雷达基础知识雷达工作原理
雷达基础知识

三、最大不模糊距离
当多个目标的位置产生相同的信息,模糊产生
通常
Ru
c Tr 2
Ru Rmax
Tr是脉冲重复周期
Tr
2 c
Rmax
10
三、最大不模糊距离
例:某雷达的脉冲重复频率为每秒1250个脉冲,则它 的最大不模糊距离是?
1250个脉冲/秒 可得: Rumax = 120km
Tr=800μs
20
八、速度的测量
v
-v
21
八、速度的测量
fd
2v
v 是径向速度 λ 是波长
22
八、速度的测量
fd
2v
co辆汽车以29m/s的速度向交警测速雷达驶来, 其速度方向与雷达的轴线方向重合;雷达的发射频率 为24.15G,问接收到的回波信号的频率和多普勒频移 是多少?
25
八、分贝表示法
30 dB = 1000 3 dB = 2 -3 dB = 0.5
- times, - times , - times
26
八、分贝表示法
30 dBm = 1000 • 1mW = 1W 60 dBm = 1000 W 99 dBm = 8,000,000 W,
27
九、天线的波束宽度
雷达距雷分辨力
R c
2
R c 2B
15
六、角度的获得
天线 方向图
方位角
16
六、角度的获得
俯仰角
17
六、角度的获得
18
七、角度(横向距离)分辨力
区分相同距离上不同角度位置上多个目标的能力
准则:相同距离上的目标分开超过波束宽度能够分辨
19
七、角度(横向距离)分辨力
相控阵雷达的基础知识

相控阵雷达的基础知识相控阵雷达,即采用相控阵天线的雷达,是一种先进的雷达系统。
其基础结构和功能如下:1.相控阵雷达的天线阵列是由上千个天线单元组成的,这些天线单元可以收发雷达波。
任何一个天线都可以收发雷达波,而相邻的数个天线即具有一个雷达的功能。
2.在扫描时,选定其中一个区块(数个天线单元)或数个区块对单一目标或区域进行扫描,因此整个雷达可同时对许多目标或区域进行扫描或追踪,具有多个雷达的功能。
3.由于一个雷达可同时针对不同方向进行扫描,再加之扫描方式为电子控制而不必由机械转动,因此资料更新率大大提高,机械扫描雷达因受限于机械转动频率因而资料更新周期为秒或十秒级,电子扫描雷达则为毫秒或微秒级。
因而它更适于对付高机动目标。
4.相控阵雷达采用的是电子方法实现波束无惯性扫描,因此也叫电子扫描阵列(ESA),它的波束方向可控、扫描也灵活,并且增益也可以很高。
5.相控阵雷达的波束指向始终与等相位面垂直,而等相位面由阵元间的馈相关系确定。
因此在各个阵元都是等幅馈电情况下,线性阵的波束方向图函数为sinc函数。
可以通过阵因子来计算相控阵波束宽度。
6.相控阵雷达的波束宽度与扫描角θB的关系:当扫描的最大角度为θmax时,为了不出现删瓣,阵元间距d和波长λ需要满足关系,也就是说当阵元间距小于半波长时,即使扫描到90°都不会出现删瓣。
7.相控阵雷达具有功能多、机动性强的特点。
它不需要天线驱动系统、光束指向灵活,能实现无惯性的扫描,从而缩短目标信号检测时间,如信息的传播需要时间,高数据率。
相控阵雷达是一种先进的雷达系统,具有高精度、高更新率、多功能和机动性强的特点。
这些特点使得相控阵雷达在军事和民用领域都有着广泛的应用前景。
跟踪雷达基础知识讲

18.5 目标捕获和距离跟踪距离跟踪就是连续测量从发射射频脉冲到目标回波信号返回之间的延时的过程。
距离测量是雷达最精确的位置坐标测量。
其典型数据是在测量几百英里距离时精密到几码以内。
