动能定理的应用举例

合集下载

动能定理及应用知识框图

动能定理及应用知识框图

动能定理及应用知识框图动能定理是力学中的基本定律之一,它描述了一个物体的动能与其所受作用力之间的关系。

根据动能定理,物体的动能的变化等于作用力对物体所做的功。

换句话说,动能定理表示了物体的动能的增加是由外力对物体做功所引起的。

动能定理可以用以下公式表示:\Delta KE = W其中,\Delta KE表示动能的变化量,W表示作用力对物体所做的功。

动能定理可以应用在很多实际问题中,下面举几个例子来说明其应用:1. 自行车运动:当我们骑自行车时,我们对踏板施加力,使自行车前进。

根据动能定理,我们对自行车施加的力所做的功等于自行车的动能的变化量。

如果我们用F表示对踏板施加的力,d表示骑自行车的距离,m表示自行车的质量,v_f表示自行车的最终速度,v_i表示自行车的初始速度,那么根据动能定理,我们可以得到以下等式:\frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2 = Fd2. 自由落体:当一个物体自由下落时,重力对物体做功,这个过程中物体的动能会增加。

根据动能定理,物体的动能的增加等于重力对物体做的功。

设物体的质量为m,下落的高度为h,重力加速度为g,则根据动能定理可以得到以下等式:mgh = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^23. 弹簧振子的运动:当一个弹簧振子在振动过程中,弹簧对物体施加力,使得物体产生加速度,从而改变其速度和动能。

根据动能定理,我们可以得到以下等式:\frac{1}{2}kx_f^2 - \frac{1}{2}kx_i^2 = \frac{1}{2}m(v_f^2 - v_i^2)其中,k是弹簧的劲度系数,x_f和x_i分别是弹簧振子的最大位移和初始位移。

通过动能定理,我们可以研究物体在作用力下的运动过程,计算物体的动能的变化量以及作用力对物体所做的功。

这些都有助于我们理解和解决各种实际问题,例如工程中的动力系统设计,运动物体的能量转换等。

动能定理的几种典型应用

动能定理的几种典型应用

动能定理的几种典型应用应用一:动能定理解决匀变速直线运动问题例1、一个质量m=2kg 的小物体由高h=1.6m 倾角︒=30α的斜面顶端从静止开始滑下,物体到达斜面底端时速率是4m/s ,那么物体在下滑的过程中克服摩擦力做功是多少焦耳?由公式20222v v aS -=可知222022/5.22.3242s m S v v a =⨯=-= 对物体受力分析并由牛顿第二定律可知:ma f mg =-αsin 所以N N ma mg f 55.2221102sin =⨯-⨯⨯=-=α J J fS W f 16)1(2.35180cos -=-⨯⨯=︒= 解法二:由动能定理221mv W mgh f =+ 可得:J J mgh mv W f 166.110242212122-=⨯⨯-⨯⨯=-= 应用二:动能定理解决曲线运动问题例2、在离地面高度h=10m 的地方,以s m v /50=水平速度抛出,求:物体在落地时的速度大小? 解法一:由221gt h =得 s s g h t 2101022=⨯== 所以s m s m gt v y /210/210=⨯== 所以s m s m v v v y /15/)210(522220=+=+=解法二:由动能定理可得 20222121mv mv mgh -=所以:s m s m v gh v /15/51010222202=+⨯⨯=+= 两种方法计算的结果完全一致,可见:动能定理同样适用于曲线运动。

并且可以求变力的功,如下题。

例3.质量m=2kg 的物体从高h=1.6m 的曲面顶部静止开始下滑,到曲面底部的速度大小为4m/s 。

求物体在下滑过程中克服摩擦力所做的功?应用3:利用动能定理求解多个力做功的问题例4、如图所示,物体置于倾角为37度的斜面的底端,在恒定的沿斜面向上的拉力的作用下,由静止开始沿斜面向上运动。

F 大小为2倍物重,斜面与物体的动摩擦因数为0.5,求物体运动5m 时速度的大小。

动能定理应用及典型例题

动能定理应用及典型例题

动能定理及应用动能及动能定理 1 动能表达式:221υm E K =2 动能定理(即合外力做功与动能关系):12K K E E W -=3理解:①F 合在一个过程中对物体做的功,等于物体在这个过程中动能的变化。

