磁场磁感应强度
磁场中的磁感应强度和磁场能量

磁场中的磁感应强度和磁场能量磁场是物质中存在的一种物理现象,其具有方向和幅度上不同的特性。
在磁场中,磁感应强度和磁场能量是研究磁场性质的两个重要概念。
本文将分别探讨磁感应强度和磁场能量在磁场中的作用和计算方法。
一、磁感应强度磁感应强度,也称为磁场强度,是描述磁场中磁力作用强度的物理量。
磁感应强度矢量的大小表示磁力的大小,方向则表示磁力的方向。
磁场强度的单位是特斯拉(T)。
在磁场中,磁感应强度决定了磁力的大小。
根据安培定律,通过导线的电流所产生的磁场强度与导线所在位置处的磁感应强度成正比。
具体而言,当导线产生的电流增大时,磁感应强度也随之增大。
我们可以通过以下公式计算磁感应强度:B = μ₀ * (I / (2πr))其中,B表示磁感应强度,μ₀代表磁导率常数,I表示电流强度,而r则是电流所在位置与计算磁感应强度的位置之间的距离。
二、磁场能量磁场能量是指磁场中的能量密度。
磁场能量与磁感应强度有关,它表示单位体积内磁场所储存的能量。
磁场能量的单位是焦耳每立方米(J/m³)。
在磁场中,磁场能量的大小与磁感应强度的平方成正比。
具体而言,当磁感应强度增大时,磁场能量也相应增大。
我们可以通过以下公式计算磁场能量:W = (1/2) * B² * μ₀其中,W表示磁场能量,B表示磁感应强度,而μ₀代表磁导率常数。
三、磁感应强度与磁场能量的关系磁感应强度和磁场能量是磁场中不可分割的两个特性。
它们之间存在紧密的关系,可以相互影响。
首先,根据磁场能量的计算公式可知,磁场能量的大小与磁感应强度的平方成正比。
因此,当磁感应强度增大时,相应的磁场能量也会增大。
反之亦然。
其次,磁感应强度与磁场能量的关系也可由物质特性引申。
不同物质对磁感应强度的响应不同,磁场能量也会受到影响。
例如,在铁磁材料(如铁)中,磁感应强度较大,因此磁场能量也相对较大。
而在非铁磁材料(如木材)中,磁感应强度较小,磁场能量也相对较小。
磁感应强度与磁场强度关系

磁感应强度与磁场强度关系磁感应强度(B)和磁场强度(H)是研究磁学领域中的两个重要概念,它们描述了物体在磁场中所受到的影响。
本文将探讨磁感应强度与磁场强度之间的关系,并详细介绍它们的定义、计算方法以及在实际应用中的意义。
一、磁感应强度的定义和计算方法磁感应强度(B)是用来描述磁场对磁介质所产生的作用力大小的物理量。
它的单位是特斯拉(T)。
磁感应强度与磁场强度之间的关系可以用下式表示:B = μ0 × H其中,μ0 表示真空中的磁导率,其数值为4π×10^-7 N/A^2。
磁场强度(H)是用来描述在磁场中单位长度上的磁场强度的物理量,它的单位是安培/米(A/m)。
通过上述公式,我们可以计算出在给定磁场强度下的磁感应强度。
这个公式表明了在特定的磁场条件下,磁感应强度与磁场强度之间存在着线性关系。
二、磁感应强度与磁场强度之间的关系磁感应强度与磁场强度之间的关系是通过麦克斯韦方程组中的安培定律和毕奥-萨伐尔定律来建立的。
这两个定律描述了磁场的产生和磁场对磁介质的影响。
根据安培定律,通过一定曲面的闭合回路上的磁感应强度与回路所围的电流的代数和成正比。
这个定律表明了电流是产生磁场的根本原因。
而根据毕奥-萨伐尔定律,磁感应强度与电流成正比。
这个定律进一步阐述了电流与磁场之间的关系。
根据上述分析可知,磁感应强度与磁场强度之间的关系是通过电流和磁介质之间的相互作用所决定的。
当磁场中的电流变化时,磁感应强度也会相应地发生变化,这就导致了磁感应强度与磁场强度的变化。
三、磁感应强度与磁场强度的应用意义磁感应强度与磁场强度的关系在实际应用中具有重要意义。
首先,它们在电磁学中的相关理论和电磁设备设计中起着关键作用。
通过研究磁感应强度与磁场强度的关系,我们可以更好地理解和解释电磁现象,并且能够更好地设计和优化电磁设备。
其次,磁感应强度与磁场强度的关系在电动势的计算中也十分重要。
根据法拉第定律,当一个线圈在磁场中运动时,它会感应出一个电动势。
磁场、磁感应强度

结论:在通电导线的电流和磁场不变时,导线越 长,导线所受的安培力就越大。
精确的实验表明:通电导线和磁场垂直时,导 线受力的大小和导线中的电流 I 成正比,和导线 的长度L成正比,即和电流I和长度L的乘积IL成 正比。
F=BIL
F 磁感应强度的定义式: B = IL (电流和磁场方向垂直)
方法:用检验电流元来研究磁场强弱
思考:通电导线受到的 磁场力与哪些因素有关?