通常距离跟踪是从其他目标中鉴别出所需目标的主要方法,通过距离波门(即时间选通)从误差检波器输出中消除其他目标的回波(虽然也有用速度鉴别和角度鉴别的)。
距离跟踪电路也可用来捕获所希望的目标。
距离跟踪不仅必须测量脉冲从雷达到目标的往返行程时间,而且必须识别出反射信号是一目标而不是噪声,并且保存目标的距离随时间变化的历程。
这里的讨论适用于典型的脉冲跟踪雷达。
距离测量也可以用使用调频连续波的连续波雷达来完成,这种调频连续波通常是一种线性调频波。
目标距离由回波信号和发射信号之间的频率差异决定。
考虑到多普勒效应的调频连续波系统的性能见参考资料1。
捕获距离跟踪的第一个作用是捕获所需的目标。
虽然这不是跟踪工作,但在典型的雷达里这是实现距离跟踪或角跟踪之前必需的第一步。
对于窄波束跟踪雷达而言,为使天线波束指向目标的方向,必须具备有关目标角位置的某些信息。
这个信息叫做引导数据,可以由搜索雷达或其他来源提供。
引导数据可以足够精确地把窄波束指向目标或者可以要求跟踪器扫描一个较大的不确定区域。
雷达距离跟踪的优点是能看到从近距离一直到雷达的最大距离上的所有目标。
通常把这个距离分成小段,其中各段可以同时检验是否有目标存在。
当需要波束扫描时,距离跟踪器可在短时间里(如0.1s)检验各段情况,即可作出关于目标是否存在的判断。
如果没有目标存在,就让波束移向新的位置。
这个过程对机械式跟踪而言是完全连续的,因为机械式跟踪移动波束相当慢,因此使得在对各段距离进行检验的短时间内目标仍然留在波束宽度之内。
与搜索雷达一样,目标捕获要考虑实现给定的检测概率和虚警概率所需的信噪比门限和积累时间[1]。
然而,与搜索雷达相比,目标捕获可使用较高的虚警概率,这是因为操纵员知道目标是存在的,不存在在等待目标时由于虚警而使操纵员疲劳。
雷达系统基础知识解析

雷达系统基础知识解析雷达系统是一种以电磁波为载体,利用接收机接收反射回来的信号,获得目标的位置、速度、形状、运动状态等信息的远程探测手段。
在现代军事、民用、科研等领域中,雷达系统得到了广泛应用。
本文将从雷达的原理、分类、应用等方面进行分析,对雷达系统进行基础知识解析。
一、原理雷达系统的探测原理基于电磁波的回波信号。
雷达系统通过向目标发送一个连续波或者脉冲波,这些波被目标反射后返回到雷达接收机。
接收机接收到的信号被处理后,可以提供目标的位置、速度、方向、距离等信息。
雷达系统的原理主要包括两个方面:1. 电磁波的传输和反射雷达系统中常用的电磁波包括微波、毫米波、红外线等,其中微波是最为常用的。
雷达发射的微波成为发射波,这些波穿过空气,到达目标后会被目标吸收或反射。
被反射回来的波成为回波,这些回波被接收机接收并处理,从而得到目标的信息。
2. 接收和处理雷达系统中的接收机可以接收发射的信号,并进行处理。
接收机的处理可以包括信号的放大、滤波、检波等,从而得到有效的目标信息。
接收机通常还会通过多普勒现象对目标的速度进行测量。
二、分类按照不同的特征,雷达系统可以分为多种不同类型:1. 脉冲雷达脉冲雷达通常使用的是短脉冲信号来探测目标。
这种雷达系统能够测量目标的距离和位置,但对于目标的速度探测能力较弱。
2. 连续波雷达连续波雷达通常使用连续发射的信号来探测目标。
这种雷达系统能够测量目标的速度和方向,但对于目标的距离探测能力较弱。
3. 相控阵雷达相控阵雷达使用多个发射天线和接收天线,这些天线可以通过计算机进行编程,从而形成一个具有指向性的波束。
相控阵雷达能够非常精确地探测目标的位置和速度。
4. 毫米波雷达毫米波雷达使用的电磁波在波长上较短,因此具有很强的穿透能力和抗干扰能力。
