单脉冲雷达理以及应用
雷达大作业---振幅和差角度测量及仿真

雷达原理大作业单脉冲自动测角的原理及应用学院:电子工程学院作者:2016年5月21日单脉冲自动测角的原理及应用一.摘要单脉冲测角法是属于振幅法测角中的等信号法中的一种,其测角精度高,抗干扰能力强,在现实中得到了广泛的应用。
而其中对于接收支路要求不太严格的双平面振幅和差式单脉冲雷达,更是备受青睐。
本文首先讲述了单平面振幅和差式单脉冲雷达自动测角的原理,再简述了双平面振幅和差式单脉冲雷达自动测角的结构框图,接着简述了本文仿真所用的一些原理和公式推导,包括天线方向图函数及其导数的推导,最后做了基于高斯形天线方向图函数的单脉冲自动测角,基于辛克函数形天线方向图函数的单脉冲自动测角,和基于高斯形天线方向图函数的双平面单脉冲自动测角。
源代码在附录里。
二.重要的符号说明三.单平面振幅和差式单脉冲自动测角原理单脉冲测角法是属于振幅法测角中的等信号法中的一种。
在单平面内,两个相同的波束部分重叠,交叠方向即为等信号轴的方向。
将这两个波束接收到的回波信号进行比较就可以在一定范围内,一定精度要求下测到目标的所在角度。
因为两个波束同时接到回波,故单脉冲测角获得目标角误差信息的时间可以很短,理论上只要分析一个回波脉冲即可,所以称之为“单脉冲”。
因取出角误差的具体方式不同,单脉冲雷达种类很多,其中应用最广的是振幅和差式单脉冲雷达,其基本原理说明如下:1.角误差信号雷达天线在一个平面内有两个重叠的部分,如下图1所示:图1.振幅和差式单脉冲雷达波束图(a)两馈源形成的波束 (b)和波束 (c)差波束振幅和差式单脉冲雷达取得角误差信号基本方法是将这两个波束同时收到的信号进行和差处理,分别得到和信号和差信号。
其中差信号即为该角平面内角误差信号。
若目标处在天线轴方向(等信号轴),误差角0ε=,则两波束收到的回波信号振幅相同,差信号等于0。
目标偏离等信号轴而有一个误差角ε时,差信号输出振幅与ε成正比而其符号则由偏离方向决定。
2.和差比较器这里主要使用双T 插头,示意图如下图2(a )所示。
单脉冲雷达角度跟踪原理

单脉冲雷达角度跟踪原理引言单脉冲雷达是一种精密跟踪雷达。
它有较高的测角精度、分辨率和数据率,但设备比较复杂。
单脉冲雷达早在60年代就已广泛应用。
美国、英国、法国和日本等国军队大量装备单脉冲雷达,主要用于目标识别、靶场精密跟踪测量、弹道导弹预警和跟踪、导弹再入弹道测量、火箭和卫星跟踪、武器火力控制、炮位侦察、地形跟随、导航、地图测绘等;在民用上主要用于中交通管制。
目前使用的单脉冲雷达基本上都实现了模块化、系列化和通用化,具有多目标跟踪、动目标显示、故障自检、维修方便等特点。
中国的跟踪雷达技术的发展大体上分为两个阶段。
在50年代仿制圆锥扫描体制的炮瞄雷达、机载截击雷达等;50年代末期开始单脉冲技术的研究。
1960~1961年间研制出第一个微波复合比较器,对单脉冲天线的实现起了推动作用。
1963年研制成功第一部单脉冲体制试验雷达,随后陆续研制出各种用途的单脉冲跟踪雷达。
一、单脉冲雷达分类根据从回波中获取角信息的方式(测角法)不同,单脉冲雷达可分为振幅法(比幅)、相位法(比相)和综合法(振幅相位)3种。
这3种测角法又可用3种角度鉴别器(振幅式、相位式、和差式)中的任何一种来获得目标的角度信息,因此综合起来有9种形式的单脉冲雷达系统,其中以振幅和差式单脉冲雷达系统用的最多。
通常分为有振幅比较单脉冲雷达和相位比较单脉冲雷达两大类。