导线长度、电流大小、磁场 的不同、放置的位置(导线 与磁场方向平行、垂直及任 意夹角受力情况不同)
实验方法:控制变量法
(演示方向问题) 实验方案
实验方案设计
1、保持磁场和通电导线的长度不变,改 变电流的大小。
现象:电流越大,导线的偏角越大。 结论:在通电导线的长度和磁场不变时,电流越 大,导线所受的安培力就越大。
值即可认为是导线所在位置那一点的磁感 应强度大小
三、迁移运用,能力提升
1、下列关于磁场的说法中,正确的是 (BCD )
A.磁场跟电场一样,是人为假设的 B.磁极或电流在自己周围的空间会产生磁场 C.指南针指南说明地球周围有磁场 D.磁极对磁极的作用、电流对电流的作用都是 通过磁场发生的
2、下列说法中正确的是 ( AD )
D.磁场是客观存在的一种物质
3、有关磁感应强度B的方向说法正确的 是( B )
A、B的方向就是小磁针N极所指的方向 B、B的方向与小磁针N极的受力方向一 致 C、B的方向就是通电导线的受力方向 D、B的方向垂直于该处磁场的方向
4、关于磁感应强度大小下列说法正确的 是( D )
A、通电导线所受磁场力大的地方磁感应 强度一定大 B、垂直磁场放置的通电导线受力的方向 就是磁感应强度的方向 C、放在同一磁场中两根通电导线中电流 相等时受力大小一定相等 D、磁感应强度的大小和方向跟放在磁场 中的通电导线受力的大小和方向无关
磁场强度和磁感应强度的关系公式

磁场强度和磁感应强度的关系公式磁场强度和磁感应强度是研究磁场的两个重要物理量,它们之间的关系公式是磁感应强度等于磁场强度和磁导率的乘积。
下面将分别介绍磁场强度和磁感应强度的概念,并阐述它们之间的关系公式。
一、磁场强度的概念磁场强度是一个矢量,它表示单位电流在给定点产生的磁场的强度。
其大小和方向随着距离电流的距离和方向变化。
磁场强度的单位是特斯拉(T),一特斯拉等于每安培的电流在一米处产生的力。
磁场强度可以通过安培环路定理来计算。
根据安培环路定理,磁场强度的大小等于通过闭合曲线所围成的面积分之间的电流的代数和。
二、磁感应强度的概念磁感应强度也是一个矢量,它表示在给定点受到的外加磁场的影响。
在真空中,磁感应强度等于磁场强度。
在物质介质中,磁感应强度受到物质磁化程度的影响,其大小和磁场强度不一定相等。
磁感应强度的单位也是特斯拉(T)。
磁感应强度可以通过磁感应线圈测量来获取。
当磁感应强度改变时,磁感应线圈中会产生感应电动势,可以通过测量感应电动势的大小来得到磁感应强度的大小。
三、磁感应强度和磁场强度的关系公式磁感应强度B和磁场强度H之间的关系可以用以下公式表示:B = μH其中,B为磁感应强度,H为磁场强度,μ为磁导率。
磁导率μ是介质的磁性质之一,它表示介质中的磁场传播能力。
磁导率的大小决定了磁感应强度和磁场强度的关系。
在真空中,磁感应强度等于磁场强度乘以真空磁导率μ0(μ0约为4π×10-7T·m/A);在物质介质中,磁感应强度等于磁场强度乘以介质的相对磁导率μr (μ=μrμ0)。
四、总结磁场强度和磁感应强度是研究磁场时的重要物理量,它们之间的关系由磁感应强度等于磁场强度和磁导率的乘积来描述。
磁场强度和磁感应强度的关系公式为B = μH,其中μ为磁导率。
通过上述介绍,我们可以更好地理解磁场中磁场强度和磁感应强度的关系,为研究和应用磁场提供理论依据。
以上就是关于磁场强度和磁感应强度的关系公式的介绍,希望对大家有所帮助。
什么是磁感应强度和磁场强度

