九年级数学培优学案8--解直角三角形
《解直角三角形》教案

《解直角三角形》教案一、教学目标1、知识与技能目标(1)理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形。
(2)能够将实际问题转化为数学问题,建立解直角三角形的数学模型,并运用解直角三角形的方法解决实际问题。
2、过程与方法目标(1)通过对解直角三角形的学习,培养学生分析问题和解决问题的能力,以及数学建模的思想。
(2)通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,提高学生的运算能力和逻辑推理能力。
3、情感态度与价值观目标(1)让学生在学习过程中体会数学与实际生活的紧密联系,激发学生学习数学的兴趣。
(2)通过解决实际问题,培养学生的应用意识和创新精神,让学生在成功中获得自信,在挫折中锻炼意志。
二、教学重难点1、教学重点(1)直角三角形中五个元素之间的关系。
(2)解直角三角形的方法。
2、教学难点(1)将实际问题转化为数学问题,建立解直角三角形的数学模型。
(2)正确选择合适的锐角三角函数关系式解直角三角形。
三、教学方法讲授法、讨论法、练习法四、教学过程1、导入新课通过展示一些与直角三角形相关的实际问题,如测量建筑物的高度、计算斜坡的长度等,引出解直角三角形的概念,激发学生的学习兴趣。
2、知识讲解(1)直角三角形的五个元素直角三角形有三条边和两个锐角,共五个元素,分别是两条直角边a、b 和斜边 c,以及两个锐角 A 和 B。
(2)五个元素之间的关系①三边关系(勾股定理):a²+ b²= c²②锐角关系:∠A +∠B = 90°③边角关系:sin A = a/c,cos A = b/c,tan A = a/b(3)解直角三角形由直角三角形中除直角外的已知元素,求出其余未知元素的过程,叫做解直角三角形。
3、例题讲解例 1:在 Rt△ABC 中,∠C = 90°,a = 3,c = 5,求 b 和∠A、∠B 的度数。
九年级数学下册解直角三角形教案新人教版

《解直角三角形》教案一、素质教育目标(一)知识教学点使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)能力训练点通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.(三)德育渗透点渗透数形结合的数学思想,培养学生良好的学习习惯.二、教学重点、难点和疑点1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边.三、教学步骤(一)明确目标1.在三角形中共有几个元素?2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?(1)边角之间关系(2)三边之间关系a2+b2=c2(勾股定理)(3)锐角之间关系∠A+∠B=90°.以上三点正是解直角三角形的依据,通过复习,使学生便于应用.(二)整体感知教材在继锐角三角函数后安排解直角三角形,目的是运用锐角三角函数知识,对其加以复习巩固.同时,本课又为以后的应用举例打下基础,因此在把实际问题转化为数学问题之后,就是运用本课——解直角三角形的知识来解决的.综上所述,解直角三角形一课在本章中是起到承上启下作用的重要一课.(三)重点、难点的学习与目标完成过程1.我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情.2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形).3.例题例 1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且c=287.4,∠B=42°6′,解这个三角形.解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.解:(1)∠A=90°-∠B=90°-42°6′=47°54′,∴a=c. cosB=28.74×0.7420≈213.3.∴b=c·sinB=287.4×0.6704≈192.7.完成之后引导学生小结“已知一边一角,如何解直角三角形?”答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底.例 2在Rt△ABC中,a=104.0,b=20.49,解这个三角形.在学生独立完成之后,选出最好方法,教师板书.查表得A=78°51′;(2)∠B=90°-78°51′=11°9′注意:例1中的b和例2中的c都可以利用勾股定理来计算,这时要查平方表和平方根表,这样做有时会比上面用含四位有效数字的数乘(或除)以另一含四位有效数字的数要方便一些.但先后要查两次表,并作一次加法(或减法).4.巩固练习解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了练习P.35中1、2.练习1针对各种条件,使学生熟练解直角三角形;练习2代入数据,培养学生运算能力.参考答案:1.(1)∠B=90°-∠A,a=c·sinA,b=c·cosA;(3)∠B=90°-∠A,a=b·tgA,说明:解直角三角形计算上比较繁锁,条件好的学校允许用计算器.但无论是否使用计算器,都必须写出解直角三角形的整个过程.要求学生认真对待这些题目,不要马马虎虎,努力防止出错,培养其良好的学习习惯.(四)总结与扩展1.请学生小结:在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.2.幻灯片出示图表,请学生完成四、布置作业教材P.46习题6.3A组3.五、课后记解直角三角形是前面一段时间学习四个三角函数的综合应用,因此要求学生对前面知识要十分熟悉,学生表现出对知识连贯性不太好。