F 合做正功时,物体动能增加;F 合做负功时,物体动能减少。

②动能定理揭示了合外力的功与动能变化的关系。

4适用范围:适用于恒力、变力做功;适用于直线运动,也适用于曲线运动。

5应用动能定理解题步骤:a 确定研究对象及其运动过程b 分析研究对象在研究过程中受力情况,弄清各力做功情况c 确定研究对象在运动过程中初末状态,找出初、末动能d 列方程、求解。

例1、一小球从高出地面H 米处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h 米后停止,求沙坑对球的平均阻力是其重力的多少倍。

例2.一人坐在雪橇上,从静止开始沿着高度为15m 的斜坡滑下,到达底部时速度为10m/s 。

人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功。

基础练习1、一个质量是0.20kg 的小球在离地5m 高处从静止开始下落,如果小球下落过程中所受的空气阻力是0.72N ,求它落地时的速度。

2、一辆汽车沿着平直的道路行驶,遇有紧急情况而刹车,刹车后轮子只滑动不滚动,从刹车开始到汽车停下来,汽车前进12m 。

已知轮胎与路面之间的滑动摩擦系数为0.7,求刹车前汽车的行驶速度。

3、一辆5吨的载重汽车开上一段坡路,坡路上S=100m ,坡顶和坡底的高度差h=10m ,汽车山坡前的速度是10m/s ,上到坡顶时速度减为5.0m/s 。

汽车受到的摩擦阻力时车重的0.05倍。

求汽车的牵引力。

4、质量为4×103Kg 的汽车由静止开始以恒定功率前进,经1003 s,前进了425m ,这时它达图 6-3-1到最大速度15m/s ,设阻力不变,求机车的功率。

5:如图过山车模型,小球从h 高处由静止开始滑下,若小球经过光滑轨道上最高点不掉下来, 求h 的最小值?6、如图所示,半径R = 0.4m 的光滑半圆轨道与粗糙的水平面相切于A 点,质量为 m = 1kg 的小物体(可视为质点)在水平拉力F 的作用下,从C 点运动到A 点,物体从A 点进入半圆轨道的同时撤去外力F ,物体沿半圆轨道通过最高点B 后作平抛运动,正好落在C 点,已知AC = 2m ,F = 15N ,g 取10m/s2,试求:(1)物体在B 点时的速度以及此时半圆轨道对物体的弹力. (2)物体从C 到A 的过程中,摩擦力做的功.7、如图所示,质量m=1kg 的木块静止在高h=1.2m 的平台上,木块与平台间的动摩擦因数 =0.2,用水平推力F=20N ,使木块产生位移S 1=3m 时撤去,木块又滑行S 2=1m 时飞出平台,求木块落地时速度的大小?(空气阻力不计,g=10m/s 2)拓展提升1. 一物体质量为2kg ,以4m/s 的速度在光滑水平面上向左滑行。

动能定理应用典型例题及解析

动能定理应用典型例题及解析

动能定理应用典型例题及解析
动能定理是经典力学中非常重要的一个定理,它描述了物体的动能与物体所受力的关系。

动能定理的数学表达式是:$K = \frac{1}{2}mv^2$,其中,$K$表示物体的动能,$m$表示物体的质量,$v$表示物体的速度。

下面是一个应用动能定理的典型例题及解析:
【例题】一个质量为 $m$ 的物体在 $t=0$ 时刻从高为 $h$ 的平台上自由落下,其速度在落地瞬间达到最大值 $v$。

假设空气阻力可以忽略不计,求物体与地面接触瞬间物体的动能。

【解析】由于物体自由落下,因此只受到重力的作用,根据牛顿第二定律,物体的加速度为 $g$,即 $a=g$。

根据匀加速直线运动的公式,可以得到物体从高为 $h$ 的平台上落到地面所需的时间为$t=\sqrt{\frac{2h}{g}}$,物体在落地瞬间的速度为$v=\sqrt{2gh}$。