毫米波雷达通常被用于捕捉小物体的距离信息。
三、应用雷达系统的应用主要包括以下几个方面:1. 军事领域在军事领域中,雷达系统可以作为一种重要的侦察装备,能够探测敌方的目标信息,从而进行有效的作战指挥。
雷达基础知识

雷达基础知识嘿,朋友们!今天咱来聊聊雷达基础知识。
你说雷达像不像一双超级厉害的电子眼呀!它就静静地待在那儿,却能敏锐地捕捉到各种信息。
想象一下,在广阔的天空中或者茫茫大海上,雷达就像一个不知疲倦的小卫士,时刻警惕着周围的一切。
雷达的工作原理其实挺有趣的。
它会发出一种特殊的电波,就像我们扔出一个球一样,然后等着这个电波碰到东西反弹回来。
这反弹回来的电波就会告诉雷达好多信息呢,比如目标的位置、速度、方向等等。
这多神奇啊!咱们生活中可到处都有雷达的影子呢!飞机飞行靠它指引方向,轮船航行靠它避开危险,就连天气预报也得靠它来收集数据。
没有雷达,那可真是不敢想象啊!你看那飞机在天空中自由翱翔,可不得感谢雷达给它指的路呀!要是没有雷达,飞机不就像一只无头苍蝇一样乱撞啦?还有那些在海上航行的轮船,要是没有雷达及时发现暗礁啥的,那不是很容易就触礁了嘛!雷达的种类也不少呢。
有那种能探测很远很远的远程雷达,就像一个千里眼;还有能探测得特别精细的高精度雷达,就像一个放大镜。
每种雷达都有自己独特的用处,都在为我们的生活默默贡献着。
而且,雷达的发展也是日新月异啊!以前的雷达可能比较笨重,功能也没那么强大,可现在呢,越来越小巧,越来越智能啦!这就好比手机一样,以前的手机多大个呀,现在不都变得小小的,功能还特别多嘛。
我们真应该好好珍惜这些科技成果呀!想想看,如果没有雷达,我们的生活会变成什么样呢?是不是会变得很不方便,很不安全呢?所以呀,我们要感谢那些发明雷达的科学家们,是他们让我们的生活变得更加美好。
总之,雷达这东西可太重要啦!它就像我们生活中的隐形守护者,默默地守护着我们的安全,为我们的生活提供便利。
我们可得好好了解它,爱护它呀!原创不易,请尊重原创,谢谢!。
多普勒雷达基础知识

主要厂家: 北京敏视达雷达有限公司 安徽四创电子股份有限公司 (38所) 南京恩瑞特实业有限公司(14所) 成都锦江电子系统工程有限公司
3
CINRAD/SA&SB
2020/2/26
❖ 工作频率 :
2700---3000MHz;
❖ 峰值发射功率: 650 KW ;
❖ 脉宽 :
1.57s / 4.71s ;
60 2020/2/26
风向不变,风速随高度增加
61 2020/2/26
风向不变,风速随高度增加
26 22.3 18.6 14.9 11.1 7.4 3.7 -00..44 -3.7 -7.4 -11.1 -14.9 -18.6 -22.3 -26
62 2020/2/26
风向不变,风速先增后减
84 2020/2/26
风速递增,风向顺转,地面风速不为零
26 22.3 18.6 14.9 11.1 7.4 3.7 -00..44 -3.7 -7.4 -11.1 -14.9 -18.6 -22.3 -26
85 2020/2/26
风速先增后减,风向顺转,地面风速不为零
26 22.3 18.6 14.9 11.1 7.4 3.7 -00..44 -3.7 -7.4 -11.1 -14.9 -18.6 -22.3 -26
56 2020/2/26
风向风速随高度都不变
26 22.3 18.6 14.9 11.1 7.4 3.7 -00..44 -3.7 -7.4 -11.1 -14.9 -18.6 -22.3 -26
57 2020/2/26
实例:风向风速不变
