数值分析 matlab 实验4
数值分析上机作业(MATLAB)

将系数矩阵 A 分解为:A=L+U+D
Ax=b
⇔ (D + L +U)x = b ⇔ Dx = −(L + U )x + b ⇔ x = −D −1(L + U )x + D −1b x(k +1) = −D −1 (L + U ) x(k ) + D −1b
输入 A,b 和初始向量 x
迭代矩阵 BJ , BG
否
ρ(B) < 1?
按雅各比方法进行迭代
否
|| x (k+1) − x(k) ||< ε ?
按高斯-塞德尔法进行迭代
否
|| x(k+1) − x (k ) ||< ε ?
输出迭代结果
图 1 雅各布和高斯-赛德尔算法程序流程图
1.2 问题求解
按图 1 所示的程序流程,用 MATLAB 编写程序代码,具体见附录 1。解上述三个问题 如下
16
-0.72723528355328
0.80813484897616
0.25249261987171
17
-0.72729617968010
0.80805513082418
0.25253982509100
18
-0.72726173942623
0.80809395746552
0.25251408253388
0.80756312717373
8
-0.72715363032573
0.80789064377799
9
-0.72718652854079
数值分析实验报告--解线性方程组的迭代法及其并行算法

disp('请注意:高斯-塞德尔迭代的结果没有达 到给定的精度,并且迭代次数已经超过最大迭 代次数max1,方程组的精确解jX和迭代向量X 如下: ') X=X';jX=jX' end end X=X';D,U,L,jX=jX'
高斯-塞德尔的输入为:
A=[10 2 3;2 10 1;3 1 10]; b=[1;1;2]; X0=[0 0 0]'; X=gsdddy(A,b,X0,inf, 0.001,100) A=[10 2 3;2 10 1;3 1 10]; 请注意:因为对角矩阵 D 非奇异,所以此方程组有解.
0.0301 0.0758 0.1834
8.心得体会:
这已经是第三次实验了, 或多或少我已经对 MATLAB 有了更多的了 解与深入的学习。通过这次实验我了解了雅可比迭代法和高斯- 塞德尔迭代法的基本思想,虽然我们不能熟练编出程序,但还是 能看明白的。运行起来也比较容易,让我跟好的了解迭代法的多 样性,使平常手算的题能得到很好的验证。通过这次实验让我对 MATLAB 又有了更深一层的认识,使我对这门课兴趣也更加浓厚。
运行雅可比迭代程序输入: A=[10
b=[1;1;2];X0=[0 0 0]'; X=jacdd(A,b,X0,inf,0.001,100)
2 3;2 10 1;3 1 10];
结果为:
k= 1 X=
0.1000 k= 2 X= 0.0200 k= 3 X= 0.0400 k= 4 X= 0.0276 k= 5 X= 0.0314 k= 6 X= 0.0294 k= 7 X= 0.0301 k= 8 X= 0.0297
6、 设计思想:先化简,把对角线的项提到左边,其它项
数值分析实验2014

数值分析实验(2014,9,16~10,28)信计1201班,人数34人数学系机房数值分析计算实习报告册专业__________________学号_______________姓名_______________2014~2015年第一学期实验一数值计算的工具Matlab1. 解释下MATLABS序的输出结果程序:t=0.1n=1:10e=n/10-n*te 的结果:0 0 -5.5511e-017 0 0-1.1102e-016 -1.1102e-016 0 0 02. 下面MATLABS序的的功能是什么?程序:x=1;while 1+x>1,x=x/2,pause(0.02),e nd用迭代法求出x=x/2,的最小值x=1;while x+x>x,x=2*x,pause(0.02),e nd用迭代法求出x=2*x,的值,使得2x>Xx=1;while x+x>x,x=x/2,pause(0.02),e nd用迭代法求出x=x/2,的最小值,使得2x>X3. 考虑下面二次代数方程的求解问题2ax bx c = 0公式x=电上4ac是熟知的,与之等价地有_____________________________ ,对于2a-b ■ b -4aca =1,b =100000000,c =1,应当如何选择算法。
b ~4ac计算,因为b与b2— 4ac相近,两个相加减不宜应该用2a u做分母3 5 74. 函数sin(x)有幂级数展开sin x = x - x - - ■■3! 5! 7!利用幕级数计算sinx的MATLAB程序为fun cti on s=powers in(x)s=0;t=x;n=1;while s+t~=s;s=s+t ;t=-x A2/ ((n+1)*(n+2) ) *t ;n=n+2 ;endt仁cputime;pause(10);t2=cputime;t0=t2-t1(a) 解释上述程序的终止准则。
数值分析第四章外推法计算数值微分MATLAB计算实验报告

