另U是双曲线C 的左,右焦点,点P 在双曲线C 上, 且I PR 2,则PF 2等于(A )4( B )6( C )(D)10(7)四个人围坐在一张圆桌旁,每个人面前放 着完全相同的硬币,所有人同时翻转自己的 硬币•若硬币正面朝上,则这个人站起来;若 硬币正面朝下,则这个人继续坐着•那么,没 有相邻的两个人站起来的概率为 (A) I( B )16(C)(D)97(8)如图,网格纸上小正方形的边长为1,粗线 画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为8,则该几何体的俯视图可以是(A)(B)(c)(D)(9)设函数f x X3ax2,若曲线y f x在点P x。
, f x。
处的切线方程为x y 0,则点P的坐标为(A )0,0 (B )i, i(C )1,1 (D )i, i 或i,i(10)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑. 若三棱锥P ABC为鳖臑,PA丄平面ABC,PA AB 2 , AC 4,三棱锥P ABC的四个顶点都在球O的球面上,则球O的表面积为(A)8(B) 12 (C ) 520( D ) 24(11)已知函数fx sin x cos x 0,0奇函数,直线y .2与函数f x 的图象的两个相邻交点的 横坐标之差的绝对值为q 则 (A ) f x 在o,-上单调递减 (B ) f x在8令上单调递减8 8(C ) f x 在0,-上单调递增 (D ) f x在«,3T 上单调递增8 8(12)已知函数fX cos X,则―f盏的 值为(A ) 2016(B ) 1008(C )504( D ) 0第H 卷本卷包括必考题和选考题两部分。
2017年广州市高三一模文科数学试卷及答案

41 2n
2n
1 2
……4 分
7
2017 年广州市高三一模文科数学试卷及答案(word 版可编辑修改)
(Ⅱ)由甲,乙两条流水线各抽取的 50 件产品可得,甲流水线生产
合计
50
50
100
的不合格品有 15 件,
…
则
甲
流
水
线
生
产
的
产
品
为
不
合
格
品
的
概
率
为
P甲
15 50
3 10
A. 8
B. 12
C. 20
D.
24
11.已知函数 f x sin x cos x 0, 0 是奇函
12.已知函数
f
x
x 2x 1
cos
x
1 2
,
则
2016 k 1
f
k 2017
的
值
为
()
A. 2016 0
B. 1008
C. 504
D.
第Ⅱ卷
二、填空题:本小题共 4 题,每小题 5 分
某企业生产的某种产品被检测出其中一项质量指标存在问 题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况, 随机地从这两条流水线上生产的大量产品中各抽取 50 件产品 作为样本,测出它们的这一项质量指标值.若该项质量指标值
落在 195, 210 内,则为合格品,否则为不合格品.表 1 是甲流
水线样本的频数分布表,图 1 是乙流水线样本的频率分布直方 图
(Ⅰ)根据图1,估计乙流水线生产产品该质量指标值的中位数;
(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了 5000
广东省广州2017届高三下学期第一次模拟数学(文)---精校解析Word版

的虚部是(B. C. D.【解析】,故虚部为已知集合,则实数的值为(B. C. D.【解析】依题意,有,所以,,且B. C. D.【答案】【解析】.选4. 阅读如图的程序框图,若输入,则输出B. C. D.【解析】第,;,;,退出循环,已知函数(B. C. D.【答案】【解析】,选求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,的形式时,应从内到外依次求值的一条渐近线方程为,,分别是双曲线的左,右焦点,点在上,且,则B. C. D.,所以,,因为.所以,点在双曲线的左支,故有,解得:四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正B. C. D.【答案】种,有不相邻人站起来的可能有所以所求概率为:如图,网格纸上小正方形的边长为且该几何体的体积为B. C. D.该几何体的俯视图为设函数若曲线在点处的切线方程为则点B. C. D. 或【解析】,依题意,有:或《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥为鳖臑,,,的四个顶点都在球的球面上,则球的表面积为(B. C. D.,如下图所示,,所以,,球的表面积为:.选构成的三条线段且已知函数是奇函数,直线与函数两个相邻交点的横坐标之差的绝对值为,则(上单调递减 B. 在上单调递增 D. 在【答案】D【解析】,所以,,所以,,又,所以,,.选求对称轴由已知函数,则的值为().B. C. D.【解析】函数化为:,有:,所以,.选(1)运用函数性质解决问题时,先要正确理解和把握函数相关性质本身的含义及其应用方向性可实现去已知向量,,若,则__________【答案】【解析】,因为,,解得:若一个圆的圆心是抛物线的焦点,且该圆与直线【答案】,故圆心为圆的半径为,故圆的方程为:.满足不等式组的点组成的图形的面积是,则实数【答案】或画出平面区域如下图所示,平面区域为三角形、,,面积为:,解得:中,,,当的周长最短时,【答案】【解析】设边、、、,由余弦定理,得:,即,的周长:.令,则三角形周长为:,时的周长最短.三、解答题:解答应写出文字说明、证明过程或演算步骤.已知数列的前项和为,且的通项公式.的前.)【解析】试题分析:(1)由和项与通项关系将条件转化为项之间递推关系:的通项公式.)先求,再根据分组求和法求数列的前项和.(Ⅰ)当时,,解得,,所以数列是首项为,公比为(Ⅱ)因为与的递推关系求,常用思路是:一是利用转化为的递推关系,先求出与. 应用关系式时,一定要注意分两种情况,在求出结果后,看看这两种情况能否整合在一起.内,则为合格品,否则为不合格品.表(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了根据已知条件完成下面的把握认为“该企业生产的这种产品的质量(其中(,)没有【解析】试题分析:代入卡方公式计算(Ⅰ)设乙流水线生产产品的该项质量指标值的中位数为.(Ⅱ)由甲,乙两条流水线各抽取的件产品可得,甲流水线生产的不合格品有乙流水线生产的产品为不合格品的概率为乙两条流水线均生产了件产品,则甲乙两条流水线生产的不合格品件数分别为,(Ⅲ)列联表:因为,所以没有如图中,,,,点是沿起,使平面,连接,所示的几何体.平面.(Ⅱ)若内的正投影所成角的正切值为,求点到平面由翻折前后线面间的关系,可得,⊥平面)由的正投影的正切角可求出图中各边的值,将点到平面的距离可看作三棱锥底面上的高.利用体积可求.求三棱锥的体积即求的⊥平面,平面平面,⊥,所以⊥平面因为,所以,,所以⊥平面.⊥平面,所以在平面内的正投影为即∠与其在平面依题意,因为所以.,则因为△~△,所以,,解得,故由于⊥平面,⊥为由平面几何知识得同理所以因为⊥平面,所以设点到平面的距离为,,所以,即点到平面的距离为.已知椭圆的离心率为,且过点.的方程.(Ⅱ)若是椭圆上两个不同的动点,且使的角平分线垂直于轴,试判断直线(试题分析:(I)由离心率可得关系,再将点坐标代入,可得间关系,又方程可得)由的角平分线总垂直于轴,可判断直线的斜率互为相反数,由两直线都过的值,点满足条件,可求得点的坐标,用表示.再由斜率公式可得直线的离心率为且过点所以, .因为,解得所以椭圆的方程为:因为的角平分线总垂直于与所在直线关于直线设直线的斜率为则直线的斜率为所以直线的方程为直线的方程为.