58 2020/2/26
59 2020/2/26
风向不变,风速随高度增加
雷达基础知识

雷达波段
• L波段(1000-2000 MHz)
– 警戒雷达最常用的波段 – 作用距离远 – 外部噪声较低 – 天线的尺寸并不太大 – 角分辨率较好
• S波段(2000-4000MHz)
– 中距离的警戒雷达和跟踪雷达均可使用这一波段 – 可用合理的天线尺寸得到较好的角分辨率 – 动目标显示的性能比P波段要差 – 电磁波的传播受气条件影响已变的明显起来
300km。
雷达的分类
• 炮瞄雷达
– 控制火炮对目标进行跟踪,以实现准确的射击。 – 必须连续而准确地测定目标的坐标,并迅速把数
据传递给火炮。 – 作用距离较近,只有几十公里,但测量的精度要
求高。
雷达的分类
• 制导雷达
– 控制自己发射的导弹飞行过程,要不断地测量导弹的飞行情 况,以实现控制。
• 截击雷达
– 用于歼击机上的雷达。 – 当歼击机根据地面的引导,接近攻击目标,进入有利空域
时,就利用装在机上的截击雷达,准确地测量目标的位置, 发起攻击。 – 作用距离短,但测量的精度高。
雷达的分类
• 轰炸瞄准雷达
– 装在轰炸机上,给飞行员提供轰炸瞄准的指示信号。
• 气象雷达
– 用来测量暴风雨的位置,跟踪它的移动路线。
雷达基础知识
内容提要
• 雷达是什么 • 雷达的特点和功能 • 雷达的基本工作原理 • 基本单元 • 雷达波段 • 雷达的分类 • 雷达检测
什么是雷达
• 雷达是利用目标对电磁波的反射、应答或 自身的辐射以发现目标的多种电子设备所 构成的一个整体。
– 一次雷达
• 利用目标电磁波的反射而发现目标的雷达 • 一次雷达是使用得最多的一种雷达
雷达基础知识

分分层层
积积累累
判判定定
输出
雷达检测
• 发现概率
– 有目标存在,检测器判定有目标,这种事件发生的概率,用Pd 表 示。
• 虚警概率
– 没有目标只有噪声存在,检测器也判定有目标,这种错误事件发生 的概率,用PN 表示。
N
∑tk
PN
=
k =1 N
∑ Tk
k =1
雷达检测
• 发现概率Pd与虚警概率PN和信噪比的关系
内容提要
• 雷达是什么 • 雷达的特点和功能 • 雷达的基本工作原理 • 基本单元 • 雷达波段 • 雷达的分类 • 雷达检测
什么是雷达
• 雷达是利用目标对电磁波的反射、应答或 自身的辐射以发现目标的多种电子设备所 构成的一个整体。
– 一次雷达
• 利用目标电磁波的反射而发现目标的雷达 • 一次雷达是使用得最多的一种雷达
• 常用警戒雷达的作用距离约为500km。 •对洲际导弹的预警雷达,作用距离要求达到
5000km。
– 能够测量目标的距离和方位,测量的精度要 求不高。
雷达的分类
• 指挥引导雷达
– 引导飞机去执行任务。 – 要求雷达能精确地测量目标的距离、方位和高
度,并能进行必要的引导计算。 – 作用距离比警戒雷达要短一些,一般在200-
– 二次雷达
• 通过对询问信号的应答而发现目标的雷达
– 被动雷达
• 利用目标自身的电磁辐射来发现目标的雷达
雷达的特点和功能
• 特点
– 作用距离远 – 受气象条件的影响不很大
• 功能
– 发现目标 – 测量目标的座标和运动参数 – 识别目标的类型 – 对目标进行跟踪
雷达的基本工作原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
雷达基础知识雷达工作原理
雷达即用无线电的方法发现目标并测定它们的空间位置。
那么你对雷达了解多少呢?以下是由店铺整理关于雷达知识的内容,希望大家喜欢!
