天津历年高考文科数学试题及答案汇编十一函数和导数
高考文科数学试题分类汇编----函数与导数

函数与导数一 选择题(辽宁文)(11)函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为(A )(1-,1) (B )(1-,+∞) (C )(∞-,1-) (D )(∞-,+∞)(重庆文)3.曲线223y x x =-+在点(1,2)处的切线方程为 A .31y x =- B .35y x =-+C .35y x =+D .2y x =(重庆文)6.设11333124log ,log ,log ,,,233a b c a b c ===则的大小关系是A .a b c <<B .c b a <<C .b a c <<D .b c a <<(重庆文)7.若函数1()2f x x n =+-(2)n >在x a =处取最小值,则a =A.1+ B.1 C .3D .4(辽宁文)(6)若函数))(12()(a x x xx f -+=为奇函数,则a =(A )21 (B )32 (C )43(D )1 (上海文)15.下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为 A .2y x -=B .1y x -=C .2y x =D .13y x =(全国新课标文)(3)下列函数中,既是偶函数又在(0,)+∞单调递增的函数是(A )3y x = (B )||1y x =+ (C )21y x =-+ (D )||2x y -=(全国新课标文)(10)在下列区间中,函数()43xf x e x =+-的零点所在的区间为(A )1(,0)4- (B )1(0,)4 (C )11(,)42 (D )13(,)24(全国新课标文)(12)已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那么函数()y f x =的图象与函数|lg |y x =的图象的交点共有(A )10个 (B )9个 (C )8个 (D )1个 (全国大纲文)2.函数0)y x =≥的反函数为A .2()4x y x R =∈ B .2(0)4x y x =≥C .24y x =()x R ∈D .24(0)y x x =≥(全国大纲文)10.设()f x 是周期为2的奇函数,当0≤x≤1时,()f x =2(1)x x -,则5()2f -=A .-12B .1 4-C .14D .12(湖北文)3.若定义在R 上的偶函数()f x 和奇函数()g x 满足()()xf x gx e +=,则()g x =A .xxe e-- B .1()2x xe e -+ C .1()2xx e e -- D .1()2x xe e -- (福建文)6.若关于x 的方程x 2+mx+1=0有两个不相等的实数根,则实数m 的取值范围 A .(-1,1) B .(-2,2) C .(-∞,-2)∪(2,+∞) D .(-∞,-1)∪(1,+∞)(福建文)8.已知函数f (x )=。
天津高考文科数学含答案

2009年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷1至2页。
第II 卷3至4页。
全卷满分150分,考试时间120分钟。
考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名,座位号与本人姓名、座位号是否一致。
务必在答题卡背面规定的地方填写姓名和座位号后两位。
2.答第I 卷时、每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮檫干净后,在选涂其他答案标号。
3.答第II 卷时,必须用直径0.5毫米黑色黑水签字笔在答题卡上书写,要求字体工整、笔迹清晰。
作图题可先用铅笔在答题卡规定的位置绘出,确认后在用0.5毫米的黑色墨色签字笔清楚。
必须在标号所指示的答题区域作答,超出答题卡区域书写的答案无效,在试题卷、草稿纸上答题无效。
4.考试结束,务必将试题卷和答题卡一并上交。
参考公式:S 表示底面积,h 表示底面的高如果事件A 、B 互斥,那么棱柱体积V Sh =P(A+B)=P(A)+P(B)棱锥体积13VSh =第I 卷(选择题共50分)一.选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
1.i 是虚数单位,52ii=- A.12i + B.12i -- C.12i - D.12i -+2.设变量x,y 满足约束条件3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数23z x y =+的最小值为A.6B.7C.8D.233.设,x R ∈则"1"x =是3""x x =的 A.充分而不必要条件B.必要而不充分条件 C.充要条件D.既不充分也不必要条件4.设双曲线()22220x y a b a b-=>>的虚轴长为2,焦距为A.y =B.2y x =±C.2y x =±D.12y x =± 5.设0.3113211log 2,log ,32a b c ⎛⎫=== ⎪⎝⎭,则A.a b c <<B.a c b <<C.b c a <<D.b a c <<6.阅读右面的程序框图,则输出的S =A.14B.20C.30D.557.已知函数()()sin ,04f x x x R πωω⎛⎫=+∈> ⎪⎝⎭的最小正周期为π,将()y f x =的图像向左平移ϕ个单位长度,所得图像关于y 轴对称,则ϕ的一个值是A.2πB.38πC.4πD.8π 8.设函数()246,06,0x x x f x x x ⎧-+≥=⎨+<⎩,则不等式()()1f x f >的解集是A.()()3,13,-+∞B.()()3,12,-+∞C.()()1,13,-+∞ D.()(),31,3-∞-9.设,,1,1x y R a b ∈>>,若3,xya b a b ==+=11x y+的最大值为 A.2B.32C.1D.1210.设函数()f x 在R 上的导函数为()'f x ,且()()22'f x xf x x +>,下面的不等式在R 上恒成立的是A.()0f x > B.()0f x < C.()f x x > D.()f x x <第II 卷二.填空题:本大题共6小题,每小题4分,共24分,把答案填在答题卡的相应位置。
2011年全国高考文科数学试题及答案-天津

2011年普通高等学校招生全国统一考试(天津卷)数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷注意事项: 1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式: 如果事件A ,B 互斥,那么 棱柱的体积公式V Sh =()()()P A B P A P B ⋃=+其中S 表示棱柱的底面面积。
h 表示棱柱的高。
一、选择题:在每小题给出的四个选项中只有一项是符合题目要求的.1.i 是虚数单位,复数131ii--= A .2i - B .2i + C .12i --D .12i -+2.设变量x ,y 满足约束条件1,40,340,x x y x y ≥⎧⎪+-≤⎨⎪-+≤⎩则目标函数3z x y =-的最大值为A .-4B .0C .43D .43.阅读右边的程序框图,运行相应的程序,若输入x 的值为-4,则输出y 的值为 A .,0.5 B .1 C .2 D .44.设集合{}{}|20,|0A x R x B x R x =∈->=∈<,{}|(2)0C x R x x =∈->, 则“x A B ∈⋃”是“x C ∈”的 A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件5.已知244log 3.6,log 3.2,log 3.6a b c ===则A .a b c >>B .a c b >>C .b a c >>D .c a b >>6.已知双曲线22221(0,0)x y a b a b-=>>的左顶点与抛物线22(0)y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的准线的交点坐标为(-2,-1),则双曲线的焦距为( )A .23B .25C .43D .457.已知函数()2sin(),f x x x R ωϕ=+∈,其中0,,()f x ωπϕπ>-<≤若的最小正周期为6π,且当2x π=时,()f x 取得最大值,则( )A .()f x 在区间[2,0]π-上是增函数B .()f x 在区间[3,]ππ--上是增函数C .()f x 在区间[3,5]ππ上是减函数D .()f x 在区间[4,6]ππ上是减函数8.对实数a b 和,定义运算“⊗”:,1,,1.aab a b b a b -≤⎧⊗=⎨->⎩设函数2()(2)(1),f x x x x R =-⊗-∈。
2011年高考文科数学试题汇编----函数与导数(教师用)