设点,消去. ①因为点在椭圆是方程①的一个根所以.同理所以所以直线的斜率为.所以直线的斜率为定值,该值为.:设点则直线的斜率, 直线的斜率的角平分线总垂直于所以与所在直线关于直线, 即因为点在椭圆上,,②. ③由②得, ④, ⑤,化简得由①得, ⑦⑦得.③得.所以直线的斜率为为定值.:设直线的方程为,点,,的斜率, 的斜率.的角平分线总垂直于所以与所在直线关于直线, 即化简得代入上式, 并化简得消去代入(*)得整理得,或.,时所以直线已知函数.有零点,其实数时,.(【解析】试题分析:的导数,讨论两种情况,分别研究函数的单调性,求其最值,结合,令,令)函数的定义域为,得.时,恒成立,函数在上单调递增,又所以函数在定义域上有时,时,时,所以函数在时,所以函数上有的取值范围为时,,即证明当时,,即,则,当时,;当时,所以函数在上单调递减,在当时,于是,当时,.①令,则.当时,当时,.所以函数上单调递增,在当时,于是,当时,.②显然,不等时,.请考生在第中,直线的参数方程为(.在以坐标原点为极点,.的普通方程和曲线的直角坐标方程.上的点到直线,(得直线的普通方程为.,可得曲线的直角坐标方程为.(Ⅱ) 设曲线上的点为到直线当, 可得曲线上的点到直线的距离的最大值为.(Ⅰ) 由消去得,所以直线的普通方程为.,.代入上式得曲线的直角坐标方程为设曲线上的点为,则点到直线的距离为当,所以曲线上的点到直线的距离的最大值为设与直线平行的直线为,当直线与圆解得或),所以直线的方程为.所以直线与直线的距离为所以曲线上的点到直线的距离的最大值为.已知函数(Ⅰ)若,求实数(Ⅱ)若,求证:最小值:,所以.时,得,解得,所以时,得,解得,所以.时,得,解得,所以.综上所述,实数的取值范围是.(Ⅱ)因为。
2017届广东省广州市高三毕业班综合测试(一)文科数学试

2017年广州市普通高中毕业班综合测试一文科数学第Ⅰ卷(共50分)一、选择题:本大题共10个小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.函数()()ln 1f x x =+的定义域为( )A.(),1-∞-B.(),1-∞C.()1,-+∞D.()1,+∞2.已知i 是虚数单位,若()234m i i +=-,则实数m 的值为( )A.2-B.2±C.D.23.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,若2C B =,则cb为( )A.2sin CB.2cos BC.2sin BD.2cos C4.圆()()22121x y -+-=关于直线y x =对称的圆的方程为( )A.()()22211x y -+-=B.()()22121x y ++-=C.()()22211x y ++-=D.()()22121x y -++=5.已知1x >-,则函数11y x x =++的最小值为( ) A.1- B.0 C.1 D.26.函数()21xf x x =+的图象大致是( )Ks5u7.已知非空集合M 和N ,规定{}M N x x M x N -=∈∉且,那么()M M N --等于( )A.M NB.M NC.MD.N8.任取实数a 、[]1,1b ∈-,则a 、b 满足22a b -≤的概率为( ) A.18B.14C.34D.789.设a 、b 是两个非零向量,则使a b a b ⋅=⋅ 成立的一个必要非充分的条件是( ) A.a b = B.a b ⊥C.()0a b λλ=>D.//a b10.在数列{}n a 中,已知11a =,()11sin 2n n n a a π++-=,记n S 为数列{}n a 的前n 项和,则2014S =( )A.1006B.1007C.1008D.1009第Ⅱ卷(共100分)二、填空题(本大题共5小题,考生作答4小题,,每小题5分,满分20分) 11.执行如图1所示的程序框图,若输出7S =,则输入()k k N *∈的值为 .12.一个四棱锥的底面为菱形,其三视图如图2所示,则这个四棱锥的体积是.图2侧(左)视图正(主)视图13.由空间向量()1,2,3a = ,()1,1,1b =- 构成的向量集合{},A x x a kb k Z ==+∈,则向量x的模x 的最小值为 . Ks5u(二)选做题(14~15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)在极坐标系中,直线()sin cos a ρθθ-=与曲线2cos 4sin ρθθ=-相交于A 、B 两点,若AB =a 的值为 .15.(几何证明选讲选做题)如图3,PC 是圆O 的切线,切点为点C ,直线PA 与圆O 交于A 、B 两点,APC ∠的角平分线交弦CA 、CB 于D 、E 两点,已知3PC =,2PB =,则PEPD的值为 .三、解答题 (本大题共6小题,满分80分.解答写出文字说明、证明过程或演算步骤.)16.(本小题满分12分)已知某种同型号的6瓶饮料中有2瓶已过了保质期. (1)从6瓶饮料中任意抽取1瓶,求抽到没过保质期的饮料的概率; (2)从6瓶饮料中随机抽取2瓶,求抽到已过保质期的饮料的概率. Ks5u17.(本小题满分12分)已知函数()sin cos f x x a x =+的图象经过点,03π⎛⎫- ⎪⎝⎭. (1)求实数a 的值;(2)设()()22g x f x =-⎡⎤⎣⎦,求函数()g x 的最小正周期与单调递增区间.18.(本小题满分14分)如图4,在棱长为a 的正方体1111ABCD A BC D -中,点E 是棱1D D 的中点,点F 在棱1B B 上,且满足12B F BF =. (1)求证:11EF AC ⊥;(2)在棱1C C 上确定一点G ,使A 、E 、G 、F 四点共面,并求此时1C G 的长; (3)求几何体ABFED 的体积.图4D 1C 1B 1A 1FE DCBA19.(本小题满分14分)已知等差数列{}n a 的首项为10,公差为2,数列{}n b 满足62n n nb a n =-,n N *∈. (1)求数列{}n a 与{}n b 的通项公式;(2)记{}max ,n n n c a b =,求数列{}n c 的前n 项和n S . (注:{}max ,a b 表示a 与b 的最大值.)20.(本小题满分14分)已知函数()32693f x x x x =-+-. (1)求函数()f x 的极值;(2)定义:若函数()h x 在区间[](),s t s t <上的取值范围为[],s t ,则称区间[],s t 为函数()h x 的“域同区间”.试问函数()f x 在()3,+∞上是否存在“域同区间”?若存在,求出所有符合条件的“域同区间”;若不存在,请说明理由.21.(本小题满分14分)已知双曲线()222:104x y E a a -=>的中心为原点O ,左、右焦点分别为1F 、2F,离心率为5,点P 是直线23a x =上任意一点,点Q 在双曲线E 上,且满足220PF QF ⋅=.(1)求实数a的值;(2)证明:直线PQ与直线OQ的斜率之积是定值;(3)若点P的纵坐标为1,过点P作动直线l与双曲线右支交于不同的两点M、N,在线段MN上去异于点M、N的点H,满足PM MH,证明点H恒在一条定直PN HN线上.。
(文)广东省广州市2017届高三3月综合测试(一)(WORD版)

表 1:甲流水线样本的频数分布表
(Ⅰ)根据图1,估计乙流水线生产产品该质量指标值的中位数; (Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了 5000 件产品,则甲,乙两 条流水线分别生产出不合格品约多少件? (Ⅲ)根据已知条件完成下面 2 2 列联表,并回答是否有 85%的把握认为“该企业生产的这 种产品的质量指标值与甲,乙两条流水线的选择有关”?