数值分析第四章外推法计算数值微分MATLAB计算实验报告数值分析MATLAB计算实验报告姓名班级学号⼀、实验名称⽤MATLAB编程实现数值微分的外推法计算。
⼆、实验⽬的1.掌握数值微分和定义和外推法的计算过程;2.了解数值微分外推法的计算⽅法并且编写出与其算法对应的MATLAB程序代码;3.体会利⽤MATLAB软件进⾏数值计算。
三、实验内容⽤外推法计算f(x)=x2e?x在x=0.5的导数。
四、算法描述1.命名函数。
2.如果输⼊未知数少于四个,默认精度10^-33.描述T表矩阵坐标4.依次赋值计算 T表第⼀列5.根据数值微分计算公式求出T表矩阵的值6.若达到精度则运算结束,若未达到循环计算7.输出T表,得出的值就是导数值五、实验结果六、实验结果分析此实验通过MATLAB实现外推法数值微分计算,得到相应的数据,⽅便对数据进⾏分析。
从结果可以看出,当步长h=0.025时⽤中点微分公式只有3位有效数字,外推⼀次达到5位有效数字,外推两次达到9位有效数字。
七、附录(程序)function g=waituifa(fname,x,h,e)if nargin<4,e=1e-3;end;i=1;j=1;G(1,1)=(feval(fname,x+h)-feval(fname,x-h))/(2*h);G(i+1,1)=(feval(fname,x+h/2)-feval(fname,x-h/2))/h;G(i+1,j+1)=(4^j*G(i+1,j)-G(i,j))/(4^j-1);while abs(G(i+1,i+1)-G(i+1,i))>ei=i+1;G(i+1,1)=(feval(fname,x+h/2^i)-feval(fname,x-h/2^i))/(2*h/2^i); for j=1:iG(i+1,j+1)=((4^j)*G(i+1,j)-G(i,j))/(4^j-1);endendGg=G(i+1,i+1);。
数值分析实验报告4

function f=gg(x) f=sqrt(2.5-(x^3)/4); end
则三种方法运行出的结果分别为: >> BDD(1.5) k= 20 ans = 1.365229578333959 >> WA(1.5) k= 6 ans = 1.365230351032824 >> ATJ(1.5) k= 4 ans = 1.365230013413594 (5)在 MATLAB 的 Editor 中建立一个 M-文件,输入程序代码,实现 matlab 自带函数求根 的程序代码如下:
>>format long BDD(1.5) k= 7 ans = 1.365230575673434
(2)在 MATLAB 的 Editor 中建立一个 M-文件,输入程序代码,实现加权加速求根的程序 代码如下:
function [y,n]=WA(a,eps) if nargin==1 eps=1e-16; end syms x L=subs(diff(sqrt(10/(4+x))),a); xl=gg(a,L); n=1; E=abs(xl-a); while (E>=eps)&(n<=10000) x=xl; xl=gg(x,L); n=n+1; E=abs(xl-x); end
在 command Windows 中输入命令:XJF(1.5),得出的结果为:
>> XJF(1.5) k= 5 ans = 1.365230020178121 (8)在 MATLAB 的 Editor 中建立一个 M-文件,输入程序代码,实现抛物线法求根的程序
代码如下:
function [y,n] = parabola(fx,a,b,c,eps) if(nargin == 4) eps=1e-6; syms x fa = subs(fx,a); fb = subs(fx,b); fc = subs(fx,c); fb_a = (fb-fa)/(b-a); fc_b = (fc-fb)/(c-b); fc_b_a = (fc_b - fb_a)/(c-a); w = fc_b + fc_b_a*(c-b); x0 = c - 2*fc/(w+(w^2 - 4*fc*fc_b_a)^.5); n=1; if(abs(x0-c) > eps && n <= 10000) a=b; b=c; c=x0; fa = subs(fx,a); fb = subs(fx,b); fc = subs(fx,c); fb_a = (fb-fa)/(b-a); fc_b = (fc-fb)/(c-b); fc_b_a = (fc_b - fb_a)/(c-a); w = fc_b + fc_b_a*(c-b); x0=c - 2*fc/(w+(w^2 - 4*fc*fc_b_a)^.5); n=n+1; end y=x0; n; end end
数值分析实验报告心得(3篇)