什么是磁感应强度和磁场强度?磁感应强度和磁场强度是物理学中用来描述磁场特性的两个重要概念。
磁感应强度,也称为磁感应度或磁通量密度,是衡量磁场强度的物理量。
它表示单位面积内通过垂直于该面积的磁通量的大小。
磁感应强度的符号通常用B表示,单位是特斯拉(T)。
磁感应强度是一个矢量量,它的大小和方向都很重要。
磁场强度,也称为磁场强度矢量,是描述磁场强度的物理量。
它表示单位电流所产生的磁场的强度。
磁场强度的符号通常用H表示,单位是安培每米(A/m)。
磁场强度也是一个矢量量,它的大小和方向都很重要。
磁感应强度和磁场强度之间存在一定的关系。
根据安培定律,磁感应强度B与磁场强度H 之间的关系是B = μH,其中μ是磁导率,它是一个物质的属性,表示该物质中磁场传导的能力。
对于真空或空气等非磁性物质,磁导率μ为常数,通常用μ0表示,称为真空磁导率,其值约为4π×10^-7 H/m。
对于磁性材料,磁导率μ的值会受到材料的特性和外界条件的影响。
磁感应强度和磁场强度是描述磁场的两个重要参数。
磁感应强度表示磁场中磁力线的密度,它描述了磁场的强度和分布情况。
磁感应强度的大小取决于磁场中磁力线的密度,磁场越强,磁力线越密集,磁感应强度就越大。
磁场强度则表示产生磁场的电流的强度,它描述了磁场的产生源。
磁场强度的大小取决于产生磁场的电流的强度,电流越强,磁场强度就越大。
磁感应强度和磁场强度在物理学和工程学中都有广泛的应用。
它们在电磁学、电机、磁共振成像、电磁感应等领域都起着重要的作用。
例如,在电机中,磁场强度和磁感应强度的控制和调节对于电机性能的优化和效率的提高至关重要。
在磁共振成像中,磁感应强度和磁场强度的调节可以实现对人体内部结构的无损成像。
因此,深入理解磁感应强度和磁场强度的概念和相互关系对于理解和应用磁场现象具有重要意义。
磁场与磁感应强度

磁场与磁感应强度磁场是物体周围的空间中存在的一种物理现象,它由电流或磁体产生。
磁场对物质具有吸引或排斥的作用,并且能够在一定范围内传递力量。
而磁感应强度则是磁场的物理量之一,用来表示磁场对导体中的电流产生的力的强度。
本文将详细讨论磁场和磁感应强度以及它们之间的关系。
一、磁场的概念和特性磁场是由物体产生的,并且可以感应到物体周围空间中的物质。
它是一种矢量量,在空间中具有大小和方向。
在磁场中,磁力线由北极指向南极,呈现闭合的环状。
磁场的强弱可以通过磁场线的密集程度来表示,磁力线越密集,磁场越强。
二、磁感应强度的定义和计算方法磁感应强度是用来衡量磁场的一个物理量,用字母B表示。
磁感应强度的单位是特斯拉(T),它的定义为物体受到的磁力与单位面积之比。
磁感应强度的计算公式是B = F/A,其中F表示物体受到的磁力,A表示单位面积。
三、磁场和磁感应强度的关系磁感应强度是磁场的一个参数,表示磁场的强弱程度。
它与磁场之间的关系是B = μ0 × H,其中μ0是真空中的磁导率,H表示磁场强度。
根据这个公式,我们可以得出结论:磁感应强度与磁场强度成正比,当磁场强度增大时,磁感应强度也会增大。
四、磁场和磁感应强度的应用磁场和磁感应强度在现实生活中有着广泛的应用。
例如,在电磁铁中,通过通电产生的磁场可以吸引铁磁物体,这就是磁场的应用之一。
在电磁感应中,磁场可用于产生电流,这也是磁感应强度的应用。
此外,在磁共振成像中,通过控制磁感应强度可以得到对人体内部器官的详细图像。
五、磁场和磁感应强度的保护由于磁场和磁感应强度对人体和设备有一定的影响,因此保护磁场和磁感应强度变得尤为重要。