1
正视图(等腰直角三角形)和侧视图, 且该几何体的体积为
8 , 则该几何体的俯视图可以是 3
( A)
3
(B)
2
( C)
( D)
(9)设函数 f x x ax ,若曲线 y f x 在点 P x0 , f x0 处的切线方程为
x y 0 ,则点 P 的坐标为
3
甲生产线 合格品 不合格品 合计
乙生产线
合计
n ad bc 附: K (其中 n a b c d 为样本容量) a b c d a c b d
2 2
PK2 k
0.15 2.072
0.10 2.706
0.05 3.841
2n 2 4 2 n .
(18) 解: (Ⅰ)设乙流水线生产产品的该项质量指标值的中位数为 x ,因为
0.48 0.012 0.032 0.052 5 0.5 0.012 0.032 0.052 0. 076 5 0.86 ,
………………………………………1 分 则 0.012 0.032 0.052 5 0.076 x 205 0.5, ……………………………3 分
2017年广州市高中毕业班综合测试二试题(文科数学)
ωx+
π 4
(ω >0)的图像在区间
[0,1]上恰有 3个最高点,则
ω
的取值范围为
[ ) [ ) [ ) (A) 194π,274π (B) 92π,132π
(C) 174π,254π (D) [ 4π,6π)
(12) 如图,网格纸上小正方形的边长为 1,粗线画出的是
某三棱锥的三视图,则该三棱锥的体积为
(A)32槡5
(B)38槡5
(C)9 2
(D)98
(10) 数列 {an}满足 a2 =2,an+2 +(-1)n+1an =1+(-1)n(n∈ N ),Sn为数列 {an}的
前 n项和,则 S100 =
(A)5100
(B)2550
(C)2500
(D)2450
( ) (11)已知函数
f(x)=2sin
-x3,x<0,
.
三、解答题:解答应写出文字说明、证明过程或演算步骤。 (17) (本小题满分 12分)
△ ABC的内角 A,B,C的对边分别为 a,b,c,已知 bcosC+bsinC =a. (Ⅰ) 求角 B的大小; (Ⅱ) 若 BC边上的高等于 1 4a,求 cosA的值.
(18) (本小题满分 12分) 某中学为了解高中入学新生的身高情况,从高一年级学生中按分层抽样共抽取了 50 名学生的身高数据,分组统计后得到了这 50名学生身高的频数分布表:
-43,
-23,
2 3
(8) 已知两点 A(-1,1),B(3,5),点 C在曲线 y=2x2上运动,则 A→B·A→C的最小值为
(A)2
(B)1 2
(C)-2
(D)-
1 2
(9) 在棱长为 2的正方体 ABCD-A1B1C1D1中,M是棱 A1D1的中点,过 C1,B,M作正方体 的截面,则这个截面的面积为
2017届广东省广州市高三毕业班综合测试(二)文科数学试题及答案1
试卷类型:A 2017年广州市普通高中毕业班综合测试(二)数学(文科)2017.4 本试卷共4页,21小题,满分150分.考试用时120分钟注意事项:1.答卷前,考生务必用2B铅笔在“考生号”处填涂考生号.用黑色字迹的钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B铅笔将试卷类型(A)填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B铅笔填涂选做题题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.数学(文科)试题A 第 1 页共 23 页参考公式:锥体的体积公式Sh V31=,其中S 是锥体的底面积,h 是锥体的高. 台体的体积公式()123h V S S =+,其中1S ,2S 分别是台体的上,下底面积,h 是台体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.sin 240 的值为A .12 C .12-D .2.已知函数()3x f x =()x ∈R 的反函数为()g x ,则12g ⎛⎫= ⎪⎝⎭A .3log 2-B .3log 2C .2log 3-D .2log 33.已知双曲线C :22214x y b-=经过点()4,3,则双曲线C 的离心率为A .12 BD .24.执行如图1所示的程序框图,则输出的z 的值是数学(文科)试题A 第 3 页 共 23 页A .21B .32C .34D .645.已知命题p :x ∀∈R ,20x >,命题q :,αβ∃∈R ,使()tan tan tan αβαβ+=+,则下列命题为真命题的是A .p q ∧B .()p q ∨⌝C .()p q ⌝∧D .()p q ∧⌝6.设集合{}22A x a x a =-<<+,{}2450B x x x =--<,若A B ⊆,则实数a 的取值范围为A .[]1,3B .()1,3C .[]3,1--D .()3,1--7.已知数列{}n a 满足13a =,且143n n a a +=+()*n ∈N ,则数列{}n a 的通项公式为A .2121n -+B .2121n --C .221n +D .221n -数学(文科)试题A 第 4 页 共 23 页8.已知函数()223f x x x =-++,若在区间[]4,4-上任取一个实数0x ,则使()00f x ≥成立的概率为A .425 B .12C .23D .19.如图2,圆锥的底面直径2AB =,母线长3VA =,点C在母线VB 上,且1VC =,有一只蚂蚁沿圆锥的侧面从点A 到达点C ,则这只蚂蚁爬行的最短距离是A C D10.设函数()3233f x x ax bx =++有两个极值点12x x 、,且[]11,0x ∈-,[]21,2x ∈,则点(),a b 在aOb平面上所构成区域的面积为A .14B .12C .34D .1二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题)AVC B图2数学(文科)试题A 第 5 页 共 23 页11.已知i 为虚数单位,复数1i iz -=,则z = .12.已知向量(),1x =a ,()2,y =b ,若()1,1=-a +b ,则x y += . 13.某种型号的汽车紧急刹车后滑行的距离y ()km 与刹车时的速度x ()km/h 的关系可以用2y ax =来描述,已知这种型号的汽车在速度(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)如图3,在平行四边形ABCD 中,4AB =,点E 为边DC 的中点,AE 与BC 的延长线交于点F,且AE 平分BAD ∠,作DG AE ⊥,垂足为G ,若1DG =,则AF 的长为 . 15.(坐标系与参数方程选做题)在在平面直角坐标系中,已知曲线1C 和2C 的方程分别为32,12x t y t =-⎧⎨=-⎩(t为参数)和24,2x t y t=⎧⎨=⎩(t 为参数),则曲线1C 和2C 的交点有 个.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知△ABC 的三边a ,b ,c 所对的角分别为A ,B ,C ,且::7:5:3a b c =. (1)求cos A 的值;(2)若△ABC 外接圆的半径为14,求△ABC 的面积. 17.(本小题满分12分)某市为了宣传环保知识,举办了一次“环保知识知多少”的问卷调查活动(一人答一份).现从回收的年龄在20~60岁的问卷中随机图3数学(文科)试题A 第 6 页 共 23 页份,统计结果如下面的图表所示. n a b c (2)从年龄在[]40,60答对全卷的人中随机抽取2人授予“环保之星”,求年龄在[]50,60的人中至少有1人被授予“环保之星”的概率. 18.