初三数学---解直角三角形---培优班

ABE F QP 初三数学 解三角形1.(2007•宁波)如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD=12 m ,塔影长DE=18 m ,小明和小华的身高都是,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m 和1m ,那么塔高AB 为 米.2. 如图,大海中有A 和B 两个岛屿,为测量它们之间的距离,在海岸线PQ 上点E 处测得∠AEP =74°,∠BEQ =30°;在点F 处测得∠AFP =60°,∠BF Q =60°,EF =1km . (1)判断ABAE 的数量关系,并说明理由;(2)求两个岛屿A 和B 之间的距离(结果精确到).(参考数据:3≈,sin74°≈,cos74°≈,tan74°≈,sin76°≈,cos76°≈)3. (2010年兰州市)如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB 长为4米. (1)求新传送带AC 的长度;(2)如果需要在货物着地点C 的左侧留出2米的通道,试判断距离B 点4米的货物MNQP 是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到米,参考数据:2≈,3≈,5≈,6≈4.(2007台州)一次数学活动中,小迪利用自己制作的测角器测量小山的高度CD .已知她的眼睛与地面的距离为米,小迪在B 处测量时,测角器中的60AOP ∠=°(量角器零度线AC 和铅垂线OP 的夹角,如图);然后她向小山走50米到达点F 处(点B F D ,,在同一直线上),这时测角器中的45EO P ''∠=°,那么小山的高度CD 约为 米. (注:数据3 1.732≈,2 1.414≈供计算时选用)5. (2010楚雄)如图,河流的两岸PQ ,MN 互相平行,河岸PQ 上有一排小树,已知相邻两树之间的距离CD =50米,某人在河岸MN 的A 处测的∠DAN =35°,然后沿河岸走了120米到达B 处,测的∠CBN =70°,求河流的宽度CE (结果保留两个有效数字). (参考数据:si n 35°≈,co s35°≈,t an 35°≈Si n 70°≈,co s70°≈,t an 70°≈)6. (2010扬州)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD .小明在山坡的坡脚A 处测得宣传牌底部D 的仰角为60°,沿山坡向上走到B 处测得宣传牌顶部C 的仰角为45°.已知山坡AB 的坡度i =1:3,AB =10米,AE =15米,求这块宣传牌CD 的高度.(测角器的高度忽略不计,结果精确到米.参考数据:2≈,3≈)7. (2010年绍兴市)如图,小敏、小亮从A ,B 两地观测空中C 处一个气球,分别测得仰角为30°和60°,A ,B 两地相距100 m.当气球沿与BA 平行地飘移10秒后到达C ′处时,在A 处测得气球的仰角为45°.(1)求气球的高度(结果精确到m);(2)求气球飘移的平均速度(结果保留3个有效数字). 8.(2009年铁岭市)某旅游区有一个景观奇异的望天洞,D 点是洞的入口,游人从入口进洞游览后,可经山洞到达山顶的出口凉亭A 处观看旅游区风景,最后坐缆车沿索道AB 返回山脚下的B 处.在DCN︒35︒70A B CDE 45°60°同一平面内,若测得斜坡BD 的长为100米,坡角10DBC ∠=°,在B 处测得A 的仰角40ABC ∠=°,在D 处测得A 的仰角85ADF ∠=°,过D 点作地面BE 的垂线,垂足为C . (1)求ADB ∠的度数; (2)求索道AB 的长.(结果保留根号)9.(苏州)某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为米,现要做一个不锈钢的扶手AB 及两根与FG 垂直且长为l 米的不锈钢架杆AD 和BC(杆子的底端分别为D ,C),且∠DAB=66. 5°. (1)求点D 与点C 的高度差DH ;(2)求所用不锈钢材料的总长度l (即AD+AB+BC ,结果精确到米).(参考数据:°≈,°≈,°≈10.(2007山东威海)如图,一条小船从港口A 出发,沿北偏东40方向航行20海里后到达B 处,然后又沿北偏西30方向航行10海里后到达C 处.问此时小船距港口A 多少海里(结果精确到1海里)友情提示:以下数据可以选用:sin 400.6428≈,cos 400.7660≈,tan 400.8391≈,3 1.732≈.11.(2009年江苏省)如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的距离为2km ,点B 位于点A 北偏东60°方向且与A 相距10km 处.现有一艘轮船从位于点B 南偏西76°方向的C 处,正沿该航线自西向东航行,5min 后该轮船行至点A 的正北方向的D 处. (1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度(结果精确到h ).(参考数据:3 1.73≈,sin760.97°≈,cos760.24°≈,tan76 4.01°≈)CQ BA P北 40 30 AC DE FB 北东C DBE60°76°O12.