二、工作原理单脉冲雷达每发射一个脉冲,天线能同时形成若干个波束,将各波束回波信号的振幅和相位进行比较,当目标位于天线轴线上时,各波束回波信号的振幅和相位相等,信号差为零;当目标不在天线轴线上时,各波束回波信号的振幅和相位不等,产生信号差,驱动天线转向目标直至天线轴线对准目标,这样便可测出目标的高低角和方位角,从各波束接收的信号之和,可测出目标的距离,从而实现对目标的测量和跟踪。
它具有圆锥扫描雷达所没有的优点:获得角误差信息的时间短(以微秒计算);不受回波振幅起伏变化的影响;测角精度高;测角支路抗幅度调制干扰(如回答式倒相干扰)的能力强。
雷达的原理及应用

雷达的原理及应用雷达是一种常用的无线电技术,通过发送射频信号并接收其反射回来的信号,来探测和测量目标物体的位置、速度和其他特征。
雷达的原理主要基于射频信号的传播速度和反射原理。
雷达的工作原理基于以下几个步骤:首先,雷达发射器会向目标物体发送一个短脉冲射频信号。
然后,射频信号会在目标物体上反射,并一部分返回到雷达接收器上。
接收器会通过分析接收到的信号的时间延迟、频率和相位等信息,来计算出目标物体与雷达的距离、速度等特征。
根据接收到的信号强度,雷达还可以判断目标物体的大小和形状等特性。
雷达有广泛的应用领域,下面是一些常见的应用:1.天气预报:气象雷达可以引用雷达原理来探测降水,监测降雨的位置、强度和移动速度。
这对于预测天气变化、洪水预警和农业灌溉等方面都非常重要。
2.航空导航:雷达在航空领域中应用广泛,如飞行器导航和着陆辅助。
它可以帮助飞行员确定飞行器与地面、其他飞行器和障碍物之间的距离,以提供航行和防撞警告。
3.军事应用:雷达在军事领域中被广泛应用于目标侦察、导弹导航和火控系统。
它可以在夜间或恶劣天气条件下探测敌方飞机、船只和地面目标,为军事行动提供重要的情报和战术支持。
4.交通监测:雷达可用于交通监测和管理,如交通流量控制和车辆速度监测。
通过确定车辆之间的间距和速度,雷达可以帮助监测交通流量,减少拥堵和交通事故的发生。
5.障碍物检测:雷达可以用于检测静止或移动的障碍物,如建筑物、山脉、冰山等。
它在船舶、无人机和汽车等的自动导航和避障系统中扮演着重要角色。
总结来说,雷达的原理是利用射频信号的传播和反射来测量目标物体的位置、速度和其他特征。
它的应用广泛,在气象、航空、军事、交通、导航和避障等领域都发挥着重要作用。
单脉冲原理

单脉冲原理单脉冲原理是一种用于信号处理和通信系统中的基本原理。
它是指通过对输入信号进行适当的处理,使得输出信号只包含一个脉冲的信号。
单脉冲原理在很多领域都有应用,比如雷达系统、通信系统、生物医学工程等。
在雷达系统中,单脉冲原理被广泛应用于目标检测和跟踪。
雷达系统通过发射脉冲信号并接收回波信号来实现对目标的探测。
然而,在实际环境中,会存在多个目标同时反射回波信号,这就会导致接收到的信号中包含多个脉冲。
为了准确地识别和跟踪目标,需要将这些回波信号中的脉冲进行分离。
这时就可以利用单脉冲原理,对接收到的回波信号进行处理,只保留最强的一个脉冲,从而得到目标的位置和速度信息。
在通信系统中,单脉冲原理可以用于抑制多径干扰。
多径干扰是指信号在传输过程中经过不同路径到达接收端,形成多个信号的叠加。
这会导致接收到的信号中出现多个脉冲,影响通信质量。
为了减小多径干扰的影响,可以利用单脉冲原理,对接收到的信号进行处理,只保留最强的一个脉冲,并抑制其他脉冲,从而提高通信系统的性能。
在生物医学工程中,单脉冲原理可以应用于脑机接口技术。
脑机接口是一种通过将脑信号转换为控制信号来实现人机交互的技术。