函数与导数一、选择题(安徽文5)若点(a,b)在lg y x = 图像上,a ≠1,则下列点也在此图像上的是(A )(a1,b ) (B) (10a,1-b) (C) (a10,b+1) (D)(a 2,2b) 【答案】D 【命题意图】本题考查对数函数的基本运算,考查对数函数的图像与对应点的关系.【解析】由题意lg b a =,lg lg b a a 22=2=,即()2,2a b 也在函数lg y x = 图像上.(安徽文10) 函数()()n f x ax x 2=1-g 在区间〔0,1〕上的图像如图所示,则n 可 能是(A )1 (B) 2(C) 3 (D) 4【答案】A 【命题意图】本题考查导数在研究函数单调性中的应用,考查函数图像,考查思维的综合能力.难度大. 【解析】代入验证,当1n =时,()()()f x ax x a x x x 232=1-=-2+g,则()()f x a x x 2'=3-4+1,由()()f x a x x 2'=3-4+1=0可知,121,13x x ==,结合图像可知函数应在10,3⎛⎫⎪⎝⎭递增,0.1xyO0.在1,13⎛⎫⎪⎝⎭递减,即在13x =取得最大值,由()()f a 21111=⨯1-=3332g ,知a 存在.故选A.(北京文8)已知点()0,2A ,()2,0B ,若点C 在函数2y x =的图象上,则使得ABC ∆的面积为2的点C 的个数为 A. 4 B. 3 C. 2 D. 1 【答案】A(福建文6)若关于x 的方程x 2+mx +1=0有两个不相等的实数根,则实数m 的取值范围是A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞) 【答案】C(福建文8)已知函数f(x)=⎩⎨⎧2x , x >0x +1,x ≤0,若f(a)+f(1)=0,则实数a 的值等于A .-3B .-1C .1D .3 【答案】A(福建文10)若a >0,b >0,且函数f(x)=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于A .2B .3C .6D .9 【答案】D(广东文4)函数1()lg(1)1f x x x=++-的定义域是 ( ) A .(,1)-∞- B .(1,)+∞ C .(1,1)(1,)-+∞ D .(,)-∞+∞ 【答案】C(湖南文7)曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为( )A .12- B .12C .22-D .22【答案】B 【解析】22cos (sin cos )sin (cos sin )1'(sin cos )(sin cos )x x x x x x y x x x x +--==++,所以 2411'|2(sincos )44x y πππ===+。
天津历年高考文科数学试题及答案汇编十一函数和导数

天津历年高考文科数学试题及答案汇编十一函数和导数1.函数(0≤x≤4)的反函数是什么?A。
y=(x-1) (1≤x≤3)B。
y=(x-1) (0≤x≤4)C。
y=x-1 (1≤x≤3)D。
y=x-1 (0≤x≤4)2.已知函数,则不等式f(x)≥x的解集是什么?A。
[-1,1]B。
[-2,2]C。
[-2,1]D。
[-1,2]3.若对于任意的x∈[a,2a],都有y∈[a,a]满足方程loga x+loga y=3,这时a的取值集合为什么?A。
{a|1<a≤2}B。
{a|a≥2}C。
{a|2≤a≤3}D。
{2,3}4.设a=log2,b=log3,c=(),则()0.3A。
a<b<cB。
a<c<bC。
b<c<aD。
b<a<c5.已知函数的最小正周期为π,将y=f(x)的图象向左平移|φ|个单位长度,所得图象关于y轴对称,则φ的一个值是多少?A。
B。
C。
D。
6.设函数的解集是什么?A。
(-3,1)∪(3,+∞)B。
(-3,1)∪(2,+∞)C。
(-1,1)∪(3,+∞)D。
(-∞,-3)∪(1,3)7.若a=b=3,a+b=2,则大值是多少?A。
2B。
C。
1D。
8.下面的不等式在___成立的是什么?A。
f(x)>B。
f(x)<C。
f(x)>xD。
f(x)<x9.若关于x的不等式(2x-1)<ax的解集中整数恰好有3个,则实数a的取值范围是什么?10.函数f(x)=e+x-2的零点所在的一个区间是什么?A。
(-2,-1)B。
(-1,)C。
(,1)D。
(1,2)11.设a=log5 4,b=(log5 3),c=log4 5,则什么是正确的?A。
a<c<bB。
b<c<aC。
a<b<cD。
b<a<c1.函数f(x)=lgx的单调递减区间是什么?单调递减区间为(0,1]。
2.已知函数f(x)=,若函数y=f(x)﹣a|x|恰有4个零点,则实数a的取值范围为什么?实数a的取值范围为(-∞,-2]∪[2,+∞)。
天津市近五年高考数学真题分类汇总

天津市近五年高考数学试题分类汇总选择题1:—复数[2011·天津卷] i 是虚数单位,复数131ii--= A .2i + B .2i - C .12i -+ D .12i --【答案】A. 【解析】13(13)(1)4221(1)(1)2i i i ii i i i --+-===---+. 【2010】 (1)i 是虚数单位,复数1312ii-+=+( )(A)1+i (B)5+5i (C)-5-5i (D)-1-i 【2009,1】i 是虚数单位,52ii-=( ) (A )1+2i (B )-1-2i (C )1-2i (D )-1+2i 【考点定位】本小题考查复数的运算,基础题。
解析:i i i i i 215)2(525+-=+=-,故选择D 。
【2008】1. i 是虚数单位,()=-+113i i i ( ) (A) 1- (B) 1 (C) i - (D) i A【2007】1. i 是虚数单位32,1i i=- ( )A.1i +B.1i -+C.1i -D.1i --【答案】C【分析】332(1)2(1)211(1)(1)2i i i i i i i i i +-+===-+--+,故选C 复数概念、复数运算、共轭复数、复数几何意义。
复数运算技巧:2344414243123(1)1,,11,,1,,0nn n n nn n n i i i i i i iiii i iii++++++=-=-====-=-+++=2(2)2(1)i i =±±11(3),11i ii i i i+-==--+3223(4)1,,0ωωωωωωω===++=设 选择题2:—充要条件与命题[2011·天津卷] 设,,x y R ∈则“2x ≥且2y ≥”是“224x y +≥” 的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件 【答案】A【解析】当2y 2≥≥且x 时,一定有422≥+y x ;反过来当422≥+y x ,不一定有2y 2≥≥且x ,例如0,4=-=y x 也可以,故选A【2010】(3)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是 (A)若f(x) 是偶函数,则f(-x)是偶函数 (B )若f(x)不是奇函数,则f(-x)不是奇函数 (C )若f(-x)是奇函数,则f(x)是奇函数 (D )若f(-x)不是奇函数,则f(x)不是奇函数 B【2009】(3)命题“存在0x ∈R ,02x ≤0”的否定是(A )不存在0x ∈R, 02x>0 (B )存在0x ∈R, 02x ≥0(C )对任意的x ∈R, 2x ≤0 (D )对任意的x ∈R, 2x>0【考点定位】本小考查四种命题的改写,基础题。
高考文科数学导数真题汇编(带答案)
高考文科数学导数真题汇编(带答案)高考数学文科导数真题汇编答案一、客观题组4.设函数f(x)在R上可导,其导函数f'(x),且函数f(x)在x=-2处取得极小值,则函数y=xf'(x)的图象可能是。
5.设函数f(x)=x^2-2x,则f(x)的单调递减区间为。
7.设函数f(x)在R上可导,其导函数f'(x),且函数f(x)在x=2处取得极大值,则函数y=xf'(x)的图象可能是。
8.设函数f(x)=1/(2x-lnx),则x=2为f(x)的极小值点。
9.函数y=1/(2x-lnx)的单调递减区间为(0,1]。
11.已知函数f(x)=x^2+bx+c的图象经过点(1,2),且在点(2,3)处的切线斜率为4,则b=3.12.已知函数f(x)=ax^2+bx+c的图象过点(1,1),且在点(2,3)处的切线斜率为5,则a=2.二、大题组2011新课标】21.已知函数f(x)=aln(x/b)+2,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.(1) 求a、b的值;(2) 证明:当x>1,且x≠b时,f(x)>2ln(x/b)。
解析】1) f'(x)=a/(xlnb)+2/x,由于直线x+2y-3=0的斜率为-1/2,且过点(1,f(1)),解得a=1,b=1.2) 由(1)知f(x)=ln(x)+1,所以f(x)-2ln(x/b)=ln(x/b)+1>0,当x>1,且x≠b时,f(x)>2ln(x/b)成立。
2012新课标】21.设函数f(x)=ex-ax-2.(1) 求f(x)的单调区间;(2) 若a=1,k为整数,且当x>0时,(x-k)f'(x)+x+1>0,求k的最大值。
解析】1) f(x)的定义域为(-∞,+∞),f'(x)=ex-a,若a≤0,则f'(x)>0,所以f(x)在(-∞,+∞)单调递增。
真题天津市高考数学文科试题含答案和解释
适用精选文件资料分享【真题】 2018 年天津市高考数学(文科)试题( 含答案和解说 )绝密★启用前 2018 年一般高等学校招生全国一致考试(天津卷)数学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 150 分,考试用时 120 分钟。
第Ⅰ卷 1 至 2 页,第Ⅱ卷 3至5 页。
答卷前,考生务势必自己的姓名、准考据号填写在答题考上,并在规定地点粘贴考试用条形码。
答卷时,考生务势必答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第Ⅰ卷注意事项: 1 .每题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其余答案标号。
2 .本卷共 8 小题,每题5 分,共 40 分。