在实际应用中,可以通过设计合理的磁屏蔽结构和采取相应的防护措施来减小磁场和磁感应强度的危害。
六、结论通过对磁场和磁感应强度的描述,我们了解了磁场的概念和特性,学习了磁感应强度的定义和计算方法,并深入探讨了磁场和磁感应强度之间的关系。
我们也了解到磁场和磁感应强度在现实生活中的广泛应用,并了解了如何保护磁场和磁感应强度。
磁场强度与磁感应强度

磁场强度与磁感应强度磁场是指任何物体周围具有磁性的区域,磁场强度则用来描述磁场的强弱程度。
而磁感应强度,又称为磁感应度,是一种衡量磁场中磁感应强度的物理量。
磁场强度和磁感应强度之间有着紧密的联系和区别,下面将对这两个概念进行详细介绍。
磁场强度是一个向量,它用来描述单位电流在磁场中所受到的磁力大小和方向。
单位磁场强度的定义是:当单位电流在垂直于电流方向的磁场中受到单位长度的磁力时,该磁场的强度为1T(特斯拉)。
在数学上,磁场强度可以用公式表示为:B = μ₀I/2πr其中,B是磁场强度,μ₀是真空磁导率,约等于4π×10^-7 N/A²,I 是电流的大小,r是电流所在位置与磁场中心的距离。
与磁场强度相比,磁感应强度是一种描述物体对磁场的响应程度的物理量。
它与磁场强度的关系可以用公式表示为:B = μ₀μrH其中,B为磁感应强度,μr为相对磁导率,H为磁场强度。
从公式来看,磁感应强度是磁场强度和相对磁导率的乘积。
相对磁导率是一个与物质的磁性相关的物理量,它描述了物体相对于真空的磁导率的大小。
磁感应强度可以用来衡量磁场中的磁力线的密度,也可以看作是单位面积上通过的磁通量。
磁场强度和磁感应强度之间的关系可以用一个简单的比例来表示。
在真空中,磁感应强度与磁场强度相等,即B = H。
然而,在介质中,由于相对磁导率的存在,磁感应强度会发生变化。
磁场强度和磁感应强度在物理学和工程学中有着广泛的应用。
在电磁学方面,磁场强度和磁感应强度是描述磁场特性的基本概念。
在实际应用中,磁场强度和磁感应强度可以用来计算电流所产生的磁力,也可以用于设计和分析电磁设备和磁性材料。
总结起来,磁场强度是描述磁场强弱的物理量,用来描述单位电流在磁场中受到的磁力情况;而磁感应强度是描述物体对磁场的响应程度的物理量,用来衡量磁场中的磁力线密度。
两者之间相互依存,磁感应强度可以通过磁场强度和相对磁导率来计算。
磁场强度和磁感应强度的研究和应用不仅对于理解磁场的性质和行为有着重要的意义,也在工程技术和科学研究中起到了至关重要的作用。
磁场与磁感应强度

磁场与磁感应强度磁场一直以来都是物理学中一个重要的研究课题。
磁场是一种以磁力作用在磁物质上的现象,它是由带电粒子运动产生的。
磁场有助于我们理解物质与能量之间的相互作用,特别是在电磁学和电子学领域中。
磁感应强度是衡量磁场强度的物理量。
它的单位是特斯拉(T),符号为B。
磁感应强度与磁力之间的关系可以用洛伦兹力公式来表示:F = qvBsinθ。
其中,F是磁力,q是电荷,v是速度,B是磁感应强度,θ是磁场与速度之间的夹角。
这个公式告诉我们磁场强度对于磁力的大小和方向有着重要影响。
为了更好地理解磁场和磁感应强度,我们可以通过一些实验来观察和测量。
例如,一个经典的实验是用指南针来检测磁场。
当将一个指南针放置在一个磁场中时,指南针的磁针会对齐于磁场的方向。
这个实验告诉我们磁场是有方向的,并且它可以通过指南针的磁针来进行测量。
另一个常见的实验是用霍尔效应来测量磁感应强度。
霍尔效应是一种将电场和磁场相互作用的现象,它可以产生一个称为霍尔电势差的电压。