然而,脑信号通常是非常微弱和复杂的,包含了大量的噪声和干扰。
为了提取出有用的脑信号,可以利用单脉冲原理,对接收到的脑信号进行处理,只保留最强的一个脉冲,从而提高信号的质量和可靠性。
单脉冲原理是一种重要的信号处理原理,可以应用于雷达系统、通信系统和生物医学工程等领域。
通过对输入信号进行适当的处理,可以实现对目标的准确探测和跟踪,抑制多径干扰,提取有用的脑信号。
这些应用都有助于提高系统的性能和可靠性,推动相关领域的发展和进步。
雷达大作业-振幅和差单脉冲雷达在自动测角系统中的应用.docx

雷达原理大作业振幅和差单脉冲雷达在自动测角系统中的应用指导老师:魏青振幅和差脉冲测角基本原理单脉冲自动测角属于同时波瓣测角法,在一个角平面内,两个相同的波束部分重叠,交叠方向即为等信号轴的方向。
将这两个波束接收到的回波信号进行比较,就可取得目标在这个平面上的角误差信号,然后将此误差电压放大变换后加到驱动电动机控制天线向减小误差的方向运动。
因为两个波束同时接收到回波,故单脉冲测角获得目标角误差信息的时间可以很短,理论上只要分析一个回波脉冲就可以确定角误差,所以叫“单脉冲”。
这种方法可以获得很高的测角精度,故精密跟踪雷达通常采用它。
由于取出角度误差信号的具体方法不同,单脉冲雷达的种类很多,应用最广的是振幅和差式单脉冲雷达,该方法的实质实际上是利用两个偏置天线方向图的和差波束。
和差脉冲法测角的基本原理为:①角误差信号。
雷达天线在一个角平面内有两个部分重叠的波束如错误!未找到引用源。
所示:振幅和差式单脉冲雷达取得角误差信号的基本方法是将这两个波束同时收到的信号进行和差处理,分别得到和信号和差信号。
与和差信号相应的和差波束如错误!未找到引用源。
(b) (c)。
振幅和差式单脉冲波束图(a)两波束;(b)和波束;(c)差波束其中差信号即为该角平面内的角误差信号。
若目标处在天线轴向方向(等信号轴),误差角为零,则两波束收到的回波信号幅度相同,差信号等于零。
目标偏离等信号轴而有一误差角时,差信号输出振幅与误差角成正比,而其符号(相位)则由偏离的方向决定。
和信号除用作目标检测和距离跟踪外,还用作角误差信号的相位基准。
②和差波束形成原理:和差比较器是单脉冲雷达的重要部件,由它完成和差处理,形成和差波束。
以错误!未找到引用源。
(a)中的双T接头为例,它有四个端口,∑(和)端、△(差)端和1、2端,这四个端口是匹配的。
发射时,从发射机来的信号加到和差比较器的∑端,1、2端输出等幅同相信号,△端无输出,两个馈源同相激励,并辐射相同功率,结果两波束在空间各点产生的场强同相相加,形成发射和波束。
单脉冲雷达测角原理

单脉冲雷达测角原理
单脉冲雷达测角原理基于多普勒效应。
当脉冲雷达向目标发射一个窄脉冲时,目标会产生回波信号。
由于目标相对于雷达在运动,回波信号的频率会发生偏移。
根据多普勒效应的原理,回波信号的频率偏移与目标的速度成正比。
因此,通过测量回波信号的频率偏移,可以得知目标的速度。
单脉冲雷达采用相控阵天线,可以同时辐射多个窄脉冲,并接收多个回波信号。
通过比较不同天线元件接收到的回波信号的相位差,可以测量到目标的方位角。
具体来说,单脉冲雷达中的天线阵列会将脉冲信号分别发射到不同的方向。
当回波信号到达时,不同的天线元件会接收到不同的信号,经过处理后可以测得方位角。
为了保持高分辨率,单脉冲雷达通常会使用复杂的相控阵技术,如多元素阵列和接收信号的波束形成。
这些技术可以提高雷达的角分辨率和抗干扰能力。
总结来说,单脉冲雷达测角原理是通过测量回波信号的多普勒频率偏移,并结合相控阵技术,来确定目标的速度和方位角。