参照公式:?假如事件 A ,B 互斥,那么P(A∪B)=P(A)+P(B) . ?棱柱的体积公式 V=Sh. 此中 S 表示棱柱的底面面积,h 表示棱柱的高.?棱锥的体积公式,此中表示棱锥的底面积,h 表示棱锥的高 . 一.选择题:在每题给出的四个选项中,只有一项为哪一项吻合题目要求的 . 1. 设会集,,,则 A. B. C. D. 【答案】C【分析】分析:由题意第一进行并集运算,而后进行交集运算即可求得最后结果 . 详解:由并集的定义可得:,联合交集的定义可知: . 本题选择 C选项 . 点睛:本题主要观察并集运算、交集运算等知识,意在观察学生的计算求解能力 . 2. 设变量满足拘束条件则目标函数的最大值为 A. 6 B. 19 C. 21 D. 45【答案】C【解析】分析:由题意第一画出可行域,而后联合目标函数的分析式整理计算即可求得最后结果 . 详解:绘制不等式组表示的平面地域以下列图,联合目标函数的几何意义可知目标函数在点 A 处获得最大值,联立直线方程:,可得点 A的坐标为:,据此可知目标函数的最大值为: . 本题选择 C选项 . 3. 设,则“”是“ ”的 A. 充分而不用要条件 B. 必需而不充分条件 C. 充要条件 D. 既不充分也不用要条件【答案】 A【分析】分析:求解三次不等式和绝对值不等式,据此即可确立两条件的充分性和必需性能否成马上可 . 详解:求解不等式可得,求解绝对值不等式可得或,据此可知:“ ” 是“”的充分而不用要条件 . 本题选择 A选项 . 点睛:本题主要观察绝对值不等式的解法,充分不用要条件的判断等知识,意在观察学生的转变能力和计算求解能力 . 4. 阅读以下列图的程序框图,运转相应的程序,若输入的值为 20,则输出的值为 A. 1 B. 2 C. 3 D.4【答案】 B 【分析】分析:由题意联合流程图运转程序即可求得输出的数值 . 详解:联合流程图运转程序以下:第一初始化数据:,,结果为整数,履行,,此时不满足;,结果不为整数,履行,此时不满足;,结果为整数,履行,,此时满足;跳出循环,输出 . 本题选择 B 选项 . 点睛:鉴识、运转程序框图和完美程序框图的思路: (1) 要明确程序框图的序次结构、条件结构和循环结构. (2) 要鉴识、运转程序框图,理解框图所解决的实质问题. (3) 依据题目的要求完成解答并考据. 5. 已知,则的大小关系为 A. B. C. D.【答案】 D 【分析】分析:由题意联合对数的性质,对数函数的单调性和指数的性质整理计算即可确立a,b,c的大小关系.详解:由题意可知:,即,,即,,即,综上可得: . 本题选择 D 选项 . 点睛:关于指数幂的大小的比较,我们平时都是运用指数函数的单调性,但很多时候,因幂的底数或指数不同样,不可以直接利用函数的单调性进行比较.这就一定掌握一些特别方法.在进行指数幂的大小比较时,若底数不一样,则第一考虑将其转变为同底数,而后再依据指数函数的单调性进行判断.关于不一样底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又正确. 6. 将函数的图象向右平移个单位长度,所得图象对应的函数 A. 在区间上单调递加 B. 在区间上单调递减 C. 在区间上单调递加 D. 在区间上单调递减【答案】 A 【分析】分析:第一确立平移以后的对应函数的分析式,而后逐个观察所给的选项能否吻合题意即可 . 详解:由函数图象平移变换的性质可知:将的图象向右平移个单位长度以后的分析式为: .则函数的单调递加区间满足:,即,令可得函数的一个单调递加区间为,选项 A正确,B错误;函数的单调递减区间满足:,即,令可得函数的一个单调递减区间为,选项 C,D错误;本题选择 A 选项 . 点睛:本题主要观察三角函数的平移变换,三角函数的单调区间等知识,意在观察学生的转变能力和计算求解能力 . 7. 已知双曲线的离心率为 2,过右焦点且垂直于轴的直线与双曲线交于两点 . 设到双曲线的同一条渐近线的距离分别为和,且则双曲线的方程为 A. B. C. D. 【答案】 A 【分析】分析:由题意第一求得 A,B 的坐标,而后利用点到直线距离公式求得 b 的值,以后求解 a 的值即可确立双曲线方程 . 详解:设双曲线的右焦点坐标为(c>0),则,由可得:,没关系设:,双曲线的一条渐近线方程为,据此可得:,,则,则,双曲线的离心率:,据此可得:,则双曲线的方程为 . 本题选择 A 选项 . 点睛:求双曲线的标准方程的基本方法是待定系数法.详尽过程是先定形,再定量,即先确立双曲线标准方程的形式,而后再依据a,b,c,e 及渐近线之间的关系,求出 a,b 的值.假如已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为,再由条件求出λ的值即可. 8. 在如图的平面图形中,已知 , 则的值为 A. B. C. D. 0 【答案】 C 【分析】分析:连接 MN,联合几何性质和平面向量的运算法规整理计算即可求得最后结果 . 详解:以下列图,连接 MN,由可知点分别为线段上凑近点的三均分点,则,由题意可知:,,联合数目积的运算法规可得: . 本题选择 C选项 . 点睛:求两个向量的数目积有三种方法:利用定义;利用向量的坐标运算;利用数目积的几何意义.详尽应用时可依据已知条件的特色来选择,同时要注意数目积运算律的应用.第Ⅱ卷注意事项: 1 .用黑色墨水的钢笔或署名笔将答案写在答题卡上。
2011年天津高考数学文科试卷(带答案)
2011天津高考数学文科一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i 是虚数单位,复数13i1i-=- ( ). A .2i - B .2i + C .12i -- D .12i -+【测量目标】复数的代数形式四则运算.【考查方式】给出复数的代数形式,对其进行化简. 【参考答案】A 【试题解析】()()()()13i 1i 13i 42i2i 1i 1i 1i 2-+--===---+.故选A . 2.设变量,x y ,满足约束条件1,40,340,x x y x y ⎧⎪+-⎨⎪-+⎩………则目标函数3z x y =-的最大值为 ( ).A .4-B .0C .43D .4【测量目标】二元线性规划求目标函数的最值.【考查方式】考查了二元一次不等式的几何意义,能用平面区域表示二元一次不等式组. 【参考答案】D【试题解析】画出可行域为图中的ABC △的区域,直线3y x z =-经过()2,2A 时,4z =最大.故选D .3.阅读右边的程序框图,运行相应的程序,若输入x 的值为4-,则输出y 的值 为 ( ).A .0.5B .1C .2 D.4 【测量目标】循环结构的程序框图.【考查方式】给出程序框图输入值,求输出值. 【参考答案】C【试题解析】运算过程依次为:输入4x =-43⇒->437x ⇒=--=73⇒>734x =-=43⇒> 431x ⇒=-=13⇒<122y ⇒==⇒输出2.故选C.4.设集合{}20A x x =∈->R ,{}0B x x =∈<R ,(){}20C x x x =∈->R ,则“x A B ∈ ”是“x C ∈”的 ( ). A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 【测量目标】充分必要条件.【考查方式】考查了必要条件,充分条件的关系及集合的概念 【参考答案】C【试题解析】{0A B x x =∈<R 或}2x >,(){}{20=0C x x x x x =∈->∈<R R 或}2x >所以A B C = .所以“x A B ∈ ”是“x C ∈”的充分必要条件.故选C.5.已知2log 3.6a =,4log 3.2b =,4log 3.6c =,则 ( ). A .a b c >> B .a c b >> C .b a c >> D .c a b >> 【测量目标】对数函数化简与求值.【考查方式】考查了对数函数的运算性质与单调性,利用中间值判断对数的大小. 【参考答案】B【试题解析】因为224log 3.6log 3.6a ==,而23.6 3.6 3.2>>,又函数4log y x =是()0,+∞上的增函数,则2444log 3.6log 3.6log 3.2>>. 所以a c b >>.故选B .6.已知双曲线22221x y a b-=()0,0a b >>的左顶点与抛物线()220y px p =>的焦点的距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为()2,1--,则双曲线的焦距为 ( ).A .B .C .D .【测量目标】圆锥曲线之间的位置关系.【考查方式】考查了双曲线与抛物线的定义、标准方程,知道其简单的几何性质. 【参考答案】B【试题解析】因为双曲线的一条渐近线与抛物线的准线的交点坐标为()2,1--,则22p-=-, 所以4p =.(步骤1)又因为双曲线22221x y a b-=()0,0a b >>的左顶点与抛物线()220y px p =>的焦点的距离为4,则42pa +=,所以2a =.(步骤2) 因为点()2,1--在双曲线的一条渐近线上,则()12ba-=-,即2a b =,所以1,b c ==2c =(步骤3)7.已知函数()()2sin f x x ωϕ=+,x ∈R ,其中0ω>,π<πϕ-….若()f x 的最小正周期为6π,且当π2x =时,()f x 取得最大值,则 ( ). A .()f x 在区间[]2π,0-上是增函数 B .()f x 在区间[]3π,π--上是增函数 C .()f x 在区间[]3π,5π上是减函数 D .()f x 在区间[]4π,6π上是减函数 【测量目标】三角函数的最值.【考查方式】考查了正弦函数的性质(如单调性,最值,周期等) 【参考答案】A【试题解析】由题设得ππ,222π6π,ωϕω⎧+=⎪⎪⎨⎪=⎪⎩ 解得13ω=,π3ϕ=.所以已知函数为()π2sin 33x f x ⎛⎫=+ ⎪⎝⎭.(步骤1) 其增区间满足πππ2π2π2332x k k -+++剟,k ∈Z .(步骤2) 解得5π6ππ6π2k x k -++剟,k ∈Z .(步骤3)取0k =得5ππ2x -剟,所以5π,π2⎡⎤-⎢⎥⎣⎦为一个增区间,因为[]5π2π,0,π2⎡⎤-⊆-⎢⎥⎣⎦,所以()f x 在区间[]2π,0-上是增函数.故选A.(步骤4) 8.对实数a 和b ,定义运算“⊗”:,1,,1,a ab a b b a b -⎧⊗=⎨->⎩…设函数()()()221f x x x =-⊗-,x ∈R .