空间平行力系

合集下载

第四章 空间力系的平衡

第四章  空间力系的平衡
应用静力学
第4章
空间力系的平衡
静力学
第4章 空间力系的平衡
实 例 1
静力学
第4章 空间力系的平衡
实 例 2
静力学
第4章 空间力系的平衡
主要内容
本章内容: 1. 空间约束; 2. 空间分布力;
3. 空间汇交力系的平衡; 4. 空间平行力系的平衡;
5. 空间力偶系的平衡;
6. 空间一般力系的平衡。
静力学
第4章 空间力系的平衡
空间平行分布力
z q x O
L x
例1 沿AOB分布的平行分布力, 最大分布集度为q,OA=OB=L。 求合力大小及位置。 解:方法一
xC
F
B
y
A
xq dx
A
xq( L x) / Ldx qL
0

L 6
yC
yq
y
dy

L
yq( L y ) / Ldy qL
静力学
第4章 空间力系的平衡
主要内容
本章内容: 1. 空间约束; 2. 空间分布力;
3. 空间汇交力系的平衡; 4. 空间平行力系的平衡;
5. 空间力偶系的平衡;
6. 空间一般力系的平衡。
静力学
第4章 空间力系的平衡
空间约束
一. 约束回顾
1. 柔索
1
2. 光滑接触面 1
3. 平面光滑柱铰

F F F
x
0
y
0
0
z

M M M
x
0
y
0
0
z
空间平行力系
(parallel force system in space) 平衡方程:

工程力学第4章 力系的平衡

工程力学第4章 力系的平衡

2
即空间一般力系平衡的解析条件是力系中所有各力 在任一轴上投影的代数和为零,同时力系中各力对任一 轴力矩的代数和为零。式(4.2)称为空间一般力系的平 衡方程(equationsofequilibrium ofthreedimensionalforcesystem inspace)。 应当指出,由空间一般力系平衡的解析条件可知, 在实际应用平衡方程时,所选各投影轴不必一定正交, 且所选各力矩轴也不必一定与投影轴重合。此外,还可 用力矩方程取代投影方程,但独立平衡方程总数仍然是 6个。
30
4.3.1 有主次之分物体系统的平衡 有主次之分的物体系统,其荷载传递规律是:作用 在主要部分上的荷载,不传递给相应的次要部分,也不 传递给与它无关的其他主要部分;而作用在次要部分上 的荷载,一定要传递给与它相关的主要部分。
31
32
据此,先分析次要部分BD,其受力图如图4.11(b) 所示。建立图示参考系Oxy,列平衡方程并求解。由于 本题只要求出D处的约束反力,而不必要求出B处的约 束反力,故
12
13
建立参考系 Bxy,列平衡方程,求未知力。
14
15
例4.ቤተ መጻሕፍቲ ባይዱ 图4.5所示为一管道支架,其上搁有管道,设 每一支架所承受的管重G1=12kN,G2=7kN,且架重不计。 求支座A和C处的约束反力,尺寸如图所示。
16
17
解 取刚架AB为研究对象,其上所受力有:已知的 集中力F、集度为q的均布荷载,集中力偶;未知的3个 约束反力FAx,FAy,MA。刚架AB的受力图如图4.6(b) 所示。各力组成一平面一般力系。建立图示Oxy坐标系, 列平衡方程求解
9
2.平面一般力系平衡方程的其他形式 (1)二矩式平衡方程

2、空间力系平衡、重心

2、空间力系平衡、重心

解:取铰D 脱离体, 为 脱离体, 画受力图如 所示, 图b所示, 各力形成空 间汇交力系。 间汇交力系。
由ΣFx =0, cos60 sin60 60ºsin60º+ cos60 sin60 60ºsin60º= -NADcos60 sin60 + NBDcos60 sin60 =0 NAD=NAD 得 由ΣFy =0, Tcos60 +NCDcos60 -NADcos60 cos60 -NBDcos60 cos60 =0 cos60º+ cos60º- cos60ºcos60 cos60º- cos60ºcos60 cos60º=0 FG+NCD-0.5NAD-0.5NBD=0 得 由ΣFz =0, NADsin60 +NCDsin60 +NBDsin60 ―T sin60 ―FG=0 sin60 60º+ sin60 60º+ sin60 60º― sin60 60º― 866( 866+ 得 0.866(NAD+ NCD+ NBD)-(0.866+1)FG=0 联立求解得 NAD =NBD =31.55kN , NCD=1.55kN。 。
球形铰链
2、向心轴承 、
4、 、 向 心 推 力 轴 承
6、空间固定端 、
例 3 - 3 : 用三角架 ABCD 和绞车提升一重物如图 所示。 为一等边三角形, 所示。设ABC为一等边三角形,各杆及绳索均与水 平面成60 的角。 60º的角 30kN, kN,各杆均为二力 平面成60 的角。已知重物FG=30kN,各杆均为二力 滑轮大小不计。 杆 , 滑轮大小不计 。 试求重物匀速吊起时各杆所 受的力。 受的力。
[例] 已知: RC=100mm, RD=50mm,Px=466N, Py=352N, Pz=1400N。求: 例 平衡时(匀速转动)力Q=?和轴承A , B的约束反力?