脉冲雷达原理

脉冲雷达原理脉冲雷达是一种利用脉冲信号来探测目标的雷达系统,它具有高分辨率、远距离探测和抗干扰能力强的特点,被广泛应用于军事、航空航天、气象、地质勘探等领域。
脉冲雷达的工作原理主要包括脉冲发射、目标回波接收和信号处理三个基本过程。
首先,脉冲雷达通过发射脉冲信号来探测目标。
当雷达系统发射脉冲信号时,脉冲的宽度和重复频率决定了雷达系统的探测能力。
脉冲宽度越窄,雷达系统的测距分辨率越高,能够更精确地识别目标。
而脉冲的重复频率则决定了雷达系统的最大探测距离,高重复频率可以实现远距离探测,但会降低雷达系统的测距精度。
其次,脉冲雷达通过接收目标回波来获取目标信息。
当脉冲信号遇到目标时,部分能量会被目标散射回雷达系统,形成目标回波。
雷达系统接收到目标回波后,通过信号处理技术提取目标的距离、速度、角度等信息。
脉冲雷达的高分辨率和抗干扰能力主要得益于其对目标回波的精确接收和处理。
最后,脉冲雷达通过信号处理来实现目标探测和识别。
信号处理技术包括脉冲压缩、脉冲-Doppler处理、自适应波形设计等,能够有效地提高雷达系统的探测性能和抗干扰能力。
脉冲压缩技术可以提高雷达系统的分辨率,脉冲-Doppler处理技术可以实现对目标速度的测量,自适应波形设计则可以根据环境和目标特性动态调整雷达波形,从而提高雷达系统的适应性和灵活性。
总的来说,脉冲雷达通过发射脉冲信号、接收目标回波和信号处理三个基本过程,实现了对目标的高精度探测和识别。
在实际应用中,脉冲雷达的原理和技术不断得到改进和完善,使其在军事侦察、空中监视、天气预报、地质勘探等领域发挥着重要作用。
随着技术的不断进步,相信脉冲雷达在未来会有更广阔的应用前景。
脉冲雷达原理

脉冲雷达原理脉冲雷达是一种利用脉冲波进行测距的雷达系统,它通过发射脉冲波并接收目标反射的信号来确定目标的距离、速度和方位。
脉冲雷达原理的核心在于脉冲波的发射和接收处理,下面将详细介绍脉冲雷达的工作原理。
首先,脉冲雷达系统由发射机、天线、接收机和信号处理器等组成。
当发射机产生高能量的脉冲波并发送到目标区域时,部分脉冲波会被目标反射回来,并被接收机接收。
接收机接收到反射信号后,信号处理器会对接收到的信号进行处理,从而得到目标的距离、速度和方位信息。
其次,脉冲雷达的工作原理基于脉冲波的特性。
脉冲波是一种短暂的高能量波形,它的特点是脉冲宽度很短,频率很高。
当脉冲波发射到目标区域时,它会与目标发生相互作用,一部分能量被目标反射回来,这就是所谓的回波信号。
接收机接收到回波信号后,通过测量回波信号的时间延迟,可以计算出目标的距离。
再次,脉冲雷达还可以通过多普勒效应来测量目标的速度。
当目标以一定速度运动时,它会导致回波信号的频率发生变化,这就是多普勒频移。
通过测量回波信号的频率变化,可以计算出目标的速度。
最后,脉冲雷达的方位测量是通过天线的方向性来实现的。
天线会旋转或者扫描目标区域,当接收到回波信号时,根据天线的方向可以确定目标的方位。
综上所述,脉冲雷达利用脉冲波的发射和接收处理来实现目标的测距、速度和方位测量。
它的工作原理基于脉冲波的特性和多普勒效应,通过精密的信号处理和天线方向性来实现对目标信息的获取。
脉冲雷达在军事、航空航天、气象、地质勘探等领域都有着广泛的应用,是一种非常重要的远程探测技术。
总之,脉冲雷达原理的理解对于工程技术人员和科研人员来说至关重要,只有深入理解其原理,才能更好地应用和改进脉冲雷达技术,推动雷达技术的发展和应用。