若函数()y f x c =-的图象与x 轴恰有两个公共点,则实数c 的取值范围是 ( ).A .(]()1,12,-+∞B .(](]2,11,2--C .()(],21,2-∞-D .[]2,1--【测量目标】函数图像的应用.【考查方式】考查了给一个新公式结合二次函数图像,了解函数的零点与方程根的联系. 【参考答案】B【试题解析】由题设()22,12,1,12x x f x x x x ⎧--=⎨-<->⎩或剟(步骤1)画出函数的图象,函数图象的四个端点(如图)为()2,1A ,,()2,2B ,()1,1C --,()1,2D --.(步骤2)从图象中可以看出,直线y c =穿过点B ,点A 之间时,直线y c =与图象有且只有两个公共点,同时,直线y c =穿过点C ,点D 时,直线y c =与图象有且只有两个公共点,所以实数c 的取值范围是(](]2,11,2-- .故选B.(步骤3)第Ⅱ卷二、填空题:本大题共6小题,每小题5分,共30分.9.已知集合{}12A x x =∈-<R ,Z 为整数集,则集合A Z 中所有元素的和等于 .【测量目标】集合的基本运算.【考查方式】考查了集合的概念及交集运算. 【参考答案】3【试题解析】解集合A 得13x -<<,则{}0,1,2A =Z ,所有元素的和等于0123++=.10.一个几何体的三视图如右图所示(单位:m ),则该几何体的体积为 3m .【测量目标】由三视图求几何体的体积.【考查方式】考查了学会掌握三视图的画法及几何体的体积计算公式. 【参考答案】4【试题解析】几何体是由两个长方体组合的.体积为1211124V =⨯⨯+⨯⨯=.11.已知{}n a 是等差数列,n S 为其前n 项和,n ∈N +.若316a =,2020S =,则10S 的值为 .【测量目标】等差数列的通项公式及前n 项和公式. 【考查方式】考查了已知等差数列求前n 项和. 【参考答案】110【试题解析】设公差为d ,由题设31201216,2019020.a a d S a d =+=⎧⎨=+=⎩解得2d =-,120a =.()10110451020452110S a d =+=⨯+⨯-=.12.已知22log log 1a b +…,则39ab+的最小值为 . 【测量目标】基本不等式求最值.【考查方式】考查了用基本不等式解决最值问题及对数函数运算性质. 【参考答案】18【试题解析】因为22log log 1a b +…,则2log 1ab …,2ab …,24a b …3918a b +=厖,当且仅当39,2,a b a b ⎧=⎨=⎩即2a b =时,等号成立,所以39a b+的最小值为18.13.如图,已知圆中两条弦AB 与CD 相交于点F ,E 是AB延长线上一点,且DF CF ==::4:2:1AF FB BE =,若CE 与圆相切,则线段CE 的长为 .【测量目标】圆的性质的应用.【考查方式】考查了直线与圆的位置关系及运用代数方法解决几何问题的思想.【参考答案】2【运算性质】因为::4:2:1AF FB BE =,所以设BE a =,2FB a =,4AF a =.由相交弦定理,242DF CF AF FB a a ===, 所以12a =,12BE =,772AE a ==.因为CE 与圆相切,由切割线定理,2177224CE AE BE === .所以2CE =. 14. 已知直角梯形ABCD 中,//AD BC ,90ADC ∠=︒,2AD =,1BC =,P 是腰DC 上的动点,则3PA PB +的最小值为 .【测量目标】平面向量在平面几何的应用.【考查方式】考查了几何与代数相结合求解最值问题 【参考答案】5【试题解析】解法1 .以D 为坐标原点,DA 所在直线为x 轴,DC 所在直线为y 轴,建立如图的直角坐标系.由题设,()2,0A ,设()0,C c ,()0,P y ,则()1,B c .()2,PA y =- ,()1,PB c y =-. ()35,34PA PB c y +=-.(步骤1)35PA PB += ,(步骤2)当且仅当34cy =时,等号成立,于是, 当34cy =时,3PA PB + 有最小值5.(步骤3)解法2 . 以相互垂直的向量,为基底表示3PA PB +,得()533332P A P B D A D P P C C B D A P C D P +=-++=+- .(步骤1) 又P 是腰DC 上的动点,即PC 与共线,于是可设PC DP λ=,有53(31)2PA PB DA DP λ+=+- .所以2222553(31)(31)42PA PB DA DP DA DP λλ⎡⎤+=+-+⨯-⎣⎦(步骤2) 即 ()()22222533125314PA PB DA DP DP λλ⎡⎤+=+-=+-⎣⎦ . 由于P 是腰DC 上的动点,显然当31=λ,即13PC DP = 时,所以3PA PB +有最小值5.(步骤3)解法3 .如图,3PB PF =,设E 为AF 的中点,Q 为AB 的中点,则12QE BF PB ==,32PA PB PA PF PE +=+=, ①(步骤1)因为PB PQ PE += ,PB PQ QB -= .则22222222PB PQ PB PQ PB PQ PE QB ++-=+=+ . ②(步骤2)(实际上,就是定理:“平行四边形的对角线的平方和等于各边的平方和”) 设T 为DC 的中点,则TQ 为梯形的中位线,()1322TQ AD BC =+=. 设P 为CT 的中点,且设,CP a PT b ==,则221PB a =+ ,2294PQ b =+ ,()2214QB a b =++ ,代入式②得()()222222912221244PB PQ a b PE a b ⎛⎫+=+++=+++ ⎪⎝⎭ ,(步骤3)于是()22252544PE a b =+- …,于是25PE …,当且仅当a b =时,等号成立. 由式①,325PA PB PE +=…,所以3PA PB +有最小值5.(步骤4)三、解答题:本大题共6小题,共80分。
天津高考文科数学试题及答案详细解析
2011年天津高考文科数学试题及答案详细解析一.选择题文数1. L4[2011·天津卷] i 是虚数单位,复数131ii--= 【答案】A 【解析】13(13)(1)4221(1)(1)2i i i ii i i i --+-===---+. 文数2. E5[2011·天津卷] 设变量x ,y 满足约束条件【答案】D【解析】可行域如图:联立40340x y x y ++=⎧⎨-+=⎩解得⎩⎨⎧==22y x 当目标直线3z x y =-移至(2.2)时,3z x y =-有最大值4.文数3.L1 [2011·天津卷] 阅读右边的程序框图,运行相应的程序, 【答案】C【解析】当4x =-时,37x x =-=; 当7x =时,34x x =-= 当4x =时,31|3|<=-=x x , ∴22y '==.文数4. A2[2011·天津卷] 设集合{}{}|20,|0A x R x B x R x =∈->=∈< 【答案】C【解析】∵{}20A x kx =∈->,{}0B x kx =∈<,∴{0A B x x ⋃=<,或}2x >,又∵}{{(2)00C x k x x x k x =∈->=∈<或}2x >, ∴A B C ⋃=,即“x A B ∈⋃”是“x C ∈”的充分必要条件. 文数5.B7 [2011·天津卷] 已知244log 3.6,log 3.2,log 3.6a b c === 【答案】Bxyo12 34 -1-2-3-412 3 4 x=1x-3y+4=0x+y-4=0【解析】∵ 3.6222log log 1a =>=,又∵4log x y =为单调递增函数, ∴ 3.2 3.64444log log log 1<<=,∴b c a <<.文数6.H8 [2011·天津卷]【答案】B【解析】双曲线22215x y a -=的渐近线为by x a=±,由双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1)得22p-==,即4p =, 又∵42=+a p ,∴2a =,将(-2,-1)代入by x a=得1b =, ∴22415c a b =+=+=,即225c =.文数7.C4 [2011·天津卷]【答案】A【解析】∵πωπ62=,∴31=ω.又∵12,322k k z πππ⨯+=+∈且4ππ-<<,∴当0k =时,1,()2sin()333f x x ππϕ==+,要使()f x 递增,须有122,2332k x k k z πππππ-≤+≤+∈,解之得566,22k x k k z ππππ-≤≤+∈,当0k =时,522x ππ-≤≤,∴()f x 在5[,]22ππ-上递增.文数8. B5[2011·天津卷]【答案】B【解析】()()⎪⎩⎪⎨⎧>----≤----=112,112,2)(2222x x x x x x x x f⎩⎨⎧>-<-≤≤--=2,1,121,22x x x x x 或 则()f x 的图象如图,∵函数c x f y -=)(的图象与x 轴恰有两个公共点,∴函数()y f x =与y c =的图象有两个交点,由图象可得21,12,c c -<≤<≤或. 二.填空题文数9.A1 [2011·天津卷] 已知集合{}|12,A x R x Z =∈-<为整数集, 【答案】3【解析】{}}{1213A x k x x x ∈-<=-<<.∴{}2,1,0=Z A I ,即.3210=+= 文数10.G2 [2011·天津卷] 一个几何体的三视图如图所示(单位:m ),则 【答案】4【解析】2111124v =⨯⨯+⨯⨯=.文数11. D2[2011·天津卷] 已知{}n a 为等差数列,n S 为 【答案】110【解析】设等差数列的首项为1a ,公差为d ,由题意得,()⎪⎩⎪⎨⎧=-⨯⨯+==+=202219202016212013a S d a a ,解之得120,2a d ==-,∴101091020(2)1102s ⨯=⨯+⨯-=. 