(2010株洲市)如图,直角ABC ∆中,90C ∠=︒,25AB =,5sin 5B =,点P 为边BC 上一动点,PD ∥AB ,PD 交AC 于点D ,连结AP . (1)求AC 、BC 的长;(2)设PC 的长为x ,ADP ∆的面积为y .当x 为何值时,y 最大,并求出最大值.13.(2009年泸州)在某段限速公路BC 上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60千米/时(即350米/秒),并在离该公路100米处设置了一个监测点A .在如图8所示的直角坐标系中,点A 位于y 轴上,测速路段BC 在x 轴上,点B 在A 的北偏西60°方向上,点C 在A 的北偏东45°方向上,另外一条高等级公路在y 轴上,AO 为其中的一段.(1)求点B 和点C 的坐标;(2)一辆汽车从点B 匀速行驶到点C 所用的时间是15秒,通过计算,判断该汽车在这段限速路上是否超速(参考数据:7.13≈)(3)若一辆大货车在限速路上由C 处向西行驶,一辆小汽车在高等级公路上由A 处向北行驶,设两车同时开出且小汽车的速度是大货车速度的2倍,求两车在匀速行驶过程中的最近距离是多少14.(2009年黄冈市)如图,在海面上生产了一股强台风,台风中心(记为点M )位于海滨城市(记作点A )的南偏西15°,距离为612千米,且位于临海市(记作点B )正西方向603千米处.台风中心正以72千米/时的速度沿北偏东60°的方向移动(假设台风在移动过程中的风力保持不变),距离台风中心60千米的圆形区域内均会受到此次强台风的侵袭. (1)滨海市.临海市是否会受到此次台风的侵袭?请说明理由.(2)若受到此次台风侵袭,该城市受到台风侵袭的持续时间有多少小时?DCBA15.(2010义乌)如图1,已知∠ABC =90°,△ABE 是等边三角形,点P 为射线BC 上任意一点(点P 与点B 不重合),连结AP ,将线段AP 绕点A 逆时针旋转60°得到线段AQ ,连结QE 并延长交射线BC 于点F .(1)如图2,当BP =BA 时,∠EBF = °,猜想∠QFC = °;(2)如图1,当点P 为射线BC 上任意一点时,猜想∠QFC 的度数,并加以证明; (3)已知线段AB =32,设BP =x ,点Q 到射线BC 的距离为y ,求y 关于x 的函数关系式.图2ABEQPFC图1ACBEQF。
解直角三角形 优秀教案

《解直角三角形》教学设计说明一、教材分析《解直角三角形》是北师大版九年级下册第一章第四节的内容. 在此之前,学生已经具备了勾股定理、锐角三角函数的基本知识,会求任意一个锐角的三角函数值. 本节课是三角函数应用之前的准备课,旨在建立好解直角三角形的数学模型,以便有效的为现实生活服务.培养学生解答实际应用题的技能,掌握如何构建解直角三角形的思想方法、技巧.把勾股定理和锐角三角函数的前期准备知识有机的组织起来,使学生能承前启后、有思想性和可操作性. 因此,本节课在教材教学计划中起着一发牵制全局的重要作用.二、学情分析1、九年级学生已经掌握了勾股定理,刚刚学习过锐角三角函数,能够用定义法求三角函数sinα、cosα、tanα值.2、在计算器的使用上,学生学习了用计算器求任意锐角的三角函数值,并对计算器的二次功能有所了解.有上述知识技能作基础为学生进一步学习“解直角三角形”创造了必要条件.3、但锐角三角函数的运用不一定熟练,综合运用所学知识解决问题,将实际问题抽象为数学问题的能力都比较差,因此要在本节课进行有意识的培养.三、教学任务分析本节内容是在学习了“锐角三角函数”“勾股定理”等内容的基础上进一步探究如何利用所学知识解直角三角形.通过直角三角形中边角之间关系的学习,整合三角函数的知识,归纳解直角三角形的一般方法.在呈现方式上,显示出实践性与研究性,突出了学数学、用数学的意识与过程,注重联系学生的生活实际,同时还有利于数形结合.通过本节课的学习,不仅可以巩固勾股定理和锐角三角函数等相关知识,初步获得解决问题的方法和经验,而且还让学生进一步体会数学与实际生活的密切联系.掌握将实际问题转化为数学模型的思想方法.所以教学目标如下:知识技能:初步理解解直角三角形的含义,掌握运用直角三角形的两锐角互余、勾股定理及锐角三角函数求直角三角形的未知元素.数学思考:在研究问题中思考如何把实际问题转化为数学问题,进而把数学问题具体化.解决问题:解直角三角形的对象是什么?在解决与直角三角形有关的实际问题中如何把问题数学模型化.通过利用三角函数解决实际问题的过程,进一步提高学生的逻辑思维能力和分析问题解决问题的能力情感态度:在解决问题的过程中引发学生形成数形结合的数学思想,体会数学与实践生活的紧密联系.从而增强学生的数学应用意识,激励学生敢于面对数学学习中的困难.通过获取成功的体验和克服困难的经历,增进学习数学的信心,养成良好的学习习惯.教学重难点:重点:理解并掌握直角三角形边角之间的关系,运用直角三角形的两锐角互余、勾股定理及锐角三角函数求直角三角形的未知元素.难点:从已知条件出发,正确选用适当的边角关系或三角函数解题.四、教学过程 1. 知识回顾1、在一个直角三角形中,共有几条边?几个角?(引出“元素”这个词语)2、在Rt ΔABC 中,∠C=90°.a 、b 、c 、∠A 、∠B 这些元素间有哪些等量关系呢?讨论复习:Rt ΔABC 的角角关系、三边关系、边角关系分别是什么?总结: 直角三角形的边角关系(1) 两锐角互余:∠A+∠B=90°(2) 三边满足勾股定理:a 2+b 2=c 2(3) 边与角的关系:.tan cot ,cot tan ,sin cos ,cos sin ab B A ba B A cb B A ca B A ======== 定义:在直角三角形中由已知元素求出未知元素的过程就是解直角三角形.2. 探究新知在Rt △ABC 中,(1)根据∠A= 60°,斜边AB=30,你能求出这个三角形的其他元素吗?