氮循环的五个详细过程
生态系统中的氮循环及其生态影响

生态系统中的氮循环及其生态影响氮是地球上最丰富的元素之一,它是构成蛋白质和核酸等生物分子的重要成分。
在生态系统中,氮的循环非常重要,它影响着生物体的生长发育、能量转化和物质循环。
本文将介绍生态系统中的氮循环及其生态影响。
首先,让我们了解氮在生态系统中的循环过程。
氮循环包括氮的固定、硝化、硝酸还原和氨化等环节。
首先是氮的固定过程,氮气固定成无机氮化合物,如氨、硝酸盐等,这一过程可以通过氮沉积和氮固定细菌完成。
氮沉积是指氮气通过大气沉降到地面,进入土壤或水体中。
氮固定细菌能够将氮气转化为植物和其他生物可以利用的无机氮化合物。
其次是硝化过程,该过程分为氨氧化和亚硝化两个阶段。
氨氧化是指氨被氨氧化细菌氧化为亚硝酸,而亚硝化是指亚硝酸被亚硝化细菌进一步氧化为硝酸盐。
硝化过程是将氨态氮转化为硝态氮的重要过程。
然后是硝酸还原过程,这一过程发生在缺氧条件下,硝酸盐会被还原为亚硝酸、氨和一氧化二氮等形式,这些产物主要由厌氧细菌产生。
最后是氨化过程,该过程是指亚硝酸盐、硝酸盐等氮化合物在缺氧状态下由细菌还原为氨。
氨会进一步转化为氨基酸、蛋白质等有机氮形式。
氮循环的不同过程相互作用,共同维持着生态系统中氮的平衡。
然而,人类活动对氮循环产生了巨大的影响。
农业的发展导致了大量化肥的使用,使得氮固定过程剧增,进而导致土壤中氮的浓度升高。
这种过度的氮输入对环境产生了负面影响。
首先,氮的过度输入导致水体富营养化,使得水中的硝酸盐浓度升高。
这会引发藻类繁殖,形成赤潮和水华,破坏水生生态系统的平衡,甚至造成鱼类大量死亡。
其次,氮的过度输入还会导致氮沉积增加,影响土壤中氮的平衡。
过多的氮会导致土壤酸化、养分失衡,抑制其他植物的生长发育,甚至导致土壤贫瘠化,破坏生态系统的稳定性。
此外,氮氧化物是大气中的重要污染物之一,它们会与空气中的污染物相互作用,形成酸雨和光化学烟雾,对大气环境和人类健康造成危害。
为减少氮循环对生态系统的负面影响,我们可以采取以下措施:首先,减少化肥的使用量。
《氮的循环》知识点总结

第2节 氮的循环1 氮在自然界中的循环 1.自然界中氮元素循环示意图大 气 中 的 N 2动物粮食作物无 机 氮闪电合成氨汽车尾气根瘤菌有 机 氮铵盐硝酸盐硝化细菌地 下 水细菌2.主要形式(1)游离态→化合态①是豆科植物根部的根瘤菌,把氮气转变为硝酸盐等含氮化合物; ②放电条件下,与氧气结合为氮氧化合物,并随降水进入水体中; ③合成氨工厂、汽车发动机都可以将一部分氮气转化成化合态。
(2)化合态→游离态:硝酸盐在某些细菌作用下转化成氮气。
(3)化合态→化合态:化石燃料燃烧、森林和农作物枝叶燃烧所产生的氮氧化合物通过大气进入陆地和海洋,进入氮循环。
【领悟·整合】氮是维持高等动植物生命活动的必须元素,因此,氮的循环涉及到地球上生物圈的各个方面。
人类活动也在逐渐的影响到氮循环。
所以,认识氮的循环,就把我们将要学习的物质置于“氮的循环”这个大的背景下,将会更有利于同学们掌握氮及其化合物的性质。
3.氮气与氮的固定(1)氮气的物理性质:无色无味气体,难溶于水,与空气密度相近。
(2)氮气的化学性质:【知识·链接】氮气属于双原子分子,两个氮原子之间的作用非常强。