文数12. [2011·天津卷] 已知22log log 1a b +≥,则39a b+的【答案】18【解析】∵1log log log 222≥=+abba, ∴2ab ≥, ∴18323233233932222=≥=⋅≥+=++abb a b a b aba.文数13. N1 [2011·天津卷] 如图已知圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一点,且::4:2:1.DF CF AF FB BE ===若CE 与圆相切,则CE 的长为________.【答案】27 【解析】设k AF 4=,k BF 2=,k BE =,由BF AF FC DF •=•得282k =,即21=k . ∴27,21,1,2====AE BE BF AF , 由切割定理得4727212=⨯=•=EA BE CE ,∴27=CE . 文数14. F2[2011·天津卷] 已知直角梯形ABCD 中,AD //BC , 【答案】5【解析】建立如图所示的坐标系,设PC h =,则(2,0),(1,)A B h ,设(0,),(0)P y y h ≤≤则(2,),(1,)PA y PB h y =-=-u u u r u u u r,∴2325(34)255PA PB h y +=+-≥=u u u r u u u r .三、解答题文数15. K2[2011·天津卷] 编号为1216,,,A A A ⋅⋅⋅的16名篮球运动员在某次训练比赛中的得 文数16. C9[2011·天津卷] 在△ABC 中,内角,,A B C 的对边分别为,,a b c 文数17. G12[2011·天津卷] 如图,在四棱锥P ABCD -中,底面ABCD 为 平行四边形,045ADC ∠=,1AD AC ==, 文数18.H5[2011·天津卷]ABCD oxy文数19. B12[2011·天津卷] 已知函数32()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. 文数20. D5[2011·天津卷]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天津历年高考文科数学试题及答案汇编十一函数和导数(2008-2018)试题1、3.(5分)(2008天津)函数(0≤x≤4)的反函数是()A.y=(x﹣1)2(1≤x≤3)B.y=(x﹣1)2(0≤x≤4)C.y=x2﹣1(1≤x≤3)D.y=x2﹣1(0≤x≤4)2、8.(5分)(2008天津)已知函数,则不等式f(x)≥x2的解集是()A.[﹣1,1] B.[﹣2,2] C.[﹣2,1] D.[﹣1,2]3、10.(5分)(2008天津)设a>1,若对于任意的x∈[a,2a],都有y∈[a,a2]满足方程log a x+log a y=3,这时a的取值集合为()A.{a|1<a≤2}B.{a|a≥2} C.{a|2≤a≤3}D.{2,3}4、5.(5分)(2009天津)设a=log2,b=log3,c=()0.3,则()A.a<b<c B.a<c<b C.b<c<a D.b<a<c5、7.(5分)(2009天津)已知函数的最小正周期为π,将y=f(x)的图象向左平移|φ|个单位长度,所得图象关于y轴对称,则φ的一个值是()A.B.C.D.6、8.(5分)(2009天津)设函数则不等式f(x)>f(1)的解集是()A.(﹣3,1)∪(3,+∞)B.(﹣3,1)∪(2,+∞)C.(﹣1,1)∪(3,+∞)D.(﹣∞,﹣3)∪(1,3)7、9.(5分)(2009天津)设x,y∈R,a>1,b>1,若a x=b y=3,a+b=2的最大值为()A.2 B.C.1 D.8、10.(5分)(2009天津)设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,下面的不等式在R内恒成立的是()A.f(x)>0 B.f(x)<0 C.f(x)>x D.f(x)<x9、16.(4分)(2009天津)若关于x的不等式(2x﹣1)2<ax2的解集中整数恰好有3个,则实数a的取值范围是.10、4.(5分)(2010天津)函数f(x)=e x+x﹣2的零点所在的一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)11、6.(5分)(2010天津)设a=log54,b=(log53)2,c=log45则()A.a<c<b B.b<c<a C.a<b<c D.b<a<c12、10.(5分)(2010天津)设函数g(x)=x2﹣2,f(x)=,则f(x)的值域是()A.B.[0,+∞)C.D.13、16.(4分)(2010天津)设函数f(x)=x﹣,对任意x∈[1,+∞),f(mx)+mf(x)<0恒成立,则实数m的取值范围是.14、5.(5分)(2011天津)已知a=log23.6,b=log43.2,c=log43.6则()A.a>b>c B.a>c>b C.b>a>c D.c>a>b15、8.(5分)(2011天津)对实数a与b,定义新运算“⊗”:a⊗b=.设函数f(x)=(x2﹣2)⊗(x﹣1),x∈R.若函数y=f(x)﹣c的图象与x轴恰有两个公共点,则实数c的取值范围是()A.(﹣1,1]∪(2,+∞) B.(﹣2,﹣1]∪(1,2] C.(﹣∞,﹣2)∪(1,2] D.[﹣2,﹣1]16、12.(5分)(2011天津)已知log2a+log2b≥1,则3a+9b的最小值为.17、4.(5分)(2012天津)已知a=21.2,b=()﹣0.8,c=2log52,则a,b,c的大小关系为.y=cos2x,x∈R BD.y=19、14.(5分)(2012天津)已知函数y=的图象与函数y=kx的图象恰有两个交点,则实数k的取值范围是.20、7.(5分)(2013天津)已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)单调递增.若实数a满足f(log2a)+f(log a)≤2f(1),则a的取值范围是().C.D22、14.(5分)(2013天津)设a+b=2,b>0,则的最小值为.23、4.(5分)(2014天津)设a=log2π,b=logπ,c=π﹣2,则()的单调递减区间是.25、14.(5分)(2014天津)已知函数f(x)=,若函数y=f(x)﹣a|x|恰有4个零点,则实数a的取值范围为.26、7.(5分)(2015天津)已知定义在R上的函数f(x)=2|x﹣m|﹣1(m为实数)为偶函数,0.52A.a<b<c B.c<a<b C.a<c<b D.c<b<a27、8.(5分)(2015天津)已知函数f(x)=,函数g(x)=3﹣fA.2B.3C.4D.528、11.(5分)(2015天津)已知函数f(x)=a lnx,x∈(0,+∞),其中a为实数,f′(x)为f(x)的导函数,若f′(1)=3,则a的值为.29、12.(5分)(2015天津)已知a>0,b>0,ab=8,则当a的值为时,log2a•log2(2b)取得最大值.30、6.(5分)(2016天津)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞) C.(,)D.(,+∞)31、10.(5分)(2016天津)已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为.32、14.(5分)(2016天津)已知函数f(x)=(a>0,且a ≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是.33、6.(5分)(2017天津)已知奇函数f(x)在R上是增函数.若a=﹣f(),b=f (log24.1),c=f(20.8),则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<b<a D.c<a<b34、8.(5分)(2017天津)已知函数f(x)=,设a∈R,若关于x的不等式f(x)≥|+a|在R上恒成立,则a的取值范围是()A.[﹣2,2] B.C.D.35、10.(5分)(2017天津)已知a∈R,设函数f(x)=ax﹣lnx的图象在点(1,f(1))处的切线为l,则l在y轴上的截距为.36、13.(5分)(2017天津)若a,b∈R,ab>0,则的最小值为.37、5. (5分)(2018天津)已知,则的大小关系为A. B. C. D.38、10. (5分)(2018天津)已知函数f(x)=e x lnx, f′(x)为f(x)的导函数,则则 f′(1)的值为__________.39、13. (5分)(2018天津)已知a,b∈R,且a–3b+6=0,则2a+的最小值为__________.40、14. (5分)(2018天津)已知a∈R,函数()22220220x x a xf xx x a x⎧++-≤⎪=⎨-+->⎪⎩,,,.若对任意x∈[–3,+∞),f(x)≤x恒成立,则a的取值范围是__________.解答题1、21.(14分)(2008天津)已知函数f(x)=x4+ax3+2x2+b(x∈R),其中a,b∈R.(Ⅰ)当时,讨论函数f(x)的单调性;(Ⅱ)若函数f(x)仅在x=0处有极值,求a的取值范围;(Ⅲ)若对于任意的a∈[﹣2,2],不等式f(x)≤1在[﹣1,1]上恒成立,求b的取值范围.2、21.(14分)(2009天津)设函数f(x)=﹣x(x∈R),其中m>0.(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;(2)求函数f(x)的单调区间与极值;(3)已知函数f(x)有三个互不相同的零点0,x1,x2,且x1<x2,若对任意的x∈[x1,x2],f(x)>f(1)恒成立,求m的取值范围.3、20.(12分)(2010天津)已知函数f(x)=ax3﹣+1(x∈R),其中a>0.