根据动能定理,物体在落地瞬间的动能为:
$K = \frac{1}{2}mv^2 = \frac{1}{2}m(2gh) = mgh$
因此,物体与地面接触瞬间物体的动能为 $mgh$。

以上就是一个简单的应用动能定理的例题及解析。

动能定理是物理学中一个非常重要的定理,涉及到许多不同的物理问题,需要我们在学习时认真掌握并多做练习。

动能定理的3个典型应用

动能定理的3个典型应用

动能定理的3个典型应用李晓禄【期刊名称】《高中数理化》【年(卷),期】2013(000)019【总页数】1页(P30)【作者】李晓禄【作者单位】山东省平度第一中学【正文语种】中文从近五年高考考点分布可以看出动能定理是高考的必考内容,涉及这部分的考题一般灵活性较强,试题涉及的主要内容包括:动能定理的理解与应用、动能定理中总功的分析与计算、功能关系的理解等.动能定理适用于恒力做功,也适用于变力做功,适用于直线运动也适用于曲线运动,因此该定理求解方便,应用广泛,本文将结合典型例题分析动能定理的3个典型应用.1 用动能定理求解物体所受的力例1 如图1,某人踏着滑板从距地面1.8 m的平台上A点滑下,经过水平位移s =3 m后,落到水平地面上的B点,在B点着地后,由于存在能量损失,速度变为v=4 m·s-1,并以速度v为初速度,滑行s2=8 m后停止,已知人与滑板的总质量m=60 kg,求人与滑板在水平地面上滑行时受到的平均阻力大小.图1将人与滑板看作一个整体,对其进行受力分析,人与滑板从B点到C点的过程中受到平均阻力Ff,地面的支持力FN以及重力mg,因为地面支持力、重力的方向都与其位移方向垂直,所以地面支持力、重力都不对人与滑板组成的整体做功,而平均阻力做负功,由动能定理可得将数据代入可得平均阻力Ff=60 N.如果在多个力的共同作用下运动,其中含有一个未知力,并且物体的动能变化量和位移已知时,就可以用动能定理求解此未知力.2 用动能定理求解物体的速度图2例2 如图2,物体A从高为h的斜面上静止滑下,在阻力的作用下,静止于B点,若给物体一个初速度v,使其从B 点开始运动,再恰好上升到斜面上的A点,求此初速度v的大小.物体在运动过程中会受到重力、斜面或者水平面的支持力以及摩擦阻力.从A点到B点应用动能定理mgh+Wf=0-0.物体从B 点到A点的过程中,重力做负功,摩擦力仍然做负功Wf,由动能定理得求得初速度v在已知施加到物体上所有力做功大小或者可以根据题意推知所有力做功大小的情况下,可以用动能定理求解物体的速度.3 用动能定理求解物体的位移例3 如图3,在一内壁光滑的盆式容器中,圆弧AB与圆弧CD分别与盆底BC的连接处相切,并且BC是水平的,BC 之间距离d=0.5 m,摩擦因数μ=0.1,两端圆弧的高度都为h=0.3 m.让一质量为m 的小物体从A点静止滑下,小物体在盆内来回滑动一段时间后,最后会停下来,求解停止的地面与B点之间的距离.图3由于盆内壁光滑,小物体在盆内AB、CD 部分运动时,只受到重力和盆壁支持力作用,并且支持力的方向与物体运行方向垂直,所以盆内壁支持力不对物体做功,小物体在BC段运动时将会受到重力、支持力以及摩擦力的作用,重力、支持力垂直于小物体运动方向,不对物体做功,并且物体滑上CD圆弧时重力做负功,物体滑下CD 圆弧时重力做正功,分析物体由A点下滑,最终静止到BC段的某一点的过程,设小物体在BC间运动的路程为s,按照动能定理mgh-μmgs=0,所以s =3 m,根据题意BC间的距离d=0.5 m,所以小物体在来回运动的次数为3次,最后停在B点.在已知物体动能变化量以及作用力(或者物体与地面的摩擦因数已知)的大小时,可以通过动能定理求解物体发生的位移.。