通过测量霍尔电势差和已知的电流强度,我们可以计算出磁感应强度的数值。
除了实验外,我们还可以通过数学模型来描述磁场和磁感应强度。
麦克斯韦方程组是描述电磁学现象的重要方程组,其中包括了磁场和磁感应强度的数学表达式。
这些方程可以帮助我们计算和预测磁场强度以及与之相关的物理现象。
磁感应强度在生活中有许多应用。
一个典型的例子是电磁感应现象。
根据法拉第电磁感应定律,当一个导体被置于一个变化的磁场中时,会在导体两端产生一个感应电动势。
这个现象在变压器和发电机等电力设备中得到了广泛的应用。
此外,磁感应强度还与磁共振成像(MRI)有关。
MRI是一种医学成像技术,它利用磁场和磁感应强度来获得人体组织的内部结构图像,对于疾病的诊断和治疗有着重要的作用。
综上所述,磁场和磁感应强度是物理学中重要的概念和研究课题。
通过实验、数学模型和应用,我们可以更全面地理解和探索磁场的特性和磁感应强度的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁场 磁感应强度【知识要点】 1. 磁场(1)定义:运动电荷周围存有的一种特殊物质;它是磁体、运动电荷间相互作用的媒介。
(2)基本性质:对放入其中的磁极、运动电荷可能有力的作用。
2.磁现象的电本质:安培假说揭示了磁铁磁场和电流的磁场在本质上都是电荷的运动引起的;物体是否对外表现出磁性取决于分子电流的有序或无序。
3.磁性材料分类:4.磁感应强度:(1)定义:在匀强磁场中垂直于磁场方向的通电导线,受到的磁场的作用力F 与电流I 和导线长度L的乘积IL 的比值。
即ILF B =(2)方向:小磁针北极在该处受磁场力的方向。
5.磁感线: ①人为性:磁感线是人为画出用来形象描述磁场强弱和方向分布的一些曲线;②强弱:磁感线越密,表示磁场越强;磁感线越希疏,表示磁场越弱; ③方向:磁感线上任意一点的切线方向和该点的磁场方向相同;④磁感线是闭合曲线(不存有磁单极子); ⑤磁感线在空间永不相交。
6.安培定则(右手螺旋定则):对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。
7.磁通量:(1)定义:穿过某一面积的磁感线的条数,若S 表示垂直于B 方向上的投影面积,则 Φ=BS ;单位:韦伯(Wb )(2)磁通密度:穿过垂直于磁场方向单位面积的磁通量 ,即SB Φ=(3)合磁通:当有方向相反的磁场通过同一平面时,Φ合=Φ大—Φ小 7.关于空间某点磁场方向的几种不同表达: ⑴空间该点的磁场方向;⑵空间该点的磁感应强度方向; ⑶小磁针在该点的受力方向;⑷可自由转动的小磁针在该点静止时N 极的指向;⑸磁感线在该点的切线方向。
【典型例题】[例1]下列说法准确的是 ( )A .电荷在某处不受电场力作用,则该处电场强度为零B .一小段通电导线在某处不受磁场力作用,则该处磁感应强度一定为零C .表征电场中某点电场的强弱,是把一个试探电荷放到该点时受到的电场力与试探电荷本身电量的比值D .表征磁场中某点磁场的强弱,是把一小段通电导线放到该点时受到的磁场力与该小段导体长度和电流乘积的比值 [例2]一束带电粒子沿着水平方向,平行地飞过磁针上方,如图所示,当带电粒子飞过磁针上方的瞬间,磁针的S 极向纸里转,这带电粒子可能是①向右飞行的正电荷束 ②向左飞行的正电荷束③向右飞行的负电荷束 ④向左飞行的负电荷束A.只有①②准确B.只有③④准确C.只有②③准确D.