因此,氮气分子稳定,化学性质不活泼,但要注意,N 2一旦吸收能量变为N 原子则性质较活泼。
在高温或放电时可与某些物质反应,N 表现为既有氧化性,又有还原性。
①与O 2的反应在放电条件下,氮气跟氧气能直接化合生成无色的一氧化氮(NO )。
反应式为:N 2+O 22NO说明:在雷雨天气,汽车的发动机中均可以发生该反应。
在该反应中,N 2表现出还原性。
②与H 2反应 N 2+3H 2高温、高压催化剂2NH 3说明:a 该反应是工业上合成氨的反应原理,具有非常重要的现实意义。
在该反应中,N 2表现出氧化性。
b 在氮气跟氢气反应生成氨的同时,氨气也在分解生成氮和氢气。
像这样同时向正反两个方向进行的反应称为可逆反应。
在可逆反应的化学方程式中用“”代替“=”。
氮循环

05/05 03/06
氮循环
氮循环
氮循环
氮循环
3.无机氮同化为有机氮
水中无机氮大部分被藻类 在光合作用中同化利用,此外许多腐生性细菌除利用有机氮 外,也能利用无机氮作为营养中氮源。包括鱼类在内的水生 动物也能通过渗透作用直接吸收少量无机氮。 无机氮的更新时间通常以天甚至以小时计算。 对不同深度氨氮同化率的测定表明,在全混合和刚倾向 于分层时,同化作用在上下水层差别较小,到6月以后随着 分层的稳定,最大同化率存在于上层10m以上,在湖下层降 到最低值。在mendota湖表层水的测定还表明,氨氮转化为 有机氮的速率是相当快的,(表5-3) 在夏末秋初,每小时 转化为粒状有机氮速率在5~7ug/L之间,转化为溶解有机氮 速率在6~10ug/L之间。
kg/年
41300 28100 11300 3250 118850 微量
%
20.4 13.9 5.6 1.6 58.6
(三)水体中的氮的内循环
除了水体内氮的交换以外,在水体内氮不断地从一种形式转 化为另一种形式。这就是氮的内循环,主要由四种反映构 成: 1. 氨化作用——有机氮转化为氨氮 水体中各种含有机化合物在
氮是水生动物的营养物质。 氮是重要的生源物质,它是蛋白质的基本成分,是一切生命的原料。 大气中游离氮78%,还有各种不同的无机物和有机氮化物存在于土 壤、水域和生物体内。 水体生物生产力通常以氮化合物的数量和质量为转移。因此,研究水 体中氮循环过程是最引人注意的一个问题。天然水中氮化合物可以存在 于细胞、无生命质粒、溶解有机质、离子状态中。溶解无机氮主要以硝 酸盐氮、亚硝酸盐、铵氮和分子氮(溶解氧)形式存在;溶解有机氧主要 以氨基酸、酰胺酸以及嘌呤、嘧啶等形式存在。 各种形式的氮,包括 溶解和颗粒的无机的无机氮和有机氮统称总氮。各种状态的氮通过一系 列的反映而相互联系着,组成了氮循环。在这个循环过程中,氮从土 壤、大气和水中的无机形式转入生命系统中以后,又从生命系统返回无 机形式。某一时间内水体中氮额溶度和存在形式决定于氮的输出率、水 体内的转化反映以及因输出、反硝化作用和沉积水底所引起的氮的消 耗。
自然界中的氮循环

这两个过程通常在不同的环境和条件下进行,但也有可能在同一环境 中同时进行。
05
氮循环的影响因素
气候变化对氮循环的影响
气温升高
气温升高会导致土壤中氮的挥发和流失增加,影响氮 的固定和转化。
降水变化