(本小题满分14分)如图4,已知正方体1111ABCD A BC D -的棱长为3,M ,N 分别是棱1AA ,AB 上的点,且1AM AN ==. (1)证明:M ,N ,C ,1D 四点共面; (2)平面1MNCD 将此正方体分为两部分,求这两部分的体积之比.C 1 ABA 1B 1D 1C DMN图4数学(文科)试题A 第 7 页 共 23 页19.(本小题满分14分)已知点(),n n n P a b ()n ∈*N 在直线l :31y x =+上,1P 是直线l 与y 轴的交点,数列{}n a 是公差为1的等差数列. (1)求数列{}n a ,{}n b 的通项公式; (2)若(),,n n a n f n b n ⎧=⎨⎩为奇数为偶数,,是否存在k ∈*N ,使()()34f k f k +=成立?若存在,求出所有符合条件的k 值;若不存在,请说明理由.20.(本小题满分14分)已知函数()2ln f x x ax x =++()a ∈R .(1)若函数()f x 在1x =处的切线平行于x 轴,求实数a 的值,并求此时函数()f x 的极值;(2)求函数()f x 的单调区间.21.(本小题满分14分)已知圆心在x 轴上的圆C 过点()0,0和()1,1-,圆D的方程为()2244x y -+=.(1)求圆C 的方程;(2)由圆D 上的动点P 向圆C 作两条切线分别交y 轴于A ,B 两点,求AB的取值范围.2017年广州市普通高中毕业班综合测试(二)数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题考查基本知识和基本运算.共10小题,每小题,满分50分.数学(文科)试题A 第 8 页共 23 页数学(文科)试题A 第 9 页 共 23 页二、填空题:本大题考查基本知识和基本运算,体现选择性.共5小题,每小题,满分20分.其中14~15题是选做题,考生只能选做一题.16.(本小题满分12分) 解:(1)因为::7:5:3a b c =, 所以可设7a k=,5b k=,3c k =()0k >, (2)分由余弦定理得,222cos 2b c a A bc +-=()()()222537253k k k k k+-=⨯⨯…………………………………………………………3分12=-.………………………………………………………………………………………………4分(2)由(1)知,1cos2A=-,因为A是△ABC的内角,所以sin2A==.…………………………………………6分由正弦定理2sinaRA=,…………………………………………………………………………………7分得2sin214a R A==⨯=…………………8分由(1)设7a k=,即k=,所以5b k==,3c k==10分所以1sin2ABCS bc A∆=12=⨯……………………………………………………11分=所以△ABC的面积为数学(文科)试题A 第 10 页共 23 页数学(文科)试题A 第 11 页 共 23 页.…………………………………………………………………………12分17.(本小题满分12分)解:(1)因为抽取总问卷为100份,所以()10040102030n =-++=. (1)分年龄在[)40,50中,抽取份数为10份,答对全卷人数为4人,所以4100.4b =÷=. (2)分年龄在[]50,60中,抽取份数为20份,答对全卷的人数占本组的概率为0.1,所以200.1a ÷=,解得2a =.…………………………………………………………………………3分根据频率直方分布图,得()0.040.030.01101c +++⨯=, 解得0.02c =.……………………………………………………………………………………………4分(2)因为年龄在[)40,50与[]50,60中答对全卷的人数分别为4人与2人.年龄在[)40,50中答对全卷的4人记为1a ,2a ,3a ,4a ,年龄在[]50,60中答对全卷的2人记为1b ,2b ,则从这6人中随机抽取2人授予“环保之星”奖的所有可能的情况是:()12,a a ,()13,a a ,()14,a a ,()11,a b ,()12,a b ,()23,a a ,()24,a a , ()21,a b ,()22,a b ,()34,a a ,()31,a b ,()32,a b ,()41,a b ,()42,a b ,数学(文科)试题A 第 12 页 共 23 页()12,b b 共15种.…………………………………………………………………………………8分其中所抽取年龄在[]50,60的人中至少有1人被授予“环保之星”的情况是:()11,a b ,()12,a b ,()21,a b ,()22,a b ,()31,a b ,()32,a b ,()41,a b ,()42,a b ,()12,b b 共9种.……………………………………11分故所求的概率为53159=. ………………………………………………………………………………12分18.(本小题满分14分) (1)证明:连接1A B ,在四边形11A BCD 中,11A D BC 且11A D BC =, 所以四边形11A BCD 是平行四边形.所以11A B D C .…………………………………………2分 在△1ABA 中,1AM AN ==,13AA AB ==, 所以1AM ANAA AB=,所以1MN A B .…………………………………………………………………………………………4分 所以1MN DC .C 1 ABA 1B 1D 1C DMN数学(文科)试题A 第 13 页 共 23 页所以M,N,C,1D 四点共面.………………………………………………………………………6分(2)解法一:记平面1MNCD 将正方体分成两部分的下部分体积为1V ,上部分体积为2V , 连接1D A ,1D N ,DN ,则几何体1D AMN -,1D ADN -,1D CDN -均为三棱锥, 所以1111D AMN D ADN D CDN V V V V ---=++1111111333AMN ADN CDN S D A S D D S D D ∆∆∆=++ ………9分 111319333323232=⨯⨯+⨯⨯+⨯⨯132=.……………………………………………………………………………………………11分从而11111213412722ABCD A B C D AMN DD C V V V --=-=-=,…………………………………………………13分所以121341V V =. 所以平面1MNCD 分此正方体的两部分体积的比为1341.……………………………………………14分C 1 A BA 1B 1D 1C DMN数学(文科)试题A 第 14 页 共 23 页解法二:记平面1MNCD 将正方体分成两部分的下部分体积为1V ,上部分体积为2V ,因为平面11ABB A 平面11DCC D ,所以平面AMN 平面1DDC . 延长CN 与DA 相交于点P , 因为AN DC , 所以ANPADC PD =,即133PA PA =+,解得32PA =.延长1D M 与DA 相交于点Q ,同理可得32QA =.所以点P 与点Q 重合.所以1D M ,DA ,CN 三线相交于一点. 所以几何体1AMN DD C-是一个三棱台.……………………………………………………………9分所以111191333222AMN DD C V V -⎛⎫==⨯⨯= ⎪ ⎪⎝⎭,………………………………………………11分从而11111213412722ABCD A B C D AMN DD C V V V --=-=-=,…………………………………………………13分所以121341V V =. 所以平面1MNCD 分此正方体的两部分体积的比为1341.……………………………………………14分数学(文科)试题A 第 15 页 共 23 页19.(本小题满分14分)解:(1)因为()111,P a b 是直线l :31y x =+与y 轴的交点()0,1, 所以10a =,11b =.