(2)根据AC=2,BC= 6 ,你能求出这个三角形的其他元素吗?(3)根∠A=60°,∠B=30°, 你能求出这个三角形的其他元素吗?从以上关系引导学生发现,在直角三角形中,只要知道其中两个元素(至少有一个是边)就可以求出其余的几个元素,从而引出解直角三角形的定义:在直角三角形中由已知元素求出未知元素的过程就是解直角三角形. 3. 例题讲解例1 在Rt △ABC 中,∠C 为直角,∠A ,∠B ,∠C 所对的边分别为 a ,b,c,且a =15,b =5,求这个三角形的其他元素.解;例2:如图:在Rt ΔABC 中,∠C=90°,∠B=25°,b=30.解这个直角三角形(结果保留小数点后一位).注意强调:在解决直角三角形的过程中,常会遇到近似计算,尽量选择原始数据,避免累积误差.B6A C4. 知识应用1、在Rt△ABC 中,∠C =90°,根据下列条件求出直角三角形的其他几个元素(角度精确到 1°)(1)已知 a=4,b=8;(2)已知 b=10,∠B=60°;(3)已知 c=20,∠A=60°.(1)中已知两条边如何解直角三角形,(2)(3)已知一条边及一个角解直角三角形,本题的设计重在引导学生体会并归纳常规解直角三角形的常规方法:解直角三角形的方法遵循“有斜用弦,无斜用切;宁乘勿除,化斜为直”五、课堂小结一、通过本节课的学习,大家有什么收获?六、作业布置:1、习题1.5 1、2.2、预习下一节内容,要求了解什么是仰角和俯角3、补充作业:如图,根据图中已知数据,求△ABC其余各边的长,各角的度数和△ABC的面积.七、板书设计:八、教学反思本节课,为解直角三角形应用题之前的准备课,旨在建立好解直角三角形的数学模型,以便有效的为现实生活服务.培养学生解答实际应用题的技能,掌握如何构建解直角三角形的思想方法、技巧.把勾股定理和锐角三角函数的前期准备知识有机的组织起来,使学生能承前启后、有思想性和可操作性.因此,本节课在教材教学计划中起着一发牵制全局的重要作用.解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题的能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.。
九年级数学:解直角三角形(教案)

初中数学新课程标准教材数学教课方案( 2019—2020学年度第二学期)学校:年级:任课教师:数学教课方案 /初中数学/九年级数学教课方案编订: XX文讯教育机构解直角三角形 ( 教课方案 )教材简介 : 本教材主要用途为经过学习数学的内容,让学生能够提高判断能力、剖析能力、理解能力,培育学生的逻辑、直觉判断等能力,本教课方案资料合用于初中九年级数学科目 , 学习后学生能获取全面的发展和提高。
本内容是依照教材的内容进行的编写,能够放心改正调整或直接进行教课使用。
教课建议1.知识构造 :本小节主要学习解直角三角形的观点, 直角三角形中除直角外的五个元素之间的关系以及直角三角形的解法.2.要点和难点剖析 :教课要点和难点 : 直角三角形的解法.本节的要点和难点是直角三角形的解法. 为了使学生娴熟掌握直角三角形的解法, 第一要使学生知道什么叫做解直角三角形, 直角三角形中三边之间的关系, 两锐角之间的关系, 边角之间的关系 . 正确采用这些关系, 是正确、快速地解直角三角形的要点.3.深刻熟习锐角三角函数的定义 , 理解三角函数的表达式向方程的转变 .锐角三角函数的定义:实质上分别给了三个量的关系:a 、 b、c 是边的长、、和是由用不一样方式来决定的三角函数值 , 它们都是实数 , 但它与代数式的不一样点在于三角函数的值是有一个锐角的数值参加此中.当这三个实数中有两个是已知数时, 它就转变为一个一元方程, 解这个方程 , 就求出了一个直角三角形的未知的元素.如: 已知直角三角形abc 中,, 求 bc 边的长 .画出图形 , 可知边 ac,bc 和三个元素的关系是正切函数( 或余切函数 ) 的定义给出的 , 所以有等式,因为 , 它实质上已经转变了以bc 为未知数的代数方程, 解这个方程 , 得.即得 bc 的长为 .又如 , 已知直角三角形斜边的长为35.42cm, 一条直角边的长29.17cm, 求另一条边所对的锐角的大小 .画出图形 , 可设中 ,, 于是 , 求的大小时 , 波及的三个元素的关系是也就是这时 , 就把认为未知数的代数方程转变为了认为未知数的方程, 经查三角函数表 , 得.由此看来 , 表达三角函数的定义的 4 个等式 , 能够转变为求边长的方程, 也能够转变为求角的方程 , 所以成为解三角形的重要工具.4. 直角三角形的解法能够归纳为以下 4 种, 列表以下 :5.着重非直角三角形问题向直角三角形问题的转变由上述 (3) 能够看到 , 只需已知条件适合, 全部的直角三角形都是可解的. 值得着重的是,它不单使直角三角形的计算问题获取完全的解决, 并且给非直角三角形图形问题的解决摊平了道路 . 不难想到 , 只需能把非直角三角形的图形问题转变为直角三角形问题, 就能够经过解直角三角形而获取解决. 请看下例 .比如 , 在锐角三角形abc 中,, 求这个三角形的未知的边和未知的角( 如图 )这是一个锐角三角形的解法的问题, 我们只需作出bc 边上的高 ( 想想 : 作其他边上的高为何不好 .),问题就转变为两个解直角三角形的问题.在 rt 中 , 有两个独立的条件 , 具备求解的条件 , 而在 rt 中 , 只有已知条件 , 临时不具备求解的条件 , 但高 ad 可由解时求出 , 那时 , 它也将转变为可解的直角三角形 , 问题就水到渠成了 . 