动能定理应用典型例题及解析

动能定理应用典型例题及解析

动能定理应用典型例题及解析
例题:一物体质量为2kg,速度为5m/s,撞向另一物体,两物体碰撞后,第一个物体反弹回来,速度为3m/s。

第二个物体
的质量为3kg,碰撞后向前运动的速度为多少?
解析:
首先,我们要明确动能定理的公式:
动能定理公式:$E_k=\frac{1}{2}mv^2$
动能定理的原理:物体所具有的动能的增量等于所受动力的功。

根据动能定理的公式,我们可以计算出碰撞前后两个物体的动能,然后通过它们在碰撞过程中的总动能守恒,来求解所需的速度。

1. 碰撞前,第一个物体的动能为:
$E_{k1}=\frac{1}{2}mv^2=\frac{1}{2} \times 2 \times 5^2=25
J$
2. 碰撞后,第一个物体的动能为:
$E'_{k1}=\frac{1}{2}mv'^2=\frac{1}{2} \times 2 \times 3^2=9 J$ 其中,$v'$表示第一个物体反弹后的速度。

3. 碰撞后,第二个物体的动能为:
$E_{k2}=\frac{1}{2}mv^2=\frac{1}{2} \times 3 \times v_f^2$ 其中,$v_f$表示第二个物体碰撞后向前运动的速度。

4. 动能守恒式:
$E_{k1}+E_{k2}=E'_{k1}+E'_{k2}$
代入数值,得到:
$25+\frac{1}{2} \times 3 \times v_f^2=9+\frac{1}{2} \times 3 \times v_f^2$
化简后得到$v_f=\frac{4}{3}m/s$。

因此,第二个物体碰撞后向前运动的速度为4/3m/s。

动能定理 的应用

动能定理 的应用
R
v0
动能定理的应用
1、研究匀变速运动 在不涉及加速度和时间的问题中更简便
2、研究非匀变速运动、曲线运动
可以解决牛顿定律与匀变速运动学不能解决的问题。 标量式,研究曲线运动时不用也不能分解。 注意变力功的计算。 3、研究多过程运动(往复运动)
《三维设计》86页,例1 《三维设计》88页,例1、例2
动能定理的应用
以10m/s的速度滑上一个 倾斜角为370的粗糙固定斜面,它们之间的动摩 擦因数为0.5,斜面足够长,求: (1)木块上升的最大高度为多少? (2)木块能否再滑下来?如果可以,再滑到底 端时速度为多少?
动能定理的应用
1、研究匀变速运动 在不涉及加速度和时间的问题中更简便
动能定理的应用
1、研究匀变速运动 在不涉及加速度和时间的问题中更简便
2、研究非匀变速运动、曲线运动
可以解决牛顿定律与匀变速运动学不能解决的问题。 标量式,研究曲线运动时不用也不能分解。 注意变力功的计算。 3、研究多过程运动(往复运动) 可以对全过程应用动能定理 注意分析不同阶段的合外力做功 注意滑动摩擦力做功的往复性
2、研究非匀变速运动、曲线运动
例:一个质量为1kg的小球在距水平地面高3.2m处 以6m/s的速度水平抛出,求它落地时速度大小。
例:一质量为1t的汽车,以100kw的恒定功率从静止 开始加速启动,运动125m后达到最大速度50m/s, 求汽车加速运动的时间。
例:竖直平面内有一个半径为R的粗糙圆周轨道,一个质 量为m的小球以一定的初速度进入轨道的最低点,第 一次通过轨道最高点时对轨道的压力为4mg。求从最 低点到第一次通过最高点的过程中摩擦力做的功。已 知 v0 11gR 。并分析小球能否再次通过最高点。