降水量的增加或减少会影响土壤中氮的吸收和释放, 从而影响氮循环。
气形式存在。
氮循环涉及一系列生物和化学过程,包括固氮、硝化、反硝化
03
等,对维持地球生态平衡和生物多样性具有重要意义。
氮循环的环节
01
固氮
将空气中的游离态氮转化为含氮 化合物的过程,主要通过生物固 氮和工业固氮两种方式进行。
03
反硝化
将硝酸盐还原为氮气,释放到大 气中的过程,是氮循环中重要的
脱氮过程。
促进生物多样性
氮循环过程中涉及多种微生物和植物的共生关系,促进了生物多样 性的发展。
减缓全球气候变化
通过固氮作用,将大气中的氮气转化为含氮化合物,有助于减缓全球 气候变化。
02
氮的固定
自然固氮
生物固氮
通过微生物的作用,将大气中的氮气 转化为氨的过程,是自然固氮的主要 方式。
高温高压固氮
在高温高压条件下,地壳中的岩石和 矿物能够将大气中的氮气转化为氮化 合物。
反硝化作用通常发生在缺氧或 厌氧环境中,如土壤、水体等 。
反硝化作用是自然界氮循环的 另一个重要环节,能够将化合 态的氮转化为气态的氮,释放 到大气中。
硝化与反硝化的关系
01 02 03 04
硝化作用和反硝化作用是自然界氮循环的两个相互联系的环节,它们 共同维持着氮的循环和平衡。
硝化作用将氨氧化成硝酸盐,为反硝化作用提供了所需的硝酸盐。
大气中的氮循环

06
CATALOGUE
氮循环失衡的环境问题及对策
水体富营养化问题
富营养化定义
水体中氮、磷等营养物 质过多,导致藻类大量
繁殖,水质恶化。
来源
农业化肥、畜禽养殖、 生活污水等排放。
影响
破坏水生生态系统,影 响饮用水安全,增加水
处理成本。
防治措施
控制氮、磷排放,加强 污水处理,推广生态农
业。
大气氮氧化物污染问题
。
适量的氮素供应可以促进植物的 生长和发育,提高植物的产量和
品质。
缺氮会导致植物生长受阻,叶片 黄化,产量和品质下降;而过量 的氮素供应则可能导致植物过度
生长,易倒伏和感病。
对动物生存的影响
动物体内也需要一定量的氮, 用于合成蛋白质和其他含氮化 合物,维持正常的生理功能。
动物的饲料中需要含有适量的 氮素,以满足其生长发育和生 产需求。
氮的沉积
大气中的氮化合物通过干沉降和湿沉降等方式降落到地面和水体中。
02
CATALOGUE
氮固定过程
生物固氮
01
02
03
豆科植物固氮
通过根瘤菌等微生物,将 大气中的氮气转化为含氮 化合物,供给植物生长所 需。
非豆科植物固氮
部分非豆科植物也能与固 氮微生物共生,进行生物 固氮。
土壤中的固氮作用
土壤中的氮素可以通过微 生物的固氮作用得到补充 ,提高土壤肥力。
05
CATALOGUE
人类活动对氮循环的影响
工业生产排放含氮废气
化石燃料燃烧
工业生产中大量使用煤炭 、石油等化石燃料,燃烧 过程中产生含氮废气,如 一氧化氮、二氧化氮等。
化工生产
氮肥、硝酸、炸药等化工 产品的生产过程中,会排 放大量含氮废气。
《氮的循环》课件

硝化作用和反硝化作用之间的平衡对于维持自然界的氮素循环和 生态平衡具有重要意义。
影响因素
影响硝化作用和反硝化作用的平衡的因素包括环境条件、微生物活 性、土壤和水域的特性等。
平衡的维护
维护硝化作用和反硝化作用的平衡需要采取一系列措施,包括合理 使用化肥、控制土壤和水域的污染等。
05