……………………………………………………………………………………2分因为数列{}n a 是公差为1的等差数列, 所以1n a n =-.……………………………………………………………………………………………4分因为点(),n n n P a b 在直线l :31y x =+上, 所以31n n b a =+32n =-.所以数列{}n a ,{}n b 的通项公式分别为1n a n =-,32n b n =-()*n ∈N .………………………6分(2)因为()1,32,n n f n n n -⎧=⎨-⎩为奇数为偶数,,假设存在k ∈*N ,使()()34f k f k +=成立.………………………………………………………7分 ①当k 为奇数时,3k +为偶数, 则有()()33241k k +-=-, 解得11k =,符合题意.………………………………………………………………………………10分数学(文科)试题A 第 16 页 共 23 页②当k 为偶数时,3k +为奇数, 则有()()31432k k +-=-, 解得1011k =,不合题意.………………………………………………………………………………13分综上可知,存在11k =符合条件.………………………………………………………………………14分20.(本小题满分14分) 解:(1)函数()f x 的定义域为()0,+∞, (1)分因为()2ln f x x ax x =++, 所以()121f x ax x'=++,………………………………………………………………………………2分依题意有()10f '=,即1210a ++=,解得1a =-.………………………………………………3分此时()()()212121x x x x f x x x--+-++'==,所以当01x <<时,()0f x '>,当1x >时,()0f x '<,数学(文科)试题A 第 17 页 共 23 页所以函数()f x 在()0,1上是增函数,在()1,+∞上是减函数,………………………………………5分所以当1x =时,函数()f x 取得极大值,极大值为0.………………………………………………6分 (2)因为()121f x ax x '=++221ax x x++=,(ⅰ)当a ≥时,………………………………………………………………………………………7分因为()0,x ∈+∞,所以()f x '2210ax x x++=>, 此时函数()f x 在()0,+∞是增函数.……………………………………………………………………9分(ⅱ)当0a <时,令()0f x '=,则2210ax x ++=. 因为180a ∆=->, 此时()f x '()()212221a x x x x ax x x x--++==,其中1x =,2x =因为a <,所以20x >,又因为12102x x a=<,所以10x <. (11)分所以当20x x <<时,()0f x '>,当2x x >时,()0f x '<, 所以函数()f x 在()20,x 上是增函数,在()2,x +∞上是减函数.…………………………………13分数学(文科)试题A 第 18 页 共 23 页综上可知,当0a ≥时,函数()f x 的单调递增区间是()0,+∞;当0a <时,函数()f x 的单调递增区间是0,⎛ ⎝⎭,单调递减区间是⎛⎫+∞ ⎪ ⎪⎝⎭.……………………………………14分21.(本小题满分14分)解:(1)方法一:设圆C的方程为:()222x a y r -+=()0r >, (1)分因为圆C 过点()0,0和()1,1-, 所以()22222,11.a r a r ⎧=⎪⎨--+=⎪⎩………………………………………………………………………………3分 解得1a =-,1r =. 所以圆C的方程为()2211x y ++=.…………………………………………………………………4分方法二:设()0,0O ,()1,1A -,依题意得,圆C 的圆心为线段OA 的垂直平分线l 与x 轴的交点C . (1)分 因为直线l的方程为1122y x -=+,即数学(文科)试题A 第 19 页 共 23 页1y x =+,……………………………………………………2分 所以圆心C的坐标为()1,0-.…………………………………………………………………………3分 所以圆C的方程为()2211x y ++=.…………………………………………………………………4分(2)方法一:设圆D 上的动点P 的坐标为()00,x y , 则()220044x y -+=, 即()2200440y x =--≥, 解得026x ≤≤.…………………………………………………………………………………………5分由圆C 与圆D 的方程可知,过点P 向圆C 所作两条切线的斜率必存在,设PA 的方程为:()010y y k x x -=-,PB 的方程为:()020y y k x x -=-, 则点A 的坐标为()0100,y k x -,点B 的坐标为()0200,y k x -, 所以120AB k k x =-,因为PA ,PB 是圆C 的切线,所以1k ,2k1=,数学(文科)试题A 第 20 页 共 23 页即1k ,2k 是方程()()2220000022110x x k y x k y +-++-=的两根,………………………………7分即()0012200201220021,21.2y x k k x x y k k x x ⎧++=⎪+⎪⎨-⎪=⎪+⎩所以120AB k k x =-x =……………………………………………9分因为()220044y x =--, 所以AB =………………10分 设()()0020562x f x x -=+,则()()00305222x f x x -+'=+.………………………………………………………………………………11分由026x ≤≤,可知()0f x 在222,5⎡⎫⎪⎢⎣⎭上是增函数,在22,65⎛⎤⎥⎝⎦上是减函数,……………………12分所以()0max 2225564f x f ⎛⎫==⎡⎤ ⎪⎣⎦⎝⎭,数学(文科)试题A 第 21 页 共 23 页()()(){}min 0131min 2,6min ,484f x f f ⎧⎫===⎡⎤⎨⎬⎣⎦⎩⎭, 所以AB 的取值范围为⎦.…………………………………………………………………14分方法二:设圆D 上的动点P 的坐标为()00,x y ,则()220044x y -+=,即()2200440y x =--≥,解得026x ≤≤.…………………………………………………………………………………………5分设点()0,A a ,()0,B b ,则直线PA :00y a y a x x --=,即()0000y a x x y ax --+=, 因为直线PA 与圆C1=,化简得()2000220x a y a x +--=. ① 同理得()2000220x b y b x +--=, ② 由①②知a ,b 为方程()2000220x x y x x +--=的两根,…………………………………………7分即00002,2.2y a b x x ab x ⎧+=⎪+⎪⎨-⎪=⎪+⎩数学(文科)试题A 第 22 页 共 23 页 所以AB a b =-===…………9分因为()220044y x =--,所以AB =………………10分=.………………………………………………………………11分令012t x =+,因为026x ≤≤,所以1184t ≤≤. 所以AB ==,………………………………………12分当532t =时,max 4AB =, 当14t =时,min AB = 所以AB 的取值范围为. (14)分数学(文科)试题A 第 23 页共 23 页。
广东广州市2017年度届高三12月模拟专业考试数学文试题整理汇编含内容标准答案.