(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)若在区间[﹣]上,f(x)>0恒成立,求a的取值范围.4、19.(14分)(2011天津)已知函数f(x)=4x3+3tx2﹣6t2x+t﹣1,x∈R,其中t∈R.(Ⅰ)当t=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)当t≠0时,求f(x)的单调区间;(Ⅲ)证明:对任意的t∈(0,+∞),f(x)在区间(0,1)内均存在零点.5、20.(14分)(2012天津)已知函数f(x)=x3+x2﹣ax﹣a,x∈R,其中a>0.(1)求函数f(x)的单调区间;(2)若函数f(x)在区间(﹣2,0)内恰有两个零点,求a的取值范围;(3)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t).记g (t)=M(t)﹣m(t),求函数g(t)在区间[﹣3,﹣1]上的最小值.6、20.(14分)(2013天津)设a∈[﹣2,0],已知函数(Ⅰ)证明f(x)在区间(﹣1,1)内单调递减,在区间(1,+∞)内单调递增;(Ⅱ)设曲线y=f(x)在点P i(x i,f(x i))(i=1,2,3)处的切线相互平行,且x1x2x3≠0,证明.7、19.(14分)(2014天津)已知函数f(x)=x2﹣ax3(a>0),x∈R.(Ⅰ)求f(x)的单调区间和极值;(Ⅱ)若对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)•f(x2)=1,求a 的取值范围.8、20.(14分)(2015天津)已知函数f(x)=4x﹣x4,x∈R.(Ⅰ)求f(x)的单调区间;(Ⅱ)设曲线y=f(x)与x轴正半轴的交点为P,曲线在点P处的切线方程为y=g(x),求证:对于任意的实数x,都有f(x)≤g(x);(Ⅲ)若方程f(x)=a(a为实数)有两个实数根x1,x2,且x1<x2,求证:x2﹣x1≤﹣+4.9、20.(14分)(2016天津)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.10、19.(14分)(2017天津)设a,b∈R,|a|≤1.已知函数f(x)=x3﹣6x2﹣3a(a﹣4)x+b,g(x)=e x f(x).(Ⅰ)求f(x)的单调区间;(Ⅱ)已知函数y=g(x)和y=e x的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0;(ii)若关于x的不等式g(x)≤e x在区间[x0﹣1,x0+1]上恒成立,求b的取值范围.11、30.(2018•天津)设函数 f(x)=(x﹣t 1 )(x﹣t 2 )(x﹣t 3 ),其中 t 1 ,t 2 ,t 3 ∈R,且 t 1 ,t 2 ,t 3 是公差为 d 的等差数列.(Ⅰ)若 t 2 =0,d=1,求曲线 y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)若 d=3,求 f(x)的极值;(Ⅲ)若曲线 y=f(x)与直线 y=﹣(x﹣t 2 )﹣6 有三个互异的公共点,求 d 的取值范围.答案1、解:当0≤x≤4时,,解;即f﹣1(x)=(x﹣1)2,故选A.2、解:①当x≤0时;f(x)=x+2,∵f(x)≥x2,∴x+2≥x2,x2﹣x﹣2≤0,解得,﹣1≤x≤2,∴﹣1≤x≤0;②当x>0时;f(x)=﹣x+2,∴﹣x+2≥x2,解得,﹣2≤x≤1,∴0<x≤1,综上①②知不等式f(x)≥x2的解集是:﹣1≤x≤1,故选A.3、解:由log a x+log a y=3,可得log a(xy)=3,得,在[a,2a]上单调递减,所以,故⇒a≥2故选B.4、解:,并且,所以c>a>b故选D.5、解:由已知,周期为,则结合平移公式和诱导公式可知平移后是偶函数,,故选D6、解:f(1)=3,当不等式f(x)>f(1)即:f(x)>3 如果x<0 则 x+6>3可得 x>﹣3,可得﹣3<x<0.如果x≥0 有x2﹣4x+6>3可得x>3或0≤x<1综上不等式的解集:(﹣3,1)∪(3,+∞)故选A.7、解:∵a x=b y=3,∴x=log a3=,y=log b3=,∴当且仅当a=b时取等号故选项为C8、解:∵2f(x)+xf′(x)>x2,令x=0,则f(x)>0,故可排除B,D.如果 f(x)=x2+0.1,时已知条件 2f(x)+xf′(x)>x2成立,但f(x)>x 未必成立,所以C也是错的,故选 A故选A.9、解:∵不等式等价于(﹣a+4)x2﹣4x+1<0,当a≥4时,显然不满足要求,故4﹣a>0且△=4a>0,故0<a<4,不等式的解集为,则一定有1,2,3为所求的整数解集.所以,解得a的范围为故答案:10、解:因为f(0)=﹣1<0,f(1)=e﹣1>0,所以零点在区间(0,1)上,故选C.11、解:∵a=log54<log55=1,b=(log53)2<(log55)2,c=log45>log44=1,∴c最大,排除A、B;又因为a、b∈(0,1),所以a>b,故选D.12、解:x<g(x),即 x<x2﹣2,即 x<﹣1 或 x>2.x≥g(x),即﹣1≤x≤2.由题意 f(x)===,所以当x∈(﹣∞,﹣1)∪(2,+∞)时,由二次函数的性质可得 f(x)∈(2,+∞);x∈[﹣1,2]时,由二次函数的性质可得f(x)∈[﹣,0],故选 D.13、解:已知f(x)为增函数且m≠0,当m>0,由复合函数的单调性可知f(mx)和mf(x)均为增函数,此时不符合题意.当m<0时,有因为y=2x2在x∈[1,+∞)上的最小值为2,所以1+,即m2>1,解得m<﹣1或m>1(舍去).故答案为:m<﹣1.14、解:∵a=log23.6=log43.62∵y=log4x在(0,+∞)单调递增,又∵3.62>3.6>3.2∴log43.62>log43.6>log43.2即a>c>b故选:B15、解:∵,∴函数f(x)=(x2﹣2)⊗(x﹣1)=,由图可知,当c∈(﹣2,﹣1]∪(1,2]函数f(x)与y=c的图象有两个公共点,∴c的取值范围是(﹣2,﹣1]∪(1,2],故选B.16、解:由log2a+log2b≥1得ab≥2,且a>0,b>0.又3a+9b=3a+32b≥2=2,因为a+2b≥2=2≥2=4,所以3a+9b≥2=18.即3a+9b的最小值为18.故答案为18.17、解:由于函数y=2x在R上是增函数,a=21.2,b=()﹣0.8 =20.8,1.2>0.8>0,∴a>b>20=1.再由c=2log52=log54<log55=1,可得 a>b>c,故选A.18、解:对于A,令y=f(x)=cos2x,则f(﹣x)=cos(﹣2x)=cos2x=f(x),为偶函数,而f(x)=cos2x在[0,]上单调递减,在[,π]上单调递增,故f(x)=cos2x在(1,]上单调递减,在[,2)上单调递增,故排除A;对于B,令y=f(x)=log2|x|,x∈R且x≠0,同理可证f(x)为偶函数,当x∈(1,2)时,y=f(x)=log2|x|=log2x,为增函数,故B满足题意;对于C,令y=f(x)=,f(﹣x)=﹣f(x),为奇函数,故可排除C;而D,为非奇非偶函数,可排除D;故选B.19、解:函数y===,如图所示:故当一次函数y=kx的斜率k满足0<k<1 或1<k<2时,直线y=kx与函数y=的图象相交于两点,故答案为(0,1)∪(1,2).20、解:∵f(x)是定义在R上的偶函数,∴,∴可变为f(log2a)≤f(1),即f(|log2a|)≤f(1),又∵在区间[0,+∞)上单调递增,且f(x)是定义在R上的偶函数,∴,即,解得≤a≤2,故选:C.21、解:①由于y=e x及y=x﹣2关于x是单调递增函数,∴函数f(x)=e x+x﹣2在R上单调递增,分别作出y=e x,y=2﹣x的图象,∵f(0)=1+0﹣2<0,f(1)=e﹣1>0,f(a)=0,∴0<a<1.同理g(x)=lnx+x2﹣3在R+上单调递增,g(1)=ln1+1﹣3=﹣2<0,g()=,g(b)=0,∴.∴g(a)=lna+a2﹣3<g(1)=ln1+1﹣3=﹣2<0,f(b)=e b+b﹣2>f(1)=e+1﹣2=e﹣1>0.∴g(a)<0<f(b).故选A.22、解:∵a+b=2,∴,∴=,∵b>0,|a|>0,∴≥1(当且仅当b2=4a2时取等号),∴≥1,故当a<0时,的最小值为.故答案为:.23、解:log2π>1,logπ<0,0<π﹣2<1,即a>1,b<0,0<c<1,∴a>c>b,故选:C24、解:方法一:y=lgx2=2lg|x|,∴当x>0时,f(x)=2lgx在(0,+∞)上是增函数;当x<0时,f(x)=2lg(﹣x)在(﹣∞,0)上是减函数.∴函数f(x)=lgx2的单调递减区间是(﹣∞,0).故答案为:(﹣∞,0).方法二:原函数是由复合而成,∵t=x2在(﹣∞,0)上是减函数,在(0,+∞)为增函数;又y=lgt在其定义域上为增函数,∴f(x)=lgx2在(﹣∞,0)上是减函数,在(0,+∞)为增函数,∴函数f(x)=lgx2的单调递减区间是(﹣∞,0).故答案为:(﹣∞,0).25、解:由y=f(x)﹣a|x|=0得f(x)=a|x|,作出函数y=f(x),y=a|x|的图象,当a≤0,不满足条件,∴a>0,当a=2时,此时y=a|x|与f(x)有三个交点,当a=1时,此时y=a|x|与f(x)有五个交点,∴要使函数y=f(x)﹣a|x|恰有4个零点,则1<a<2,故答案为:(1,2)26、解:∵定义在R上的函数f(x)=2|x﹣m|﹣1(m为实数)为偶函数,∴f(﹣x)=f(x),m=0,∵f(x)=2|x|﹣1=,∴f(x)在(0,+∞)单调递增,∵a=f(log0.53)=f(log23),b=f(log25),c=f(2m)=f(0)=0,0<log23<log25,∴c<a<b,故选:B27、解:∵g(x)=3﹣f(2﹣x),∴y=f(x)﹣g(x)=f(x)﹣3+f(2﹣x),由f(x)﹣3+f(2﹣x)=0,得f(x)+f(2﹣x)=3,设h(x)=f(x)+f(2﹣x),若x≤0,则﹣x≥0,2﹣x≥2,则h(x)=f(x)+f(2﹣x)=2+x+x2,若x≤0,则﹣x≥0,2﹣x≥2,则h(x)=f(x)+f(2﹣x)=2+x+x2,若0≤x≤2,则﹣2≤x≤0,0≤2﹣x≤2,则h(x)=f(x)+f(2﹣x)=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2,若x>2,﹣x<0,2﹣x<0,则h(x)=f(x)+f(2﹣x)=(x﹣2)2+2﹣|2﹣x|=x2﹣5x+8.