第1篇在数值分析这门课程的学习过程中,我深刻体会到了理论知识与实践操作相结合的重要性。
通过一系列的实验,我对数值分析的基本概念、方法和应用有了更加深入的理解。
以下是我对数值分析实验的心得体会。
一、实验目的与意义1. 巩固数值分析理论知识:通过实验,将课堂上学到的理论知识应用到实际问题中,加深对数值分析概念和方法的理解。
2. 培养实际操作能力:实验过程中,我学会了使用Matlab等软件进行数值计算,提高了编程能力。
3. 增强解决实际问题的能力:实验项目涉及多个领域,通过解决实际问题,提高了我的问题分析和解决能力。
4. 培养团队协作精神:实验过程中,我与同学们分工合作,共同完成任务,培养了团队协作精神。
二、实验内容及方法1. 实验一:拉格朗日插值法与牛顿插值法(1)实验目的:掌握拉格朗日插值法和牛顿插值法的原理,能够运用这两种方法进行函数逼近。
(2)实验方法:首先,我们选择一组数据点,然后利用拉格朗日插值法和牛顿插值法构造插值多项式。
最后,我们将插值多项式与原始函数进行比较,分析误差。
2. 实验二:方程求根(1)实验目的:掌握二分法、Newton法、不动点迭代法、弦截法等方程求根方法,能够运用这些方法求解非线性方程的根。
(2)实验方法:首先,我们选择一个非线性方程,然后运用二分法、Newton法、不动点迭代法、弦截法等方法求解方程的根。
最后,比较不同方法的收敛速度和精度。
3. 实验三:线性方程组求解(1)实验目的:掌握高斯消元法、矩阵分解法等线性方程组求解方法,能够运用这些方法求解线性方程组。
(2)实验方法:首先,我们构造一个线性方程组,然后运用高斯消元法、矩阵分解法等方法求解方程组。
最后,比较不同方法的计算量和精度。
4. 实验四:多元统计分析(1)实验目的:掌握多元统计分析的基本方法,能够运用这些方法对数据进行分析。
(2)实验方法:首先,我们收集一组多元数据,然后运用主成分分析、因子分析等方法对数据进行降维。
MATLAB实验