只有②④准确 [例3]如图所示,a 、b 、c 三枚小磁针分别放在通电螺线管的正上方、右侧和管内,当这些小磁针静止时,小磁针N 极的指向是 A.a 、b 、c 均向左B.a、b、c 均向右C.a向左,b向右,c 向右D.a向右,b向左,c 向右[例4]某地地磁场磁感应强度大小为B=1.6×10-4特,与水平方向夹角53°,其在水平面内S=1.5米2的面积内地磁场的磁通量为( )A.1.44×10-4韦伯B.1.92×10-4韦伯C.1.92×10-5韦伯D.1.44×10-5韦伯[例5]如图所示,三根长直导线垂直于纸面放置通以大小相同,方向如图的电流,ac⊥bd,且ad=ad=ac,则a点处B的方向为A.垂直于纸面向外B.垂直于纸面向里C.沿纸面由a向dD.沿纸面由a向c【当堂反馈】1.磁感应强度的单位是特,1 T相当于A.1 kg/A·s2B.1 kg·m/A·s 2C.1 kg·m2/s2D.1 kg /C·s2.如图所示,两个同心放置的共面金属圆环a和b,一条形磁铁穿过圆心且与环面垂直,则穿过两环的磁通量φa和φb大小关系为( )A. φa>φbB. φa<φbC. φa=φbD.无法比较3.下列说法准确的是( )A.除永久磁铁以外,一切磁场都是由运动电荷产生的;B.一切磁现象都起源于运动电荷;C.一切磁作用都是运动电荷通过磁场发生的;D.有磁必有电,有电必有磁。
4.对磁感应强度大小的分析,准确的是:( ) A通电导线受安培力大的地方磁感应强度一定大B磁感应强度的大小和方向跟放在磁场中的通电导线受力的大小和方向无关C磁感线的指向就是磁感应强度减小的方向D放在匀强磁场中各处的通电导线受力大小和方向处处相同5.一般情况下,金属都有电阻.电阻是导体的属性之一.当条件发生改变时,其属性也会发生改变.(1)实验表明,某些金属当温度降低到某一定值时,其电阻突然降为零,这种现象叫做_______现象.(2)图所示为磁悬浮现象,将某种液态物质倒入金属盘后,能使金属盘达到转变温度,在金属盘上方释放一永磁体,当它下落到盘上方某一位置时即产生磁悬浮现象.试根据下表列出的几种金属的转变温度和几种液态物质的沸点数据,判断所倒入的液态物质应是_______,金属盘的材料应是_______.金属转变温度/K 液态物质沸点/K铱0.14 液氦 4.1锌0.75 液氮77.0铝 1.20 液氧90.0锡 3.72 液态甲烷111.5铅7.20 液态二氧化碳194.5(3)试分析说明磁悬浮现象的原因.(4)利用上述现象,人们已设计成磁悬浮高速列车.列车车厢下部装有电磁铁,运行所需槽形导轨底部和侧壁装有线圈,用以提供_______.这种列车是一般列车运行速度的3~4倍,能达到这样高速的原因是_______.§8.2磁场对电流的作用【知识要点】1.安培力方向的判定⑴用左手定则。
安培力一定垂直于磁场和电流所决定的平面,但磁场与电流不一定垂直。
⑵用“同性相斥,异性相吸”(只适用于磁铁之间或磁体位于螺线管外部时)。
⑶用“同向电流相吸,反向电流相斥”只要两导线不是互相垂直的,都能够用“同向电流相吸,反向电流相斥”判定相互作用的磁场力的方向,且导线有转动到使电流方向一致的趋势;当两导线互相垂直时,用左手定则判定。
2.安培力大小的计算F=BLI sinθ(θ为B、L间的夹角)高中只要求会计算θ=0(不受安培力)和θ=90°两种情况;L为垂直于磁场方向的有效长度3.磁电式电流表工作原理⑴构造:①磁性很强的蹄形磁铁②圆柱形铁芯③套在铁芯上可绕轴转动的铝框④绕在铝框上的线圈⑤铝框的转轴上装有两个螺旋弹簧和一个指针.⑵工作原理:安培力F∝I,所以I越大,安培力产生的力矩也越大,线圈和i指针偏转的角度θ就越大,即I∝θ。