即h(x)=,作出函数h(x)的图象如图:当y=3时,两个函数有2个交点,故函数y=f(x)﹣g(x)的零点个数为2个,故选:A.28、解:因为f(x)=a x lnx,所以f′(x)=f(x)=lna•a x lnx+a x,又f′(1)=3,所以a=3;故答案为:3.29、解:由题意可得当log2a•log2(2b)最大时,log2a和log2(2b)都是正数,故有a>1.再利用基本不等式可得log2a•log2(2b)≤===4,当且仅当a=2b=4时,取等号,即当a=4时,log2a•log2(2b)取得最大值,故答案为:4.30、解:∵f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f(x)在(0,+∞)上单调递减.∵2|a﹣1|>0,f(﹣)=f(),∴2|a﹣1|<=2.∴|a﹣1|,解得.故选:C.31、解:∵f(x)=(2x+1)e x,∴f′(x)=2e x+(2x+1)e x,∴f′(0)=2e0+(2×0+1)e0=2+1=3.故答案为:3.32、解:∵f(x)是R上的单调递减函数,∴y=x2+(4a﹣3)x+3a在(﹣∞.,0)上单调递减,y=log a(x+1)+1在(0,+∞)上单调递减,且f(x)在(﹣∞,0)上的最小值大于或等于f(0).∴,解得≤a≤.作出y=|f(x)|和y=2﹣的函数草图如图所示:∵|f(x)|=2﹣恰有两个不相等的实数解,∴3a<2,即a.综上,.故答案为[,).33、解:奇函数f(x)在R上是增函数,∴a=﹣f()=f(log25),b=f(log24.1),c=f(20.8),又1<20.8<2<log24.1<log25,∴f(20.8)<f(log24.1)<f(log25),即c<b<a.故选:C.34、解:根据题意,函数f(x)=的图象如图:令g(x)=|+a|,其图象与x轴相交与点(﹣2a,0),在区间(﹣∞,﹣2a)上为减函数,在(﹣2a,+∞)为增函数,若不等式f(x)≥|+a|在R上恒成立,则函数f(x)的图象在g(x)上的上方或相交,则必有f(0)≥g(0),即2≥|a|,解可得﹣2≤a≤2,故选:A.35、解:函数f(x)=ax﹣lnx,可得f′(x)=a﹣,切线的斜率为:k=f′(1)=a﹣1,切点坐标(1,a),切线方程l为:y﹣a=(a﹣1)(x﹣1),l在y轴上的截距为:a+(a﹣1)(﹣1)=1.故答案为:1.36、解:解法一:a,b∈R,ab>0,∴≥==4ab+≥2=4,当且仅当,即,即a=,b=或a=﹣,b=﹣时取“=”;∴上式的最小值为4.解法二:a,b∈R,ab>0,∴=+++≥4=4,当且仅当,即,即a=,b=或a=﹣,b=﹣时取“=”;∴上式的最小值为4.故答案为:4.37、答案:D解:由题意可知:,即,,即,,即,综上可得: .故选D.38、解:函数 f(x)=e x lnx,则 f′(x)=e x lnx+ •e x ;∴f′(1)=e•ln1+1•e=e.故答案为:e.39、解:由可知,且:,因为对于任意x,恒成立,结合均值不等式的结论可得: . 当且仅当,即时等号成立.综上可得的最小值为.40、答案:[18,2]解:当 x≤0 时,函数 f(x)=x 2 +2x+a﹣2 的对称轴为 x=﹣1,抛物线开口向上,要使 x≤0 时,对任意 x∈[﹣3,+∞),f(x)≤|x|恒成立,则只需要 f(﹣3)≤|﹣3|=3,即 9﹣6+a﹣2≤3,得 a≤2,当 x>0 时,要使 f(x)≤|x|恒成立,即 f(x)=﹣x 2 +2x﹣2a,则直线 y=x 的下方或在y=x 上,由﹣x 2 +2x﹣2a=x,即 x 2 ﹣x+2a=0,由判别式△=1﹣8a≤0,得 a≥1 8,综上18≤a≤2,故答案为:[18,2].解答题1、解:(Ⅰ)f'(x)=4x3+3ax2+4x=x(4x2+3ax+4).当时,f'(x)=x(4x2﹣10x+4)=2x(2x﹣1)(x﹣2).令f'(x)=0,解得x1=0,,x3=2.2(0,)(,2)+ 0 ﹣ 0f(x)↘极小值↗极大值↘极小值↗所以f(x)在,(2,+∞)内是增函数,在(﹣∞,0),内是减函数.(Ⅱ)f'(x)=x(4x2+3ax+4),显然x=0不是方程4x2+3ax+4=0的根.为使f(x)仅在x=0处有极值,必须4x2+3ax+4≥0成立,即有△=9a2﹣64≤0.解些不等式,得.这时,f(0)=b是唯一极值.因此满足条件的a的取值范围是.(Ⅲ)由条件a∈[﹣2,2],可知△=9a2﹣64<0,从而4x2+3ax+4>0恒成立.当x<0时,f'(x)<0;当x>0时,f'(x)>0.因此函数f(x)在[﹣1,1]上的最大值是f(1)与f(﹣1)两者中的较大者.为使对任意的a∈[﹣2,2],不等式f(x)≤1在[﹣1,1]上恒成立,当且仅当,即,在a∈[﹣2,2]上恒成立.所以b≤﹣4,因此满足条件的b的取值范围是(﹣∞,﹣4].2、解:(1)当,故f'(1)=﹣1+2=1,所以曲线y=f(x)在点(1,f(1))处的切线的斜率为1.(2)f'(x)=﹣x2+2x+m2﹣1,令f'(x)=0,解得x=1﹣m或x=1+m.函数f(x)在x=1﹣m处取得极小值f(1﹣m),且f(1﹣m)=,函数f(x)在x=1+m处取得极大值f(1+m),且f(1+m)=.(3)由题设,,∴方程有两个相异的实根x1,x2,故,∵m>0解得m,(8分)∵x1<x2,所以2x2>x1+x2=3,故x2>.①当x1≤1<x2时,f(1)=﹣(1﹣x1)(1﹣x2)≥0,而f(x1)=0,不符合题意,②当1<x1<x2时,对任意的x∈[x1,x2],都有x>0,x﹣x1≥0,x﹣x2≤0,则,又f(x1)=0,所以f(x)在[x1,x2]上的最小值为0,于是对任意的x∈[x1,x2],f(x)>f(1)恒成立的充要条件是f(1)=m2﹣<0,解得,∵由上m,综上,m的取值范围是(,).3、(Ⅰ)解:当a=1时,f(x)=,∴f(2)=3;∵f′(x)=3x2﹣3x,∴f′(2)=6.所以曲线y=f(x)在点(2,f(2))处的切线方程为y﹣3=6(x﹣2),即y=6x﹣9;(Ⅱ)解:f′(x)=3ax2﹣3x=3x(ax﹣1).令f′(x)=0,解得x=0或x=.以下分两种情况讨论:(1)若0<a≤2,则;(﹣,0)0(0,)+ 0 ﹣f(x)增极大值减当时,f(x)>0,等价于即.解不等式组得﹣5<a<5.因此0<a≤2;(2)若a>2,则当x变化时,f′(x),f(x)的变化情况如下表:(﹣,0) 0(0,)(,)+ 0 ﹣ 0 +f(x)增极大值减极小值增当时,f(x)>0等价于即解不等式组得或.因此2<a<5.综合(1)和(2),可知a的取值范围为0<a<5.4、解:(I)当t=1时,f(x)=4x3+3x2﹣6x,f(0)=0f'(x)=12x2+6x﹣6,f'(0)=﹣6,所以曲线y=f(x)在点(0,f(0))处的切线方程为y=﹣6x.(II)解:f'(x)=12x2+6tx﹣6t2,f'(0)=0,解得x=﹣t或x=∵t≠0,以下分两种情况讨论:(1)若t<0,则<﹣t,∴f(x)的单调增区间是(﹣∞,),(﹣t,+∞);f(x)的单调减区间是(,﹣t)(2)若t>0,则>﹣t,∴f(x)的单调增区间是(﹣∞,﹣t),(,+∞);f(x)的单调减区间是(﹣t,)(III)证明:由(II)可知,当t>0时,f(x)在(0,)内单调递减,在(,+∞)内单调递增,以下分两种情况讨论:(1)当≥1,即t≥2时,f(x)在(0,1)内单调递减.f(0)=t﹣1>0,f(1)=﹣6t2+4t+3≤﹣13<0所以对于任意t∈[2,+∞),f(x)在区间(0,1)内均存在零点.(2)当0<<1,即0<t<2时,f(x)在(0,)内单调递减,在(,1)内单调递增若t∈(0,1],f()=+t﹣1≤<0,f(1)=﹣6t2+4t+3≥﹣2t+3>0所以f(x)在(,1)内存在零点.若t∈(1,2),f()=+t﹣1<+1<0,f(0)=t﹣1>0∴f(x)在(0,)内存在零点.所以,对任意t∈(0,2),f(x)在区间(0,1)内均存在零点.综上,对于任意t∈(0,+∞),f(x)在区间(0,1)内均存在零点.5、解:(1)求导函数可得f′(x)=(x+1)(x﹣a),令f′(x)=0,可得x1=﹣1,x2=a>0,(2)由(1)知函数在区间(﹣2,﹣1)内单调递增,在(﹣1,0)内单调递减,从而函数在(﹣2,0)内恰有两个零点,∴,∴,∴0<a<∴a的取值范围为;(3)a=1时,f(x)=,由(1)知,函数在(﹣3,﹣1)上单调递增,在(﹣1,1)上单调递减,在(1,2)上单调递增①当t∈[﹣3,﹣2]时,t+3∈[0,1],﹣1∈[t,t+3],f(x)在[t,﹣1]上单调递增,在[﹣1,t+3]上单调递减因此函数在[t,t+3]上的最大值为M(t)=f(﹣1)=﹣,而最小值m(t)为f(t)与f(t+3)中的较小者由f(t+3)﹣f(t)=3(t+1)(t+2)知,当t∈[﹣3,﹣2]时,f(t)≤f(t+3),故m(t)=f(t),所以g(t)=f(﹣1)﹣f(t)而f(t)在[﹣3,﹣2]上单调递增,因此f(t)≤f(﹣2)=﹣,所以g(t)在[﹣3,﹣2]上的最小值为②当t∈[﹣2,﹣1]时,t+3∈[1,2],﹣1,1∈[t,t+3],下面比较f(﹣1),f(1),f (t),f(t+3)的大小.