氮的循环与环境
细菌完成。
氨化是将含氮有机物转化 为氨的过程,是许多植物 和微生物的重要营养来源
。
氮的循环的重要性
氮的循环对维持地球生态平衡具有重要意义 ,是生物圈中氮素循环的重要环节。
氮的循环对农业生产也具有重要意义,通过 合理利用和管理氮肥,可以提高农作物的产 量和质量。
同时,氮的循环也对全球气候变化产生影响 ,如过量排放含氮气体可能导致温室效应加 剧。
感谢您的观看
THANKS
应加剧,进而影响全球气候。
减少氮气排放、改善氮的循环利 用是减缓全球气候变化的重要措
施之一。
氮的循环与水体富营养化
水体富营养化是指水体中营养物质(如氮、磷等)过多,导致水生生物大量繁殖的 现象。
氮的循环过程中,过量的氮气排放和流失会导致水体富营养化。
控制氮的排放和合理利用是防治水体富营养化的重要措施之一。
硝酸盐
氨在有氧条件下被氧化成硝酸盐 ,这是植物生长所需的氮肥之一
,对农业非常重要。
硝酸
氨氧化成硝酸的过程会产生大量能 量,这是人类利用能源的一种方式 ,如通过汽车尾气中的一氧化氮和 氧气反应生成硝酸。
氮气
在自然环境中,氨通过生物固氮作 用和闪电等自然现象转化成氮气, 重新回到大气中,完成氮的循环。
04
反硝化作用
01
水体中氮循环的六个过程

水体中氮循环的六个过程水体中的氮循环是指氮元素在水体中不断转化和转移的过程。
它是水体中生物体生命活动所必需的重要元素之一。
氮循环包括氮的沉降、氮的固定、氮的硝化、氮的反硝化、氮的溶解和氮的沉降和沉积六个过程。
一、氮的沉降氮的沉降是指大气中的氮通过降雨等方式进入水体的过程。
大气中的氮主要以氮气(N2)的形式存在,通过降雨中的氮化合物(如氨气、硝酸盐等)溶解在水体中,从而完成氮的沉降过程。
氮的沉降是水体中氮循环的起始阶段。
二、氮的固定氮的固定是指将大气中的氮气转化为水体中的氮化合物的过程。
大气中的氮气是无法被大多数生物直接利用的,因为它是相对稳定的双原子分子。
氮的固定主要通过生物固定和非生物固定两种方式进行。
生物固定是指某些特定的细菌通过酶的作用将氮气转化为氨气或有机氮化合物,这种过程被称为生物固氮。
非生物固定是指一些非生物物质(如闪电、大气中的紫外线等)通过氧化反应将氮气转化为氮酸盐等氮化合物。
三、氮的硝化氮的硝化是指氨气或有机氮化合物转化为硝酸盐的过程。
氮的硝化主要由两个步骤组成,第一步是氨氧化,指氨气被氨氧化细菌氧化为亚硝酸盐;第二步是亚硝酸盐氧化,指亚硝酸盐被亚硝酸盐氧化细菌氧化为硝酸盐。
氮的硝化是水体中氮循环的重要环节,它将有机氮化合物中的氮转化为可被植物吸收利用的无机氮化合物。
四、氮的反硝化氮的反硝化是指硝酸盐还原为氮气的过程。
氮的反硝化主要由一些特定的细菌完成,这些细菌能够在缺氧条件下利用硝酸盐作为电子受体,将其还原为氮气并释放到大气中。
氮的反硝化是水体中氮循环的重要环节,它将水体中的硝酸盐还原为氮气,从而维持了水体中氮的平衡。
五、氮的溶解氮的溶解是指氮化合物在水体中的溶解和扩散的过程。
水体中的氮化合物主要以氨气、硝酸盐和有机氮化合物的形式存在。
氮的溶解是水体中氮循环的重要环节,它决定了水体中氮化合物的浓度和分布。
六、氮的沉降和沉积氮的沉降和沉积是指水体中的氮化合物沉降到水底并沉积下来的过程。
氮的循环.