解法以下 :解: 作于 d, 在 rt 中 , 有;又, 在 rt 中 , 有∴又,∴于是, 有由此可知 , 掌握非直角三角形的图形向直角三角形转变的门路和方法是十分重要的, 如(1) 作高线能够把锐角三角形或钝角三角形转变为两个直角三角形.(2) 作高线能够把平行四边形、梯形转变为含直角三角形的图形.(3)连接对角线 , 能够把矩形、菱形和正方形转变为含直角三角形的图形.(4)如图 , 等腰三角形 aob 是正 n 边形的 n 分之一 . 作它的底边上的高 , 就获取直角三角形oam,oa 是半径 ,om 是边心距 ,ab 是边长的一半 , 锐角 .6. 要擅长把某些实质问题转变为解直角三角形问题.好多实质问题都能够归纳为图形的计算问题, 而图形计算问题又能够归纳为解直角三角形问题 .我们知道 , 机器上用的螺丝钉问题能够看作计算问题, 而圆柱的侧面能够看作是长方形围成的 ( 如图 ). 螺纹是以必定的角度旋转上涨, 使得螺丝旋转时向前推动, 问直径是6mm的螺丝钉, 若每转一圈向前推动 1.25mm,螺纹的初始角应是多少度多少分?据题意 , 螺纹转一周时 , 把侧面睁开能够看作一个直角三角形, 直角边 ac 的长为,另一条直角边为螺钉推动的距离, 所以,设螺纹初始角为 , 则在 rt中,有∴.即, 螺纹的初始角约为.这个例子说明 , 生产和生活中有好多实质问题都能够抽象为一个解直角三角形问题, 我们应该着重培育这类把数学知识应用于实质生活的意识和能力.一、教课目的1.使学生掌握直角三角形的边角关系 , 会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形 ;2. 经过综合运用勾股定理, 直角三角形的两个锐角互余及锐角三角函数解直角三角形, 逐步培育学生剖析问题、解决问题的能力;3. 经过本节的学习 , 向学生浸透数形联合的数学思想, 培育他们优秀的学习习惯.初中数学教课方案文讯教育教课方案二、要点·难点·疑点及解决方法1.要点 : 直角三角形的解法。
初三数学导学案 解直角三角形

学 生教 师 吴老师 日 期 2013/12/29 年 级 初三学 科数学时 段10:10-11:40学 情 分 析 1、对本周相关知识点进行梳理,强化训练 2、对之前的作业进行评讲课 题 解直角三角形学习目标与 考点分析 解直角三角形是近年来中考命题的热点之一,中考中通常以中档题的形式出现,解决此类问题,首先要认真读题,弄清题意,特别是关键字、词;其次要正确地画出图形,将已知条件转化为示意图中的边、角或它们之间的关系;最后,运用“转化”(斜三角形转化为直角三角形)的思想方法,通过建立解直角三角形的数学模型使问题得到解决。
学习重点 难 点让学生熟练掌握解题的方法,会运用知识灵活计算,并能正确地进行相关题目的运算教学方法 讲练结合、互动启发教学过程(一)运用三角函数解直角三角形解直角三角形的思路,实际上就是根据已知条件,正确地选择直角三角形中边角间的关系式,通过解方程来求解。
例1、 在Rt △ABC 中,∠C=90°, sinA=43, AC=72,求AB=?濠知教育学科导学案A B C D C D B A ED C B A(二)有关测量问题:测量类问题涉及仰角和俯角的知识,属于解直角三角形中已知一边和一锐角的类型,无斜边时,应用正切建立方程求解。
例2、某中学九年级(1)班数学课外活动小组利用周末开展课外实践活动,他们在某公园人工湖旁的小山AB 上测得湖中两个小岛C 、D 的距离。
从山顶A 处测得湖中小岛C 的俯角为60°,测得湖中小岛D 的俯角为45°,已知小山AB 的高为180米,求小岛CD 的距离。
思路点拨:C 、D 间的距离即为BD 和CB 的差,分别解两个直角三角形求得BD 和CB 。
例3、为申办2010年冬奥会,须改变哈尔滨市的交通状况,在大直街拓宽工程中,要伐掉一棵树AB ,在地面上事先划定以B 为圆心,半径AB 等长的圆形危险区,现有某工人站在离B 点3米远的D 处,测树的顶端A 点的仰角为60°,树的底部B 点的俯角为30°,问:距离B 点8米远的保护物是否在危险区内?方法小结:弄清题意,明确目标,将实际问题转化为解直角三角形问题,找出可以求解的直角三角形或构造出可以求解的直角三角形作为解题的突破口。
解直角三角形优秀教案
解直角三角形【教学目标】1.让学生感受通过作辅助线,把非直角三角形转化为直角三角形来解决问题的方法。
2.让学生经历观察、操作、实践,培养学生运用所学知识解决未知问题的能力,实现从感性到理性,从已知到新知的矛盾特征的转化过程,形成新的知识网络。
3.通过课堂为学生提供的充分从事数学活动的机会,让学生理解并掌握基本数学知识与技能,了解数形结合的思想方法,培养转化、化归的思想方法,进而获得广泛的数学活动的经验。
4.通过学习,让学生在学习活动中获得成功的体验,锻炼克服困难,战胜困难的意志,建立自信心。
5.在学生充分参与知识形成过程中,学会与人合作、交流的学习方法,形成大胆质疑、实事求是的科学态度,感受数学的严谨性及数学结论的确定性。
【教学重点】非直角三角形的解法。
【教学难点】通过作辅助线,把非直角三角形转化为直角三角形。
【教学方法】谈话法、小组合作法、指导练习法。
【教学准备】三角板【教学过程】一、探索新知(一)问题:1.在一个三角形中共有几条边?几个内角?(引出“元素”这个词语)2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?讨论复习:师:Rt△ABC的角角关系、三边关系、边角关系分别是什么?总结:直角三角形的边、角关系(板书)(1)两锐角互余∠A +∠B =90°;(2)三边满足勾股定理a 2+b 2=c 2;(3)边与角关系sinA =cosB=a c ,cosA =sinB=b c ,tanA =a b ,tanB=b a 。