由f(x)在[﹣2,﹣1],[1,2]上单调递增,有f(﹣2)≤f(t)≤f(﹣1),f(1)≤f(t+3)≤f(2)∵f(1)=f(﹣2)=﹣,f(﹣1)=f(2)=﹣∴M(t)=f(﹣1)=﹣,m(t)=f(1)=﹣∴g(t)=M(t)﹣m(t)=综上,函数g(t)在区间[﹣3,﹣1]上的最小值为.6、解:(Ⅰ)令,.①,由于a∈[﹣2,0],从而当﹣1<x<0时,,所以函数f1(x)在区间(﹣1,0)内单调递减,②=(3x﹣a)(x﹣1),由于a∈[﹣2,0],所以0<x<1时,;当x>1时,,即函数f2(x)在区间(0,1)内单调递减,在区间(1,+∞)上单调递增.综合①②及f1(0)=f2(0),可知:f(x)在区间(﹣1,1)内单调递减,在区间(1,+∞)内单调递增;(Ⅱ)证明:由(Ⅰ)可知:f′(x)在区间(﹣∞,0)内单调递减,在区间内单调递减,在区间内单调递增.因为曲线y=f(x)在点P i(x i,f(x i))(i=1,2,3)处的切线相互平行,从而x1,x2,x3互不相等,且.不妨x1<0<x2<x3,由+a=.可得,解得,从而.设g(x)=3x2﹣(a+3)x+a,则.由,解得,所以,设t=,则,∵a∈[﹣2,0],∴,故,故.7、解:(Ⅰ)f′(x)=2x﹣2ax2=2x(1﹣ax),令f′(x)=0,解得x=0或x=.(0,)(,+∞)+ 0 ﹣递减所以,f(x)的单调递减区间为:(﹣∞,0)和,单调递增区间为,当x=0时,有极小值f(0)=0,当x=时,有极大值f()=;(Ⅱ)由f(0)=f()=0及(Ⅰ)知,当x∈(0,)时,f(x)>0;当x∈(,+∞)时,f(x)<0.设集合A={f(x)|x∈(2,+∞)},集合B={|x∈(1,+∞),f(x)≠0},则对于任意的x1∈(2,+∞),都存在x2∈(1,+∞),使得f(x1)•f(x2)=1,等价于A⊆B,显然A≠∅下面分三种情况讨论:①当>2,即0<a<时,由f()=0可知,0∈A,而0∉B,∴A不是B的子集;②当1≤≤2,即时,f(2)≤0,且f(x)在(2,+∞)上单调递减,故A=(﹣∞,f(2)),∴A⊆(﹣∞,0);由f(1)≥0,有f(x)在(1,+∞)上的取值范围包含(﹣∞,0),即(﹣∞,0)⊆B,∴A⊆B;③当<1,即a>时,有f(1)<0,且f(x)在(1,+∞)上单调递减,故B=(,0),A=(﹣∞,f(2)),∴A不是B的子集.综上,a的取值范围是[].8、(Ⅰ)解:由f(x)=4x﹣x4,可得f′(x)=4﹣4x3.当f′(x)>0,即x<1时,函数f(x)单调递增;当f′(x)<0,即x>1时,函数f(x)单调递减.∴f(x)的单调递增区间为(﹣∞,1),单调递减区间为(1,+∞).(Ⅱ)证明:设点p的坐标为(x0,0),则,f′(x0)=﹣12,曲线y=f(x)在点P处的切线方程为y=f′(x0)(x﹣x0),即g(x)=f′(x0)(x﹣x0),令函数F(x)=f(x)﹣g(x),即F(x)=f(x)﹣f′(x0)(x﹣x0),则F′(x)=f′(x)﹣f′(x0).∵F′(x0)=0,∴当x∈(﹣∞,x0)时,F′(x)>0;当x∈(x0,+∞)时,F′(x)<0,∴F(x)在(﹣∞,x0)上单调递增,在(x0,+∞)上单调递减,∴对于任意实数x,F(x)≤F(x0)=0,即对任意实数x,都有f(x)≤g(x);(Ⅲ)证明:由(Ⅱ)知,,设方程g(x)=a的根为x2′,可得.∵g(x)在(﹣∞,+∞)上单调递减,又由(Ⅱ)知g(x2)≥f(x2)=a=g(x2′),因此x2≤x2′.类似地,设曲线y=f(x)在原点处的切线方程为y=h(x),可得h(x)=4x,对于任意的x∈(﹣∞,+∞),有f(x)﹣h(x)=﹣x4≤0,即f(x)≤h(x).设方程h(x)=a的根为x1′,可得,∵h(x)=4x在(﹣∞,+∞)上单调递增,且h(x1′)=a=f(x1)≤h(x1),因此x1′≤x1,由此可得.9、解:(1)若f(x)=x3﹣ax﹣b,则f′(x)=3x2﹣a,分两种情况讨论:①、当a≤0时,有f′(x)=3x2﹣a≥0恒成立,此时f(x)的单调递增区间为(﹣∞,+∞),②、当a>0时,令f′(x)=3x2﹣a=0,解得x=或x=,当x>或x<﹣时,f′(x)=3x2﹣a>0,f(x)为增函数,当﹣<x<时,f′(x)=3x2﹣a<0,f(x)为减函数,故f(x)的增区间为(﹣∞,﹣),(,+∞),减区间为(﹣,);(2)若f(x)存在极值点x0,则必有a>0,且x0≠0,由题意可得,f′(x)=3x2﹣a,则x02=,进而f(x0)=x03﹣ax0﹣b=﹣x0﹣b,又f(﹣2x0)=﹣8x03+2ax0﹣b=﹣x0+2ax0﹣b=f(x0),由题意及(Ⅰ)可得:存在唯一的实数x1,满足f(x1)=f(x0),其中x1≠x0,则有x1=﹣2x0,故有x1+2x0=0;(Ⅲ)设g(x)在区间[﹣1,1]上的最大值M,max{x,y}表示x、y两个数的最大值,下面分三种情况讨论:①当a≥3时,﹣≤﹣1<1≤,由(I)知f(x)在区间[﹣1,1]上单调递减,所以f(x)在区间[﹣1,1]上的取值范围是[f(1),f(﹣1)],因此M=max{|f(1)|,|f(﹣1)|}=max{|1﹣a﹣b|,|﹣1+a﹣b|}=max{|a﹣1+b|,|a﹣1﹣b|}=,所以M=a﹣1+|b|≥2②当a<3时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)≥=f(),f(1)≤=,所以f(x)在区间[﹣1,1]上的取值范围是[f(),f(﹣)],因此M=max{|f()|,|f(﹣)|}=max{||,||}=max{||,||}=,③当0<a<时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)<=f(),f(1)>=,所以f(x)在区间[﹣1,1]上的取值范围是[f(﹣1),f(1)],因此M=max{|f(﹣1)|,|f(1)|}=max{|﹣1+a﹣b|,|1﹣a﹣b|}=max{|1﹣a+b|,|1﹣a﹣b|}=1﹣a+|b|>,综上所述,当a>0时,g(x)在区间[﹣1,1]上的最大值不小于.10、(Ⅰ)解:由f(x)=x3﹣6x2﹣3a(a﹣4)x+b,可得f'(x)=3x2﹣12x﹣3a(a﹣4)=3(x﹣a)(x﹣(4﹣a)),令f'(x)=0,解得x=a,或x=4﹣a.由|a|≤1,得a<4﹣a.当x变化时,f'(x),f(x)的变化情况如下表:∴f(x)的单调递增区间为(﹣∞,a),(4﹣a,+∞),单调递减区间为(a,4﹣a);(Ⅱ)(i )证明:∵g'(x )=e x(f (x )+f'(x )),由题意知,∴,解得.∴f (x )在x=x 0处的导数等于0;(ii )解:∵g (x )≤e x,x ∈[x 0﹣1,x 0+1],由e x>0,可得f (x )≤1. 又∵f (x 0)=1,f'(x 0)=0,故x 0为f (x )的极大值点,由(I )知x 0=a . 另一方面,由于|a|≤1,故a+1<4﹣a ,由(Ⅰ)知f (x )在(a ﹣1,a )内单调递增,在(a ,a+1)内单调递减,故当x 0=a 时,f (x )≤f (a )=1在[a ﹣1,a+1]上恒成立,从而g (x )≤e x在[x 0﹣1,x 0+1]上恒成立.由f (a )=a 3﹣6a 2﹣3a (a ﹣4)a+b=1,得b=2a 3﹣6a 2+1,﹣1≤a ≤1. 令t (x )=2x 3﹣6x 2+1,x ∈[﹣1,1], ∴t'(x )=6x 2﹣12x ,令t'(x )=0,解得x=2(舍去),或x=0.∵t (﹣1)=﹣7,t (1)=﹣3,t (0)=1,故t (x )的值域为[﹣7,1]. ∴b 的取值范围是[﹣7,1].11、(Ⅰ)解:由已知,可得f (x )=x (x −1)(x +1)=x 3−x ,故f ‵(x )=3x −1,因此f (0)=0,(0)f '=−1,又因为曲线y =f (x )在点(0, f (0))处的切线方程为y −f (0)=(0)f '(x −0),故所求切线方程为x +y =0. (Ⅱ)解:由已知可得f (x )=(x −t 2+3)( x −t 2) (x −t 2−3)=( x −t 2)3−9 ( x −t 2)=x 3−3t 2x 2+(3t 22−9)x −t 22+9t 2.故()f x '= 3x 3−6t 2x +3t 22−9.令()f x '=0,解得x = t 2x = t 2当x 变化时,f ‵(x ),f (x )的变化如下表:所以函数f (x )的极大值为f (t 23−9×(f (t 2+3−9×−(III )解:曲线y =f (x )与直线y =−(x −t 2)−x 的方程(x−t 2+d ) (x −t 2) (x −t 2−d )+ (x −t 2)+ 有三个互异的实数解,令u = x −t 2,可得u 3+(1−d 2)u +6设函数g (x )= x 3+(1−d 2)x 则曲线y =f (x )与直线y =−(x −t 2)−等价于函数y =g (x )有三个零点.()g'x =3 x 3+(1−d 2).当d 2≤1时,()g'x ≥0,这时()g'x 在R 上单调递增,不合题意.当d 2>1时,()g'x =0,解得x 1=x 2.易得,g (x )在(−∞,x 1)上单调递增,在[x 1, x 2]上单调递减,在(x 2, +∞)上单调递增,g (x )的极大值g (x 1)= g (+g (x )的极小值g (x 2)= g )=+若g (x 2) ≥0,由g (x )的单调性可知函数y =f (x )至多有两个零点,不合题意.若2()0,g x <即322(1)27d ->,也就是||d 此时2||d x >,(||)||0,g d d =+>且312||,(2||)6||2||0d x g d d d -<-=--+<-,从而由()g x 的单调性,可知函数()y g x = 在区间1122(2||,),(,),(,||)d x x x x d -内各有一个零点,符合题意.所以d 的取值范围是(,).-∞+∞。