理论力学第3章

理论力学第3章
Pz Psin45 Pxy Pcos45 Px Pcos45sin60 Py Pcos45cos60
理论力学
中南大学土木建筑学院
7
mz (P )mz (P x )mz (P y )mz (P z )6Px (5Py )0 6Pcos45sin605Pcos45cos6038.2(Nm)
mx (P )mx (P x )mx (P y )mx (P z )006Pz 6Psin4584.8(Nm)
由 mA (Fi ) 0
P2a N B
3a0,
N B
2P 3
X 0
XA 0
Y 0
YB NB P0,
YA
P 3
理论力学
中南大学土木建筑学院
22
二、平面平行力系平衡方程 平面平行力系的平衡方程为:
Y 0
mO (Fi )0
一矩式
实质上是各力在x 轴上的投影恒 等于零,即 X 0 恒成立, 所以只有两个独立方程,只能 求解两个独立的未知数。
一、空间任意力系的平衡充要条件是:
R '0F 0 M O mO (Fi )0
又 R' (X )2 (Y )2 (Z )2
MO (mx (F ))2 (my (F ))2 (mz (F ))2
所以空间任意力系的平衡方程为:
X 0,mx (F )0 Y 0,my (F )0 Z 0,mz (F )0
再研究轮
mO (F )0
SAcosRM 0 X 0
X O SAsin 0
Y 0
S Acos YO 0
M PR XO P tg YO P
[负号表示力的方向与图中所设方向相反]
理论力学
中南大学土木建筑学院

工程力学第三章-力系的平衡

工程力学第三章-力系的平衡

将上式两边向x、y、z 轴投影,可得平衡方程
F F F
可以求解3个未知量。
x y
z
0 0 0
• 2.平面汇交力系
力系的平衡
• 力偶系的平衡方程 • 1.空间力偶系
平衡的充要条件(几何条件) M Mi 0 将上式两边向x、y、z 轴投影,可得平衡方程
M M M
可以求解3个未知量。
ix iy iz
0 0 0
• 2.平面力偶系
力系的平衡
• 平衡的充要条件:力偶系中各力偶矩的代数和等于零.
m 0
i
• 任意力系的平衡方程 空间任意力系: • 平衡的充要条件:力系的主矢和对任一点的主矩均为零。
FR 0
MO 0
G3 a
e
G 3(a b) FNAb G1e G 2L 0 G 3(a b) G1e G 2L FNA 2 b
由(1)、(2)式 得:
G1 G2 L
G1e G 2L G3 ab
3
A FN A b
B FN B
(2)空载时
不翻倒条件:FNB≥0 (4) 由 mA 0 得:
FAB = 45 kN
600
y B TBC 15 15 30 TBD
0 0 0
x
C
D
150
B
300
TBD=G E
A
E
FAB G
解题技巧及说明:
1、一般地,对于只受三个力作用的物体,且角度特殊时用 几 何法(解力三角形)比较简便。 2、一般对于受多个力作用的物体,且角度不特殊或特殊, 都用解析法。 3、投影轴常选择与未知力垂直,最好使每个方程中只有一 个未知数。

空间力系

空间力系

最后结果为一合力。合力作用线距简化中心为
(2)合力偶
当 中心无关。 (3)力螺旋 时,最后结果为一个合力偶。此时与简化 当 ∥ 时
力螺旋中心轴过简化中心

成角

既不平行也不垂直时
力螺旋中心轴距简化中心为
(4)平衡
当 平衡力系
时,空间力系为
§4–5 空间任意力系的平衡方程
空间任意力系平衡的充分必要条件:该力系的主矢、 主矩分别为零。 1.空间任意力系的平衡方程
空间力系
空间力系:
空间汇交(共点)力系
空间力偶系
空间任意力系 (空间平行力系)。
§4–1空间汇交力系
平面汇交力系合成的力多边形法则对空间汇交力 系是否适用?
解析法 1、力在直角坐标轴上的投影 直接投影法
间接(二次)投影法
Fx Fxy cos F sin . cos
Fy Fxy sin F sin . sin
其中,各
,各
一空间汇交与空间力偶系等效代替一空间任意力系。
空间汇交力系的合力 称为力系的主矢
空间力偶系的合力偶矩
称为空间力偶系的主矩 由力对点的矩与力对轴的矩的关系,有
式中,各分别表示各 对 , , ,轴的矩。

2. 空间任意力系的简化结果分析(最后结果) 1) 合力 当 最后结果为一个合力。 合力作用点过简化中心。 当 时,
已知:
两圆盘半径均为200mm,
AB =800mm,
圆盘面O1垂直于z轴, 圆盘面O2垂直于x轴,
两盘面上作用有力偶,F1=3N,F2=5N, 构件自重不计。
求:轴承A,B处的约束力。 解:取整体,受 力图如图所示。 由力偶系平衡方程