4NH3+3O2=2N2+6H2O
氨在纯氧中燃烧
氨氧化炉(中间是铂铑合金网)
4、氨的实验室制法
1. 原理:
2NH4Cl+Ca(OH)2== CaCl2+2NH3↑+2H2O
△
2NH4Cl + Ca(OH)2
CaCl2 + 2NH3↑+ 2H2O
①装置类型: 固体 + 固体加热型 ②收集方法: 向下排空气法 棉花团的作用:防止空气对流。 ③干燥方法: 通过盛有碱石灰的干燥管 ④验满:
产生的气体能使湿润的红色石蕊试纸变蓝.
检验NH4+离子的方法:
取试样加NaOH溶液,加热,用 湿润的红色石蕊试纸检验,若试纸变 蓝,证明试样中含有NH4+。
氮肥
铵态氮肥:
NH4Cl (NH4)2SO4 NH4HCO3
化肥
硝态氮肥:
硝酸盐
有机态氮肥: 尿素
4、硝酸 纯净的硝酸是无色、易挥发、有刺激性气味的液体。 能以任意比溶于水
VNO2:VO2
> 4︰1,NO2过量剩余气体为NO
<4︰1, O2过量,剩余气体为O2
(3)NO和O2同时通入水中,其反应是:
4NO+3O2+2H2O = 4HNO3,当体积比 =4︰3,恰好完全反应
VNO:VO2
> 4︰3,NO过量剩余气体为NO <4︰3, O2过量,剩余气体为O2
小结: 4NO2+O2和4NO+ 3 O2从组 成上均相当于2N2O5的组成。
浓氨水
综合应用
将烧红的铂丝伸入盛有浓氨水的锥形瓶中, 使其接近液面,反应方程式:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氮循环的五个详细过程
,有中文标点
氮循环是一套完整、持续的过程,它是植物、动物和许多微生物正常生长生存的重要物质供应系统。
本文以氮循环的五个详细过程为标题,分别为氮化作用、固氮作用、氨解作用、气态还原作用和硝化作用,着重介绍氮循环的机理特点及其在全球气候变化中的作用。
氮化作用是氮循环的起始部分,它可以将大气中的氮固定形成可以被植物利用的氮化合物。
从雷射熔融式激光谱学上可以发现,界面作用可以使h2o、co2和n2的氮化物质在土壤中的活性氮的总量翻倍以上,这类氮化作用可以来源于植物根部细菌和黏液。
固氮作用是氮循环的主要部分,它指土壤微生物转化氮化合物,将这些氮化合物固定在土壤中,植物经过吸收可以直接利用,这一作用可以增强氮资源在植物生态系统中的循环,大量研究已证实植物根系微生物体系及植物同化分泌物对固氮作用有较大的贡献。
氨解作用是氮循环中比较复杂的一部分,它指土壤中微生物将氨盐还原成氨原料,由此有利于植物吸收氮肥。
当植物群落减少或死亡时,可能会发生大量氨解作用,由此释放氮肥,有助于其他植物生长。
气态还原作用作用类似于固氮作用,它指土壤中的微生物将可以氧化的氮分子还原成氮化物,从而让植物不断地吸收可以利用的氮资源。
植物的根系和根际土壤中的微生物对气态还原作用有较大的贡献。
硝化作用是氮循环的最后一步,它指土壤中的微生物将氨解后的氮分子氧化成一种可挥发的氮态还原产物,从而使氮分子的归还大气层,而这种可挥发物是完成氮循环全过程所必需的。
总而言之,氮循环是一个紧密相连的整个过程,天然植被和活动生态系统都要依赖它来维持有机物的循环,而氮循环还可以在全球气候变化中发挥重要的作用,例如抑制由二氧化碳排放带来的全球变暖。