希望本文能够对脉冲雷达原理有所帮助,谢谢阅读!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单脉冲定向原理
对目标的定向,即测定目标的方向,是雷达的主要任务之一。
单脉冲定向是雷达定向的一个重要方法。
所谓“单脉冲”,是指使用这种方法时,只需要一个目标回波脉冲,就可以给出目标角位置的全部信息。
根据从回波信号中提取目标角信息的特点,可以将单脉冲定向分为两种基本的方法:振幅定向法和相位定向法,分别见于下图。
除了上述两种方法外,由它们合成的振幅—相位定向法(或称为综合法)也得到了广泛的应用。
图2-1 单脉冲振幅定向法 图2-2单脉冲相位定向法
2.1 振幅定向法
振幅定向法是用天线接收到的回波信号幅度值来进行角度测量的,该幅度值的变化规律取决于天线方向图以及天线的扫描方式。
振幅定向法可以分为最大信号法和等信号法两大类,其中等信号法又可以分为比幅法和和差法。
如图所示,平面两波束相互部分交叠,其等强信号轴的方向已知,两波束中心轴与等强信号轴的偏角0θ也已知。
假设目标回波信号来向与等强信号轴向的夹角为θ,天线波束方向图函数为F(θ),则两个子波束的方向图函数可分别写成
()()()⎩⎨⎧-=+=θθθθθθ02
01)(F F F F (2-1) 两波束接收到的目标回波信号可以表示成:
()()()()()()⎩⎨⎧-==+==θθθθθθθθ022
011F K F K u F K F K u a a a a (2-2) 其中a K 为回波信号的幅度系数。
对于比幅法,直接计算两回波信号的幅度比值有:
()()()()
θθθθθθ-+=0021F F u u (2-3) 根据上式比值的大小可以判断目标回波信号偏角θ的方向,再通过查表就可以估计出θ的大小。
对于和差法,由()θ1u 和()θ2u 可计算得到其和值()θ∑u 及差值()θ∆u 分别如下: ()()()()()()()()()()()()⎩⎨⎧--+=-=-++=+=∆
∑θθθθθθθθθθθθθθ00210021F F K u u u F F K u u u a a (2-4) 其中()()()θθθθθ-++=∑00)(F F F 称为和波束方向图;
()()()θθθθθ--+=∆00)(F F F 称为差波束方向图。
若θ很小(在等强信号轴附近),根据泰勒公式可以将
()θθ+0F 和()θθ-0F 展
开近似为: ()()()()()()()()()()()()⎩⎨⎧'-=+'-=-'+≈+'+=+θ
θθθθθθθθθθθθθθθθθ002000002000F F o F F F F F o F F F 进一步可以得到:
()()()()⎩⎨⎧'≈≈∆
∑θθθθθ0022F K u F K u a a (2-5)
归一化和差信号值可得:
()()()()
υθθθθθθ='=∑∆00F F u u (2-6) 其中()()00θθυF F '=
是天线方向图在波束偏转角0θ处的归一化斜率系数。
即可计算得到目标回波信号偏角θ为:
()()υθθθ1∑∆=u u
对于振幅定向法来说,其优点是测向精度较高,便于自动测角,缺点是系统较复杂,作用距离较小等。
2.2 相位定向法
相位定向法是将两个天线接收到的信号相位加以比较以确定目标在一个座标平面内方向。
如上图所示,对于遥远区域内的点目标,目标回波可近似看成是两列平行波分别入射到两天线上,因而两天线接收到的目标回波信号振幅相同而相位不同。
两天线接收到的目标回波信号时差为:
C