2017届广州市普通高中毕业班模拟考试文科数学 2016.12本试卷共4页,23小题, 满分150分。
考试用时120分钟。
第Ⅰ卷一、选择题:本题共12小题,每小题5分, 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设全集{0,1,2,3,4}U =,集合{0,1,3}A =,集合{2,3}B =,则()U A B U ð= (A) {}4 (B) {}0,1,2,3 (C) {}3 (D) {}0,1,2,4 (2)设(1i)(i)x y ++2=,其中,x y 是实数,则2i x y +=(A )1 (B(C(D(3)已知双曲线:C 22221x y a b-=(0,0>>b a )的渐近线方程为2y x =±, 则双曲线C 的离心率为 (A)25(B) 5 (C)26(D) 6(4)袋中有大小,形状相同的红球,黑球各一个,现有放回地随机摸取3次,每次摸出一个球. 若摸到红球得2分,摸到黑球得1分,则3次摸球所得总分为5分的概率是(A)31 (B)83 (C)21 (D)85 (5)已知角θ的顶点与原点重合, 始边与x 轴正半轴重合, 终边过点()12P ,-, 则tan 2=θ (A )43 (B )45 (C )45- (D )43- (6)已知菱形ABCD 的边长为2,60ABC ∠=o, 则BD CD ⋅=u u u r u u u r(A) 6- (B) 3- (C) 3 (D) 6(7)已知函数2,0,()1,0,x x f x x x⎧≥⎪=⎨<⎪⎩ ()()g x f x =--,则函数()g x 的图象是(8)曲线xy2=上存在点),(yx满足约束条件⎪⎩⎪⎨⎧≥≤--≤-+mxyxyx323,则实数m的最大值为(A)2(B)23(C) 1(D) 1-(9)阅读如下程序框图,运行相应的程序,则程序运行后输出的结果为(A) 7 (B) 9 (C) 10 (D) 11 (10)若将函数()sin2cos2f x x x=+的图象向右平移ϕ个单位,所得图象关于y轴对称,则ϕ的最小正值是( ).(A)8π(B)4π(C)38π(D)34π(11)如图, 网格纸上小正方形的边长为1, 粗线画出的是某三棱锥的三视图,则该三棱锥的外接球的表面积是(A) π25(B) π425(C) π29(D) π429(12) 若函数()()xaxexf x cossin+=在⎪⎭⎫⎝⎛2,4ππ上单调递增,则实数a的取值范围是(A) (]1,∞-(B) ()1,∞-(C) [)1,+∞(D) ()1,+∞第Ⅱ卷本卷包括必考题和选考题两部分。
广东省广州2017届高三下学期第一次模拟数学(文)试题Word版含解析
2017年广州市普通高中毕业班综合测试(一)文科数学第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数的虚部是().A. B. C. D.【答案】B【解析】,故虚部为.选B.2. 已知集合,则实数的值为().A. B. C. D.【答案】A【解析】依题意,有,所以,.选A.3. 已知,且,则().A. B. C. D.【答案】C【解析】.选C.4. 阅读如图的程序框图,若输入,则输出的值为().A. B. C. D.【答案】B【解析】第步:,;第步:,;第步:,;退出循环,.选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.5. 已知函数则().A. B. C. D.【答案】A【解析】,,选.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.6. 已知双曲线的一条渐近线方程为,,分别是双曲线的左,右焦点,点在双曲线上,且,则等于().A. B. C. D.【答案】C【解析】依题意,有:,所以,,因为.所以,点在双曲线的左支,故有,解得:,选C.7. 四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为().A. B. C. D.【答案】B【解析】四个人抛硬币的可能结果有种,有不相邻人站起来的可能为:正反正反,反正反正,只有人站起来的可能有种,没有人站起来的可能有种,所以所求概率为:.选B.8. 如图,网格纸上小正方形的边长为,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为,则该几何体的俯视图可以是().A. B. C. D.【答案】C【解析】该几何体为正方体截去一部分后的四棱锥,如下图所示,该几何体的俯视图为.点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.9. 设函数,若曲线在点处的切线方程为,则点的坐标为().A. B. C. D. 或【答案】D【解析】,依题意,有:,解得:或.选D.10. 《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥为鳖臑,平面,,,三棱锥的四个顶点都在球的球面上,则球的表面积为().A. B. C. D.【答案】C【解析】该几何体可以看成是长方体中截出来的三棱锥,如下图所示,其外接球的直径为对角线,,所以,,球的表面积为:.选C.点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点构成的三条线段两两互相垂直,且,一般把有关元素“补形”成为一个球内接长方体,利用求解.11. 已知函数是奇函数,直线与函数的图象的两个相邻交点的横坐标之差的绝对值为,则().A. 在上单调递减B. 在上单调递减C. 在上单调递增D. 在上单调递增【答案】D【解析】,因为函数为奇函数且,所以,,即,所以,,又,所以,,,其一个单调增区间为.选D.【点睛】函数的性质(1).(2)周期(3)由求对称轴(4)由求增区间; 由求减区间12. 已知函数,则的值为().A. B. C. D.【答案】B【解析】函数化为:,,有:,所以,.选B.点睛:(1)运用函数性质解决问题时,先要正确理解和把握函数相关性质本身的含义及其应用方向.(2)在研究函数性质特别是奇偶性、周期、对称性、单调性、最值、零点时,要注意用好其与条件的相互关系,结合特征进行等价转化研究.如奇偶性可实现自变量正负转化,周期可实现自变量大小转化,单调性可实现去,即将函数值的大小转化自变量大小关系, 对称性可得到两个对称的自变量所对应函数值关系.第Ⅱ卷二、填空题:本题共4小题,每小题5分.13. 已知向量,,若,则__________.【答案】【解析】,因为,所以,,解得:,所以,.14. 若一个圆的圆心是抛物线的焦点,且该圆与直线相切,则该圆的标准方程是__________.【答案】【解析】抛物线的焦点为,故圆心为,圆的半径为,故圆的方程为:.15. 满足不等式组的点组成的图形的面积是,则实数的值为__________.【答案】【解析】不等式组化为:或,画出平面区域如下图所示,平面区域为三角形、,,,,面积为:,解得:.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.或根据可行域图像确定求面积的公式及方法.16. 在中,,,,当的周长最短时,的长是__________.【答案】【解析】设边、、所对边分别为、、,依题意,有:,由余弦定理,得:,即,化简,得:,的周长:.令,则三角形周长为:,当,即,时的周长最短.三、解答题:解答应写出文字说明、证明过程或演算步骤.17. 已知数列的前项和为,且.(Ⅰ)求数列的通项公式.(Ⅱ)求数列的前项和.【答案】(1)(2)【解析】试题分析:(1)由和项与通项关系将条件转化为项之间递推关系:,再根据等比数列定义及通项公式求数列的通项公式.(2)先求,再根据分组求和法求数列的前项和.试题解析:(Ⅰ)当时,,即,解得.当时,,即,所以数列是首项为,公比为的等比数列.所以.(Ⅱ)因为,所以.点睛:给出与的递推关系求,常用思路是:一是利用转化为的递推关系,再求其通项公式;二是转化为的递推关系,先求出与之间的关系,再求. 应用关系式时,一定要注意分两种情况,在求出结果后,看看这两种情况能否整合在一起.18. 某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在内,则为合格品,否则为不合格品.表是甲流水线样本的频数分布表,图是乙流水线样本的频率分布直方图.表:甲流水线样本的频数分布表图:乙流水线样本频率分布直方图(Ⅰ)根据图,估计乙流水线生产产品该质量指标值的中位数.(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了件产品,则甲,乙两条流水线分别生产出不合格品约多少件.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017届广州市普通高中毕业班模拟考试数学(文科)本试卷共4页,23小题, 满分150分。