【典型例题】[例1]如图所示,能够自由移动的竖直导线中通有向下的电流,不计通电导线的重力,仅在磁场力作用下,导线将如何移动?[例2] 条形磁铁放在粗糙水平面上,正中的正上方有一导线,通有图示方向的电流后,磁铁对水平面的压力将会__(增大、减小还是不变?)。
水平面对磁铁的摩擦力大小为__。
若通电导线沿水平方向从N极正上方缓慢移到S极正上方,则水平面对磁铁的摩擦力如何变化?[例3]电视机显象管的偏转线圈示意图如左图,即时电流方向如图所示。
该时刻由里向外射出的电子流将向哪个方向偏转?[例4]如图所示,光滑导轨与水平面成α角,导轨宽L 。
匀强磁场磁感应强度为B 。
金属杆长也为L ,质量为m ,水平放在导轨上。
当回路总电流为I 1时,金属杆正好能静止。
求:⑴B 至少多大?这时B 的方向如何?⑵若保持B 的大小不变而将B 的方向改为竖直向上,应把回路总电流I 2调到多大才能使金属杆保持静止?[例5]如图所示,质量为m 的铜棒搭在U 形导线框右端,棒长和框宽均为L ,磁感应强度为B 的匀强磁场方向竖直向下。
电键闭合后,在磁场力作用下铜棒被平抛出去,下落h 后落在水平面上,水平位移为s 。
求闭合电键后通过铜棒的电荷量Q 。
【当堂反馈】1.如图所示,一根长直金属导线MN 用软导线水平悬挂起来,位于垂直纸面向里的匀强磁场中,通入由M 到N 的电流时两根悬线的拉力不为零。
要使悬线的拉力为零,下列措施可行的是( )A .改变电流方向,适当增大电流B .电流方向不变,适当增大电流C .改变磁场方向,适当增大磁感应强度D .不改变磁场方向,适当增大磁感应强度2.如图所示,两根直导线相互垂直,但相隔一小段距离,其中一根AB 的固定的,另一根CD 能自由活动,当直流电流按图示的方向通入两根直导线时,导线CD 将(从纸外向纸内ααB h s看) ( )A .顺时针方向转动,同时靠近导线AB B .顺时针方向转动,同时离开导线ABC .逆时针方向转动,同时靠近导线ABD .逆时针方向转动,同时离开导线AB 3.位于同一水平面上的两根平行导电导轨,放置在斜向左上方、与水平面成60°角足够大的匀强磁场中,现给出这一装置的侧视图,一根通有恒定电流的金属棒正在导轨上向右做匀速运动,在匀强磁场沿顺时针缓慢转过30°的过程中,金属棒始终保持匀速运动,则磁感强度B 的大小变化可能是A .始终变大B .始终变小C .先变大后变小D .先变小后变大4.如图(甲)所示,两根足够长的光滑平行金属导轨相距为l1=0.4m ,导轨平面与水平面成=30 角,下端通过导线连接阻值R =0.6Ω的电阻.质量为m =0.2kg 、阻值r =0.2Ω的金属棒ab 放在两导轨上,棒与导轨垂直并保持良好接触,整个装置处于垂直导轨平面向上的磁场中,取g =10m/s2.(1)若金属棒距导轨下端l2=0.5m ,磁场随时间变化的规律如图(乙)所示,为保持金属棒静止,试求加在金属棒中央、沿斜面方向的外力随时间变化的关系. (2)若所加磁场的磁感应强度大小恒为B ′,通过额定功率Pm=10W 的小电动机对金属棒施加沿斜面向上的牵引力,使其从静止开始沿导轨做匀加速直线运动,经过0.5s 电动机达到额定功率,此后电动机功率保持不变.金属棒运动的v 一t 图像如图(丙)所示.试求磁感应强度 B ′的大小和0.5s 内电动机牵引力的冲量大小.θ θa b R l 1 甲 B。