d θτsin = (2-7) 其中C 为电磁波在空气介质中的传播速度。
则对应的相位差为:
θλπϕsin 2d =
∆ (2-8) 如果我们能测出信号到达天线1和2的相位差,那么,我们就能得到信号到
达的方向θ为: ⎪⎭
⎫ ⎝⎛∆=d πϕλ
θ2arcsin (2-9) 相位定向法容易得到较高的精度,这是它突出的优点,其缺点是容易引起相位差的测量模糊,并需要对信号频率进行测量。
2.3 单脉冲雷达系统
多路接收是实现单脉冲定向的技术方法,单脉冲定向的关键就在于用几个独立的接收支路同时接收目标的回波信号,然后再将这些信号加以处理比较,最终计算得到目标信号的到达角。
通常,在三维空间对一个目标定向要采用四个独立的接收支路:方位面两个支路,俯仰面两个支路。
根据角度鉴别器和测角方法的不同,单脉冲雷达系统一般可以分为九种类型,如表1-2所示。
图1-5给出了两维角坐标(方位和俯仰)振幅和-差式单脉冲雷达系统框图。
测角方法(角度鉴别器的
类型)
三种定向方法的基本单脉冲雷达
振幅法相位法综合法
振幅法相位法和差式振幅——振幅
振幅——相位
振幅和——差
相位——振幅
相位——相位
相位和——差
综合振幅
综合相位
综合和——差表2-1 九种基本的单脉冲雷达系统
图2—3 振幅和-差式单脉冲雷达系统框图
∑-波导桥的和输出;△-波导桥的差输出
单脉冲雷达不仅可以用于搜索,也可以用来对目标进行自动精确跟踪。
与圆锥扫描雷达相比,单脉冲雷达具有如下优点:跟踪精度高;作用距离不受限制;数据率的潜力大;抗干扰性能好等。
当然,它也存在一些缺点与不足,例如:系统复杂和只能应用窄波束天线等等,但是随着科技的发展,与雷达的其它许多新技术相比,这些复杂性已经成为次要的问题。
2.4雷达系统仿真模型
雷达系统仿真是数字仿真技术与雷达技术结合的产物。
纯软件的仿真,就
是利用计算机软件来建立雷达的模型,然后在数字计算机上复现雷达系统的动态工作过程。
具体的说,仿真的对象是雷达系统,包括雷达本身(硬件及软件)、雷达目标及目标环境;仿真的手段是数字计算机,包括软件及硬件;仿真的方式是复现蕴含在雷达目标及目标环境信息的雷达信号。
这里所说的“复现”就是重现雷达信号的产生、传递、处理等动态过程,从时间关系上看,就是重现一个随机的时间。
纯软件仿真的系统模型如下:
图2-4 雷达仿真模型
建立雷达的系统模型,从逻辑上讲,应当采用与制造实际雷达系统相同的思路。
建立通用的仿真模型,就必须把重点放在精确仿真功能组件上来,这是因为大多数的雷达系统都可以采用相同的功能组件,只不过系统参数有所不同而已。
因此,在建立通用的雷达系统模型时,首要任务是建立各种功能组件的数学模型;其次是用计算机程序实现各组件的功能;再次就是把各功能组件组合成分系统模型;最后把各个分系统模型组合成总系统模型。
2.4 本次毕设的工作
本次毕设使用的是半实物的仿真,实验室具备一个机载四天线雷达,而且有一个目标模拟运动架,可以同时进行X轴与Y轴的运动。
模拟运动架上面放置发射源,模拟目标回波,回波信号被雷达的四个天线接收并经过和差处理形成三路信号,分别为和路信号,方位差路信号与俯仰差路信号。
三路信号经过中频放大器后进入PCI-9812数据采集卡进行高速采样,三路采样是同时进行的。
然后进行曲线拟合得出三路信号的幅度与相位,从幅相信息获得雷达对目标搜索与跟踪的可行性。
由于分工问题,本次毕设的主要工作是中频放大器的调试,PCI9812数据采集卡的安装与编程,曲线拟合的算法研究与编程以及幅度相位跟踪曲线的研究。
本次仿真的简单框图如下所示:
图2-5 毕设简单框图。