考试用时120分钟。
注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本题共12小题,每小题5分, 在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设全集{0,1,2,3,4}U =,集合{0,1,3}A =,集合{2,3}B =,则=)(B A C U (A) {}4 (B) {}0,1,2,3 (C) {}3 (D) {}0,1,2,4 (2)设(1i)(i)x y ++2=,其中,x y 是实数,则2i x y +=(A )1 (B (C (D (3)已知双曲线:C 22221x y a b-=(0,0>>b a )的渐近线方程为2y x =±, 则双曲线C 的离心率为 (A)25(B) 5 (C)26(D) 6(4)袋中有大小,形状相同的红球,黑球各一个,现有放回地随机摸取3次,每次摸出一个球. 若摸到红球得2分,摸到黑球得1分,则3次摸球所得总分为5分的概率是(A)31 (B)83 (C)21 (D)85 (5)已知角θ的顶点与原点重合, 始边与x 轴正半轴重合, 终边过点()12P ,-, 则tan 2=θ (A )43 (B )45 (C )45- (D )43- (6)已知菱形ABCD 的边长为2,60ABC ∠=, 则BD CD ⋅=(A) 6- (B) 3- (C) 3 (D) 6(7)已知函数2,0,()1,0,x x f x x x⎧≥⎪=⎨<⎪⎩ ()()g x f x =--,则函数()g x 的图象是(8)曲线x y 2=上存在点),(y x 满足约束条件⎪⎩⎪⎨⎧≥≤--≤-+m x y x y x 03203,则实数m 的最大值为(A) 2 (B)23(C) 1 (D) 1- (9)阅读如下程序框图,运行相应的程序,则程序运行后输出的结果为(A) 7(10)若将函数()f x =则ϕ的最小正值是(A)8π (11)如图, (A) π25 (C) π29(12) 若函数()e x f x=(A) (]1,∞-527536869438594678309754570324173326498598765432甲城市乙城市第Ⅱ卷本卷包括必考题和选考题两部分。
第13~21题为必考题,每个考生都必须作答。
第22~23题为选考题,考生根据要求作答。
二、填空题:本小题共4题,每小题5分。
(13)等比数列{}n a 的前n 项和为n S ,若230a S +=,则公比q =________. (14)已知函数()()221log 1x f x x +=-,若()2=f a ,则()f a -= . (15)设,P Q 分别是圆()2213x y +-=和椭圆2214x y +=上的点,则,P Q 两点间的最大 距离是 .(16)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若1=a ,b c C 2c o s2=+,则△ABC 的周长的取值范围是 . 三、解答题:解答应写出文字说明、证明过程或演算步骤。
(17)(本小题满分12分)等差数列}{n a 中,1243=+a a ,749S =. (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)记][x 表示不超过x 的最大整数,如0]9.0[=,2]6.2[=. 令][lg n n a b =,求数列}{n b 的前2000项和.(18)(本小题满分12分)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国PM2.5标准采用前卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米与75微克/立方米之间的空气质量为二级;在75微克/立方米以上的空气质量为超标.为了解甲, 乙两座城市2016年的空气质量情况,从全年每天的PM2.5监测数据中随机抽取20天的数据作为样本,监测值如以下茎叶图所示(十位为茎,个位为叶).(Ⅰ)从甲, 乙两城市共采集的40个数据样本中,从PM2.5日均值在[]60,80范围内随机取2天数据,求取到2天的PM2.5均超标的概率; (Ⅱ)以这20天的PM2.5日均值数据来估计一年 的空气质量情况,则甲, 乙两城市一年(按365天计算) 中分别约有多少天空气质量达到一级或二级.PECBA(19) (本小题满分12分)在三棱锥P ABC -中, △PAB 是等边三角形, ∠APC =∠60BPC ︒=. (Ⅰ)求证: AB ⊥PC ;(Ⅱ)若4=PB ,BE PC ⊥,求三棱锥PAE B -的体积.(20) (本小题满分12分)已知点()()1122,,,A x y B x y 是抛物线28y x =上相异两点,且满足124x x +=. (Ⅰ)若直线AB 经过点()2,0F ,求AB 的值;(Ⅱ)是否存在直线AB ,使得线段AB 的中垂线交x 轴于点M , 且24||=MA ? 若存在,求直线AB 的方程;若不存在,说明理由.(21) (本小题满分12分)设函数()()ln f x mx n x =+. 若曲线()y f x =在点e,(e))P f (处的切线方程为 2e y x =-(e 为自然对数的底数).(Ⅰ)求函数()f x 的单调区间; (Ⅱ)若,R a b +∈,试比较()()2f a f b +与()2a bf +的大小,并予以证明.请考生在第22~23题中任选一题作答,如果多做,则按所做的第一题计分。
(23)(本小题满分10分)选修4-5:不等式选讲()3≤x f 的解集是}{21|≤≤-x x .(Ⅰ)求a 的值; (II )若()()||3f x f x k +-<存在实数解,求实数k 的取值范围.数学(文科)参考答案评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分. 一、选择题(1)A (2)D (3)B (4)B (5)A (6)D(7)D (8)C (9)B (10)C (11)D (12)A 二、填空题(13)1- (14)0 (15(16)1,3⎤⎦三、解答题 (17) 解:(Ⅰ)由1243=+a a ,749S =,得112512,72149.a d a d +=⎧⎨+=⎩ ……………………2分解得11=a ,2=d , …………………………………………4分 所以12-=n a n .………………………………………………………………5分(Ⅱ))]12[lg(][lg -==n a b n n ,…………………………………………6分当51≤≤n 时, 0)]12[lg(=-=n b n ;…………………………………………7分当506≤≤n 时, 1)]12[lg(=-=n b n ; …………………………………………8分当50051≤≤n 时, 2)]12[lg(=-=n b n ; …………………………………………9分当5012000n ≤≤时, 3)]12[lg(=-=n b n . ………………………………………10分 所以数列}{n b 的前2000项和为544515003450245150=⨯+⨯+⨯+⨯. ……12分(18) 解:(Ⅰ)从甲, 乙两城市共采集的40个数据样本中,PM2.5日均值在[]60,80内的共有6天,而PM2.5日均值为超标(大于75微克/立方米)的有3天.