雷达的起源
雷达的出现,是由于一战期间当时英国和德国交战时,英国急需一种能探测空中金属物体的雷达(技术)能在反空袭战中帮助搜寻德国飞机。
二战期间,雷达就已经出现了地对空、空对地(搜索)轰炸、空对空(截击)火控、敌我识别功能的雷达技术。
二战以后,雷达发展了单脉冲角度跟踪、脉冲多普勒信号处理、合成孔径和脉冲压缩的高分辨率、结合敌我识别的组合系统、结合计算机的自动火控系统、地形回避和地形跟随、无源或有源的相位阵列、频率捷变、多目标探测与跟踪等新的雷达体制。
后来随着微电子等各个领域科学进步,雷达技术的不断发展,其内涵和研究内容都在不断地拓展。
雷达的探测手段已经由从前的只有雷达一种探测器发展到了红外光、紫外光、激光以及其他光学探测手段融合协作。
当代雷达的同时多功能的能力使得战场指挥员在各种不同的搜索/跟踪模式下对目标进行扫描,并对干扰误差进行自动修正,而且大多数的控制功能是在系统内部完成的。
自动目标识别则可使武器系统最大限度地发挥作用,空中预警机和JSTARS这样的具有战场敌我识别能力的综合雷达系统实际上已经成为了未来战场上的信息指挥中心。
雷达的组成
各种雷达的具体用途和结构不尽相同,但基本形式是一致的,包括:发射机、发射天线、接收机、接收天线,处理部分以及显示器。
还有电源设备、数据录取设备、抗干扰设备等辅助设备。
雷达的工作原理
雷达所起的作用和眼睛和耳朵相似,当然,它不再是大自然的杰
作,同时,它的信息载体是无线电波。
事实上,不论是可见光或是无线电波,在本质上是同一种东西,都是电磁波,在真空中传播的速度都是光速C,差别在于它们各自的频率和波长不同。
其原理是雷达设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的物体反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,提取有关该物体的某些信息(目标物体至雷达的距离,距离变化率或径向速度、方位、高度等)。
测量距离原理是测量发射脉冲与回波脉冲之间的时间差,因电磁波以光速传播,据此就能换算成雷达与目标的精确距离。
测量目标方位原理是利用天线的尖锐方位波束,通过测量仰角靠窄的仰角波束,从而根据仰角和距离就能计算出目标高度。
测量速度原理是雷达根据自身和目标之间有相对运动产生的频率多普勒效应。
雷达接收到的目标回波频率与雷达发射频率不同,两者的差值称为多普勒频率。
从多普勒频率中可提取的主要信息之一是雷达与目标之间的距离变化率。
当目标与干扰杂波同时存在于雷达的同一空间分辨单元内时,雷达利用它们之间多普勒频率的不同能从干扰杂波中检测和跟踪目标。
雷达的种类
雷达的种类繁多,分类的方法也非常复杂。
一般为军用雷达。
通常可以按照雷达的用途分类,如预警雷达、搜索警戒雷达、引导指挥雷达、炮瞄雷达、测高雷达、战场监视雷达、机载雷达、无线电测高雷达、雷达引信、气象雷达、航行管制雷达、导航雷达以及防撞和敌我识别雷达等。
按照雷达信号形式分类,有脉冲雷达、连续波雷达、脉部压缩雷达和频率捷变雷达等。
按照角跟踪方式分类,有单脉冲雷达、圆锥扫描雷达和隐蔽圆锥扫描雷达等。
按照目标测量的参数分类,有测高雷达、二坐标雷达、三坐标雷达和敌我识对雷达、多站雷达等。
按照雷达采用的技术和信号处理的方式有相参积累和非相参积累、
动目标显示、动目标检测、脉冲多普勒雷达、合成孔径雷达、边扫描边跟踪雷达。
按照天线扫描方式分类,分为机械扫描雷达、相控阵雷达等。
按雷达频段分,可分为超视距雷达、微波雷达、毫米波雷达以及激光雷达等。
2005年4月19日19-22时,哈尔滨雷达站观测到重力波结构,主要利用新一代多普勒天气雷达速度场资料对本次过程的重力波结构进行分析。
在本次重力波发生发展过程中,径向速度在水平方向上表现为正负速度交替分布的特征;垂直速度在水平方向上平均高度1100m以下是上升、下沉气流交替分布,垂直方向上的气流有时是与垂直方向成一定角度的;重力波波长约为5km,相速约为10m/s,周
相控阵雷达又称作相位阵列雷达,是一种以改变雷达波相位来改变波束方向的雷达,因为是以电子方式控制波束而非传统的机械转动天线面方式,故又称电子扫描雷达相控阵技术,早在30年代后期就已经出现。
1937年,美国首先开始这项研究工作。
但一直到50年代中期才研制出2部实用型舰载相控阵雷达。
80年代,相控阵雷达由于具有很多独特的优点,得到了更进一步的应用。
在已装备和正在研制的新一代中、远程防空导弹武器系统中多采用多功能相控阵雷达,它已成为第三代中、远程防空导弹武器系统的一个重要标志。
从而,大大提高了防空导弹武器系统的作战性能。
在21世纪,相控阵雷达随着科技的不断发展和现代战争兵器的特点,其制造和研究将会更上一层楼。