利用上面这些关系,如果知道直角三角形中的两个元素,就可以求出其他元素。
由直角三角形中已知的元素,求出其他所有未知元素的过程,叫做解直角三角形。
3.在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且a=4、c=8,求这个三角形的其他元素。
(出示问题,小组研讨后,找生板书过程)解:在Rt △ABC 中,∠C=90°,根据勾股定理,a 2+b 2=c 2,a=4,c=8∴b=.344822=-在Rt △ABC 中,∠C=90°,sinB=,2184a ==c ∴∠A=30°,∠B=90°-30°=60°师:我们已知直角三角形的两边长,求出其他未知元素,这个过程叫做什么呢?师:在直角三角形中,已知两边,我们可以求出其他未知元素,在Rt △ABC 中,如果已知一边和一个锐角,你能求出这个三角形的其他元素吗?4.在Rt △ABC 中,∠C=90°,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且c=128,∠B=60°,解这个直角三角形。
人教初中数学九下 《解直角三角形》教案 (公开课获奖)
解直角三角形教学目标:理解解直角三角形的概念和条件重点:解直角三角形难点:解直角三角形的基本类型及解法28.2.1 解直角三角形理解解直角三角形的概念和条件(1)解直角三角形在直角三角形中,由元素求出元素的过程,就是解直角三角形.(2)解直角三角形的条件在直角三角形中除直角外的五个元素中,已知其中个元素(至少有一个是),就能求出其余的个未知元素,即“知二求三”.重点一:解直角三角形解直角三角形的基本类型及解法Rt△ABC中,∠C=90°已知条件解法(选择的边角关系)斜边和一直角边c,a 由sin A=,求∠A;∠B=90°-∠A; b=两直角边a,b 由tan A=,求∠A;∠B=90°-∠A; c=斜边和一锐角c,∠A ∠B=90°-∠A;a=c·sin A;b=c·cos A一直角边和一锐角a,∠A ∠B=90°-∠A;b=; c=1.(2013兰州)△ABC中,a、b、c分别是∠A、∠B∠C的对边,如果a2+b2=c2,那么下列结论正确的是( )(A)csin A=a (B)bcos B=c (C)atan A=b (D)ctan B=b2.(2013安顺)在Rt△ABC中,∠C=90°,tan A=,BC=8,则△ABC的面积为.3.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,请分别根据下列条件解直角三角形.(1)a=6,b=2;(2)c=4,∠A=60°.重点二:利用特殊角解非直角三角形非直角三角形可通过作三角形的高,构造直角三角形求解.在选择关系式时要尽量利用原始数据,直接求解,防止累积误差.4.如图所示,在△ABC中,∠A=30°,tan B=,AC=2,则AB的长是( )(A)3+(B)2+2(C)5 (D)5. (2013曲靖)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,则CD= .6.等腰三角形的三边长分别为1、1、,那么它的底角为.7.如图所示,在△ABC中,∠A=60°,∠B=45°,AB=8,求△ABC的面积(结果可保留根号).A层(基础)1.在下面的条件中,不能解直角三角形的是( )(A)已知两锐角(B)已知两条边(C)已知一边和一锐角(D)已知三条边2. 如图所示,在△ABC中,cos B=,sin C=,AC=5,则△ABC的面积是( )(A)(B)12 (C)14 (D)213. 如图所示,正三角形的内切圆半径为1,那么三角形的边长为( )(A)2 (B)2 (C)(D)34.若等腰三角形ABC的底边BC上的高为4,sin B=,则△ABC的周长为( )(A)24(B)16+4 (C)8+8 (D)16+85.在△ABC中,AB=4,AC=,∠B=60°,则BC的长为( )(A)1 (B)2 (C)3 (D)1或36.如图,已知Rt△ABC中,斜边BC上的高AD=4,cos B=,则AC= .7. 如图所示,在高为2米,∠ABC为30°的楼梯上铺地毯,地毯的长度至少应有米.8. (2013陕西)如图,四边形ABCD的对角线AC,BD相交于点O,且BD平分AC.若BD=8,AC=6,∠BOC=120°,则四边形ABCD的面积为.(结果保留根号)9. 如图所示,在Rt△ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三角形,若AB=2,求△ABC的周长.(结果保留根号).教学反思:15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习1.计算: (1))1)(1(yx x y x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. (三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高. [师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”). 2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”). [师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程). (投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD ,求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.D CA BD CABDC A B在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识. Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?DC AB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD . 3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .DC ABEDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=CE .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长. 解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标E DC A B P明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111( 2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.。
培优班初三上学期三角函数解直角三角形精品教案
三角函数解直角三角形知识点:一、锐角三角函数:在直角三角形ABC 中,∠C 是直角,如图5-11、正弦:把锐角A 的对边与斜边的比叫做∠A 的正弦,记作c a A =sin 2、余弦:把锐角A 的邻边与斜边的比叫做∠A 的余弦,记作c bA =cos3、正切:把锐角A 的对边与邻边的比叫做∠A 的正切,记作b aA =tan4、余切:把锐角A 的邻边与对边的比叫做∠A 的余切,记作abA =cot说明:由定义可以看出tanA ·cotA =l (或写成AA cot 1tan =)5、锐角三角函数:锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数 说明:锐角三角函数都不能取负值。
0< sinA < l ; 0<cosA <;l6、锐角的正弦和余弦之间的关系任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值。
即sinA =cos (90°一 A )=cosB ;cosA =sin (90°一A )=sinB7、锐角的正切和余切之间的关系任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。
即tanA =cot (90°一 A )=cotB ;cotA =tan (90°-A )= tanB 说明:式中的90°一A = B 。
8、三角函数值的变化规律(1)当角度在0°— 90°间变化时,正弦值(正切值随着角度的增大(或减小)而增大(或减小)(2)当角度在0°—90°间变化时,余弦值(余切值)随着角度的增大(或减小)而减小(或增大)。
9、同角三角函数关系公式(1)1cos sin 22=+B A ;(2)A A cot 1tan =;(3) tanA =AAcos sin 10.一些特殊角的三角函数值二、解直角三角形由直角三角形中,除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形。
九年级数学下册《解直角三角形》全章教案 新人教版
九年级数学下册《解直角三角形》全章教案新人教版九年级数学下册《解直角三角形》全章教案(新人教版)第一课时:锐角三角函数教学目标:知识目标:初步了解正弦、余弦、正切的概念;能正确地用sinA、cosA、___表示直角三角形中两边的比;熟记30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。
能力目标:逐步培养学生观察、比较、分析和概括的思维能力。
情感目标:提高学生对几何图形美的认识。
教学程序:一、探究活动1.通过特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。
2.归纳三角函数的定义。
sinA = 对边/斜边,cosA = 邻边/斜边,tanA = 对边/邻边3.例1.求如图所示的直角三角形Rt⊿ABC中的sinA、cosA、___的值。
二、探究活动二1.让学生画30°、45°、60°的直角三角形,分别求sin30°、cos45°、tan60°,并归纳结果。
sinA cosA ___30° 1/2 √3/2 √3/345° √2/2 √2/2 160°√3/2 1/2 √32.求下列各式的值。
1) sin30° + cos30°2) 2sin45° - cos30° + tan60° - tan30°三、拓展提高1.P82例4.(略)2.如图,在直角三角形ABC中,∠A = 30°,tanB = 1/3,AC = 2√3,求AB。
四、小结通过本节课的研究,我们初步了解了正弦、余弦、正切的概念,并学会了用sinA、cosA、___表示直角三角形中两边的比。
同时,我们也熟记了30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学培优学案8--解直角三角形
知识点一:锐角三角函数的定义: 一、 锐角三角函数定义:
在Rt △ABC 中,∠C=900, ∠A 、∠B 、∠C 的对边分别为a 、b 、c , 则∠A 的正弦可表示为:sinA=, ∠A 的余弦可表示为cosA=
∠A 的正切:tanA= ,它们弦称为∠A 的锐角三角函数 2、取值范围 :
例1.如图所示,在Rt △ABC 中,∠C =90°.