记PM2.5日均值超标的3天为123,,D D D ,不超标的3天为123,,d d d ,则从这6天中随机取2天,共有如下15D PE CB A种结果(不记顺序):()()()()()()121323121323,,,,,,,,,,,D D D D D D d d d d d d ,()()()111213,,,,,D d D d D d ,()()()()()()212223313233,,,,,,,,,,,.D d D d D d D d D d D d ……………………2分其中,抽出2天的PM2.5均超标的情况有3种:()()()121323,,,,,D D D D D D .…4分 由古典概型知,抽到2天的PM2.5均超标的概率31155P ==. ……………………6分 (Ⅱ)各抽取的20天样本数据中,甲城市有15天达到一级或二级;……………………7分 乙城市有16天达到一级或二级. …………………………………………8分 由样本估计总体知,甲, 乙两城市一年(按365天计算)中空气质量达到一级或二级的天数分别约为:15365273.7527420n =⨯=≈甲, 1636529220n =⨯=乙.……………………12分 (19) 解:(Ⅰ)因为PAB ∆是等边三角形, ∠APC =∠60BPC ︒=,所以PBC ∆≌PAC ∆, 可得AC BC =. …………1分如图, 取AB 中点D , 连结PD ,CD ,则PD AB ⊥,CD AB ⊥, ……………………3分 因为,PDCD D =所以AB ⊥平面PDC , ………………………………………………………………4分 因为PC ⊂平面PDC ,所以AB PC ⊥. ……………………………………………………………5分 (Ⅱ)因为 PBC ∆≌PAC ∆,所以AE PC ⊥, AE BE =. ………………………………………………………6分由已知4=PB ,在Rt PEB ∆中, 4sin 60BE ︒==4cos60 2.PE ︒==………………………………………………8分 因为BE PC ⊥, AE PC ⊥, E AE BE = ,所以ABE PE 平面⊥. ……………………………………………………………9分 因为4=AB , 32==BE AE ,所以AEB ∆的面积12=⋅=S AB ……………………10分因为三棱锥PAE B -的体积等于三棱锥ABE P -的体积, 所以三棱锥B PAE -的体积112333V S PE =⋅=⨯=. ………………12分 (20) 解:(I )法1:①若直线AB 的斜率不存在,则直线AB 方程为2x =.联立方程组28,2,y x x ⎧=⎨=⎩ 解得⎩⎨⎧==,4,2y x 或⎩⎨⎧-==,4,2y x 即()2,4A ,()2,4B -. ……………………………………………………………1分 所以8AB =. ……………………………………………………………2分 ②若直线AB 的斜率存在,设直线AB 的方程为()2y k x =-,联立方程组28,(2),y x y k x ⎧=⎨=-⎩ 消去y 得()22224840k x k x k -++=, 故2122484k x x k ++==,方程无解. …………………………………………3分所以8AB =.法2:因为直线AB 过抛物线28y x =的焦点()2,0F ,根据抛物线的定义得,12A F x =+,22BF x =+, …………………………………………………………2分 所以1248AB AF BF x x =+=++=. …………………………………………3分 (II )假设存在直线AB 符合题意,设直线AB 的方程为y kx b =+,联立方程组28,,y x y kx b ⎧=⎨=+⎩ 消去y 得()222280k x kb x b +-+=,(*) 故122284kb x x k-+=-=,……………………………………………………………4分 所以42b k k=-. 所以22222124⎪⎭⎫ ⎝⎛-==k k b x x . …………………………………………………………5分 所以AB =2k =. …………………………………………………………6分 因为()12128242y y k x x b k b k+=++=+=. 所以AB 的中点为⎪⎭⎫⎝⎛k C 4,2.所以AB 的中垂线方程为4y k -=()12x k--,即60x ky +-=. ………………7分 令0y =, 得6x =.所以点M 的坐标为()6,0. ……………………………………………………………8分 所以点M 到直线AB的距离d CM ===. 因为222||||2AB MA CM ⎛⎫=+ ⎪⎝⎭,………………………………………………………9分所以222=+⎝⎭.解得1±=k . ………………………………………………………………10分 当1k =时,2b =;当1k =-时,2b =-.把1,2,k b =⎧⎨=⎩和1,2,k b =-⎧⎨=-⎩分别代入(*)式检验, 得0∆=,不符合题意. …………………11分 所以直线AB 不存在. ……………………………………………………………12分(21) 解:(Ⅰ)函数()f x 的定义域为(0,)+∞.()ln mx nf x m x x+'=+. ………………………………………………………………1分 依题意得(e)e,(e)2f f '==,即e e,e 2,e m n m nm +=⎧⎪+⎨+=⎪⎩……………………3分 所以1,0m n ==. ………………………………………………………………4分 所以()ln f x x x =,()ln 1f x x '=+.当1(0,)ex ∈时, ()0f x '<; 当1(,)e x ∈+∞时, ()0f x '>.所以函数()f x 的单调递减区间是1(0,)e , 单调递增区间是1(,)e+∞.………………6分(Ⅱ)当,R a b +∈时,()()()22f a f b a b f ++≥. ()()()22f a f b a b f ++≥等价于ln ln ln 222a a b b a b a b+++≥,也等价于2ln(1)ln(1)ln 20a a a ab b b b-+++≥. ………………………………………7分不妨设a b ≥,设()()ln 2(1)ln(1)ln2g x x x x x =-+++([1,)x ∈+∞),则()ln(2)ln(1)g x x x '=-+. …………………………………………………………8分当[1,)x ∈+∞时,()0g x '≥,所以函数()g x 在[1,)+∞上为增函数, 即()ln 2(1)ln(1)ln 2(1)0g x x x x x g =-+++≥=, ……………………9分 故当[1,)x ∈+∞时,()ln 2(1)ln(1)ln 20g x x x x x =-+++≥(当且仅当1x =时取等 号).令1a x b =≥,则()0ag b ≥, …………………………………………10分 即2ln(1)ln(1)ln 20a a a ab b b b-+++≥(当且仅当a b =时取等号),……………11分 综上所述,当,R a b +∈时,()()()22f a f b a b f ++≥(当且仅当a b =时取等号). ………………………………………………………………12分(22) 解: (Ⅰ) 由sin ,1cos ,x t y t ϕϕ=⎧⎨=+⎩消去t 得cos sin sin 0x y ϕϕϕ-+=, ……………………1分所以直线l 的普通方程为cos sin sin 0x y ϕϕϕ-+=. ……………………2分由2cos4sin =ρθθ, 得()2cos 4sin ρθρθ=, ……………………3分把cos ,sin x y ρθρθ==代入上式, 得y x 42=,所以曲线C 的直角坐标方程为y x 42=. …………………………………………5分 (II) 将直线l 的参数方程代入y x 42=, 得22sin4cos 40t t ϕϕ--=, ………………6分当2ϕ=时, AB 的最小值为4. …………………………………………10分(23) 解:(II )因为()()()()212121212.3333x x x x f x f x --+-+++-=≥=………………7分分分 2,3⎫⎛⎫+∞⎪ ⎪⎭⎝⎭分。