动能定理的应用实例

动能定理的应用实例

动能定理的应用实例在物理学中,动能定理是一个非常重要的概念,它描述了力对物体做功与物体动能变化之间的关系。

动能定理的表达式为:合力对物体所做的功等于物体动能的变化,即 W 合=ΔEk 。

这个定理在解决很多实际问题中发挥着关键作用,下面我们就来看看一些具体的应用实例。

先来说说汽车的加速过程。

当汽车发动机的牵引力推动汽车前进时,牵引力对汽车做功。

假设一辆汽车的质量为 m ,牵引力为 F ,汽车在牵引力作用下行驶的距离为 s ,初速度为 v₁,末速度为 v₂。

根据动能定理,牵引力做的功 W = Fs 等于汽车动能的变化,即 1/2mv₂²1/2mv₁²。

通过这个定理,我们可以计算出汽车达到一定速度所需的牵引力或者行驶一定距离时速度的变化。

再看一个物体在斜面上运动的例子。

一个质量为 m 的物体从斜面顶端由静止开始下滑,斜面的高度为 h ,长度为 l ,斜面的倾角为θ ,物体与斜面之间的动摩擦因数为μ 。

在这个过程中,重力对物体做功mgh ,摩擦力对物体做功μmgcosθ·l 。

根据动能定理,重力做的功与摩擦力做的功之和等于物体动能的变化。

因为物体初速度为 0 ,所以末动能 1/2mv²就等于重力做的功减去摩擦力做的功,从而可以求出物体滑到底端时的速度 v 。

在体育运动中,动能定理也有广泛的应用。

比如跳高运动员。

运动员起跳时,腿部肌肉发力做功,使运动员获得一定的初速度。

在上升过程中,只有重力做功。

根据动能定理,运动员起跳时肌肉做功等于运动员到达最高点时的重力势能增加量和动能减少量之和。

通过对这个过程的分析,教练可以根据运动员的身体素质和技术特点,制定更科学的训练方案,以提高运动员的跳高成绩。

还有篮球投篮的过程。

当运动员投篮时,手臂对篮球做功,使篮球获得初速度。

篮球在空中飞行的过程中,受到重力和空气阻力的作用。

根据动能定理,手臂做功等于篮球在空中飞行过程中动能和势能的变化量之和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动能定理的应用举例
动能定理是物理学中的一个重要定理,它描述了物体的动能与应用
力之间的关系。

本文将通过几个实际的例子来说明动能定理的应用,
帮助读者更好地理解和应用这一定理。

例子1:汽车碰撞实验
假设有两辆汽车,质量分别为m1和m2,初速度分别为v1和v2,
它们相向而行,在某一时刻发生碰撞。

根据动能定理,碰撞前后的总
动能应该守恒,即:
1/2 * m1 * v1^2 + 1/2 * m2 * v2^2 = 1/2 * m1 * v1'^2 + 1/2 * m2 *
v2'^2
其中,v1'和v2'分别是碰撞后两辆汽车的速度。

通过这个方程,我
们可以计算出碰撞后汽车的速度。

例子2:弹簧振动
考虑一个质量为m的物体连接在一个弹簧上,弹簧的劲度系数为k。

当物体受力向右移动时,它的速度随时间增加,根据动能定理,我们
可以得到:
1/2 * m * v^2 = 1/2 * k * x^2
其中,v是物体的速度,x是物体的位移。

这个方程描述了物体的
动能和弹簧的弹性势能之间的关系。

例子3:自由落体
当一个物体自由落体下落时,它的动能也在不断变化。

根据动能定理,物体的动能变化等于外力对物体做功。

在自由落体时,只有重力对物体做功,而重力的大小与物体的质量和下落高度有关。

因此可以得到动能变化的表达式:
ΔK = m * g * h
其中,ΔK代表动能的变化量,m是物体的质量,g是重力加速度,h是下落的高度。

通过以上三个例子,我们可以看到动能定理的应用范围非常广泛。

无论是碰撞实验、弹簧振动还是自由落体,动能定理都能帮助我们理解物理现象,并进行相关计算。

在实际生活中,我们也可以运用动能定理来解决一些问题,例如交通事故的分析和能量转化的计算等。

总结起来,动能定理是物理学中一个非常重要的定理,它描述了物体的动能与作用力之间的关系。

通过这一定理,我们可以理解和解释各种物理现象,并应用于实际问题的计算中。

希望通过本文的介绍,读者对动能定理有了更深入的理解和应用。

相关文档
最新文档