①斜边)(sin =A =______, 斜边)(sin =B =
;
②斜边
)
(cos =A =______,
斜边)
(
cos =
B =;
③的邻边
A A ∠=
)
(tan =______,
)
(tan 的对边
B B ∠==______.
例2. 锐角三角函数求值:
在Rt △ABC 中,∠C =90°,若a =9,b =12,则c =______,
sin A =______,cos A =______,tan A =______, sin B =______,cos B =______,tan B =______.
例3.已知:如图,Rt △TNM 中,∠TMN =90°,MR ⊥TN 于R 点,TN =4,MN =3.
求:sin ∠TMR 、cos ∠TMR 、tan ∠TMR .
类型一:直角三角形求值
1.已知Rt △ABC 中,,12,43
tan ,90==︒=∠BC A C 求AC 、AB 和cos B .
2.已知A ∠是锐角,17
8
sin =A ,求A cos ,A tan 的值
练习:1.在Rt △ABC 中,∠C =90°,若BC =1,AB tan A 的值为
A B C .12
D .2
A D E
C
B
F
D
A
B
C
2.在△ABC 中,∠C =90°,sin A=5
3
,那么tan A 的值等于( ).
A .35
B . 45
C . 34
D . 43
类型二. 利用角度转化求值:
1.已知:如图,Rt △ABC 中,∠C =90°.D 是AC 边上一点,DE ⊥AB 于E 点.
DE ∶AE =1∶2.求:sin B 、cos B 、tan B .
2.如图,角的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则.
3.如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,,则这个菱形的面积=cm 2.
第3题图 第4题图 第5题图 第6题图 4. 如图,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =,AB=8,则tan EFC ∠的值为 ( ) A.
34 B.43
C.
3
5
D.
45
5. 如图,在等腰直角三角形ABC ∆中,90C ∠=︒,6AC =,D 为AC 上一点,若1
tan 5
DBA ∠= ,
则AD 的长为( )
A .
2 C .1 D .6. 如图,在Rt △ABC 中,∠C =90°,AC =8,∠A 的平分线 AD =
3
3
16求
∠B 的度数及边BC
、AB 的长.
α
sin α=3
sin 5
A =
类型三. 化斜三角形为直角三角形
例2.已知:如图,在△ABC 中,∠BAC =120°,AB =10,
AC =5.求:
sin ∠ABC 的值.
练习:1.如图,在Rt △ABC 中,∠BAC=90°,点D 在BC 边上,且△ABD 是等边三角形.若AB=2,求△ABC 的周长.(结果保留根号)
2.已知:如图,△ABC 中,AB =9,BC =6,△ABC 的面积等于9,求sin B .
3. ABC 中,∠A =60°,AB =6 cm ,AC =4 cm ,则△ABC 的面积是
练习:1.如图,△ABC 的顶点都在方格纸的格点上,则sin A =_______.
2.如图,A 、B 、C 三点在正方形网络线的交点处,若将ABC 绕着点A 逆时针
旋转得到''B AC ∆,则'tan B 的值为 A.
41 B. 31 C.2
1
D.1 3.正方形网格中,AOB ∠如图放置,则tan AOB ∠的值是() A .5 B. 25 C.1
2
D. 2
特殊角的三角函数值
例1.求下列各式的值.
1).计算:︒-︒+︒60tan 45sin 230cos 2.2)计算:︒-︒+︒30cos 245sin 60tan 2
.
3)计算:3-
1+(2π-1)0-tan30°-tan45°4)计算:
30tan 2345sin 60cos 221
⎪⎪⎭
⎫ ⎝⎛︒-︒+︒+.
5.计算:
tan 45sin 301cos 60︒+︒
-︒
;
例2.求适合下列条件的锐角α .
2
1cos =α 33
tan =α2
22sin =
α
33)16cos(6=- α
练习:(1)已知α 为锐角,且3)30tan(0=+α,求αtan 的值
3
3 A
B
O
( 2)在ABC ∆中,若0)2
2(sin 21cos 2
=-+-B A ,B A ∠∠,都是锐角,求C ∠.。