理论力学 第六章 空间力系.ppt

理论力学 第六章 空间力系.ppt

r = x i + y j + z k 则:
z
i x MO(F) = r F =
jk yz
B
MO(F)
F
Od y
Fx Fy Fz
rA
x
=( y·Fz - z ·Fy ) i + (z·Fx - x ·Fz ) j + (x·Fy - y ·Fx ) k
其中 [MO (F)] x = y·Fz - z ·Fy [MO (F)] z = x·Fy - y ·Fx
使-R=R')
③由反向平行力合成得:
F1与R合成得F2,作用在d点 F1'与R'合成得F2',作用在c点
且R-F1=F2 ,R'- F1'= F2'
④在I内的力偶(F1,F1')等效变成II内的( F2, F2' )
14
由此可得出,空间力偶矩是自由矢量,它有三个要素:
①力偶矩的大小= m
②力偶矩的方向——与力偶作用面法线方向相同 ③转向——遵循右手螺旋规则。 三、空间力偶系的合成与平衡 由于空间力偶系是自由矢量,只要方向不变,可移至任意 一点,故可使其滑至汇交于某点,由于是矢量,它的合成符合 矢量运算法则。
[MO (F)] y = z·Fx - x ·Fz 为力矩式在坐标轴上的投影。
19
二 力对轴的矩
z
力对物体绕轴转动效果的度量
1)定义:力对轴的矩等于此力在垂直
于矩轴的平面上的投影矢量对
于矩轴与这平面的交点的距 。
o
用FXY表示F在XY平面上的投影,
则力F对Z轴的矩为
x
mZ (F) Fxyd
各力偶矩矢在三个坐标轴的每一坐标轴上投影的代数和等于零.

工程力学-第五章

工程力学-第五章

F F
sin γ cos φ
sin
γ
sin
φ
Fz F cos γ
应当指出:力在坐标轴上的投影是代数量,有正、负两种可能;而力在平面上的投影为矢量。
5.1.3 空间汇交力系的合成与平衡条件
1.空间汇交力系的合成
设有空间汇交力系 F1,F2,…,Fn,利用力的四边形法则,可将其逐步合成为合力矢 R,
某轴之矩等于各分力对同轴的矩的代数和,即
M x FR M x F1 M x F2 M y FR M y F1 M y F2 M z FR M z F1 M z F2
Mx My
Fn Fn
Mx My
FFii
M
z
Fn
M
z
Fi
5.2.3 空间力系的合力矩定理
如图所示,设力F的作用线沿AB,O点为矩心,则力对 这一点之矩可用矢量来表示,称为力矩矢,用MO(F)表 示。力矩矢MO(F)的始端为O点,它的模(即大小)等 于力F与力臂d的乘积,方位垂直于力F与矩心O所决定的平 面,指向可用右手法则来确定。于是可得:
MO (F ) Fd 2A OAB
5.2.1 力对点之矩
5.1.3 空间汇交力系的合成与平衡条件
例 5-1 如图所示,在正方体的顶角 A 和 B 处分别作用有力 F1 和 F2,试求此二力在 x,y,z 轴上的
投影。
F1x F1 sin cos F1
2 3
1 2
3
3
F1
解:首先,求 F1 在 x,y,z 轴上的投影,即 F1y F1 sin sin F1
5.2.4 力对点之矩与力对轴之矩的关系
以矩心 O 为原点,取直角坐标系 Oxyz,如图所示。设力 F 在各坐标轴上的投影为 Fx,Fy,Fz;力作 用点 A 的坐标为(x,y,z),则有 F Fxi Fy j Fzk
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间平行力系
空间平行力系是指在空间内,由若干个平行的力构成的力系。

这些力在大小、方向和
作用点上都是平行的,因此不会互相干扰或叠加,其作用效果可以看成是多个力的简单叠
加而成的。

空间平行力系的重要性在于它广泛存在于自然界和工程实践中,如桥梁、建筑结构、
飞机机身等,这些结构所承受的荷载往往是由若干个平行的力组成的。

了解和应用空间平
行力系的知识和方法,可以帮助我们更好地设计和维护这些结构,从而提高其稳定性和安
全性。

在计算空间平行力系的作用效果时,我们需要考虑以下几个因素:
1. 空间平行力系的矢量表示:将每个力看成一个矢量,并将它们画在同一坐标系中,从而得到一个矢量图。

2. 矢量的合成:对于每个矢量,我们可以将其拆分成一个平行于某个坐标轴的分量
和一个垂直于其它坐标轴的分量。

然后,我们可以将所有的平行分量和垂直分量分别相加,从而得到空间平行力系的总平行力和总垂直力。

3. 其他因素:除了平行力和垂直力,还要考虑力矩、力的作用点和结构的几何形状
等因素。

这些因素可以通过另外一些理论和方法进行计算和分析。

相关文档
最新文档