MATLAB实验一:MATLAB语言基本概念实验实验目的:1. 熟悉MATLAB语言及使用环境;2.掌握MATLAB的常用命令;3.掌握MATLAB的工作空间的使用;4.掌握MATLAB的获得帮助的途径。
5.掌握科学计算的有关方法,熟悉MATLAB语言及其在科学计算中的运用;6.掌握MATLAB的命令运行方式和M文件运行方式;7.掌握矩阵在MATLAB中的运用。
实验方案分析及设计:本次实验主要目的是了解MATLAB的使用环境,以及常用的一些命令的使用;了解矩阵在MATLAB实验中的具体运用,以及相关的一些符号命令的使用。
实验器材:电脑一台,MATLAB软件实验步骤:打开MATLAB程序,将实验内容中的题目依次输入MATLAB中,运行得到并记录结果,最后再对所得结果进行验证。
实验内容及要求:1.熟悉MATLAB的菜单和快捷键的功能2.熟悉MATLAB的命令窗口的使用3.熟悉常用指令的使用format clc clear help lookfor who whos 4.熟悉命令历史窗口的使用5. 熟悉MATLAB工作空间的功能将工作空间中的变量保存为M文件,并提取该文件中的变量6.熟悉MATLAB获取帮助的途径将所有plot开头的函数列出来,并详细给出plotfis函数的使用方法1. 输入 A=[7 1 5;2 5 6;3 1 5],B=[1 1 1; 2 2 2;3 3 3],在命令窗口中执行下列表达式,掌握其含义:A(2, 3) A(:,2) A(3,:) A(:,1:2:3)A(:,3).*B(:,2) A(:,3)*B(2,:) A*BA.*BA^2 A.^2 B/A B./AA=[7 1 5;2 5 6;3 1 5]7 1 52 5 63 1 5>> B=[1 1 1; 2 2 2;3 3 3]1 1 12 2 23 3 3>> A(2, 3)6>> A(:,2)151>> A(3,:)3 1 5>> A(:,1:2:3)7 52 63 5>> A(:,3).*B(:,2)51215>> A(:,3)*B(2,:)10 10 1012 12 1210 10 10>> A*B24 24 2430 30 3020 20 20>> A.*B7 1 54 10 129 3 15>> A^266 17 6642 33 7038 13 46>> A.^249 1 254 25 369 1 25>> B/A0.1842 0.2105 -0.23680.3684 0.4211 -0.47370.5526 0.6316 -0.7105>> B./A0.1429 1.0000 0.20001.0000 0.4000 0.33331.0000 3.0000 0.60002.输入 C=1:2:20,则 C (i )表示什么?其中 i=1,2,3, (10)1到19差为2,i 代表公差3. 试用 help 命令理解下面程序各指令的含义:cleart =0:0.001:2*pi;subplot(2,2,1);polar(t, 1+cos(t))subplot(2,2,2);plot(cos(t).^3,sin(t).^3)subplot(2,2,3);polar(t,abs(sin(t).*cos(t)))subplot(2,2,4);polar(t,(cos(2*t)).^0.5)4计算矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡897473535与⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡638976242之和。
数值分析实验报告matlab

数值分析实验报告matlab数值分析实验报告引言:数值分析是一门研究利用计算机数值方法解决数学问题的学科,它在科学计算、工程设计、金融分析等领域具有重要的应用价值。
本实验报告旨在通过使用MATLAB软件,探索数值分析的基本原理和方法,并通过实际案例加深对数值分析的理解。
一、误差分析在数值计算中,误差是无法避免的。
误差分析是数值分析中的重要一环,它帮助我们了解数值计算的准确性和稳定性。
在实验中,我们通过计算机模拟了一个简单的数学问题,并分别计算了绝对误差和相对误差。
通过比较不同算法的误差大小,我们可以选择最适合的算法来解决实际问题。
二、插值与拟合插值和拟合是数值分析中常用的方法,它们可以通过已知的数据点来推导出未知数据点的近似值。
在本实验中,我们通过MATLAB的插值函数和拟合函数,分别进行了插值和拟合的实验。
通过比较不同插值和拟合方法的结果,我们可以选择最适合的方法来处理实际问题。
三、数值积分数值积分是数值分析中的重要内容,它可以用来计算曲线下的面积或函数的积分值。
在实验中,我们通过MATLAB的数值积分函数,对一些简单的函数进行了积分计算。
通过比较数值积分和解析积分的结果,我们可以评估数值积分的准确性和稳定性,并选择最适合的积分方法来解决实际问题。
四、常微分方程的数值解法常微分方程是数值分析中的重要内容,它可以用来描述许多自然现象和工程问题。
在实验中,我们通过MATLAB的常微分方程求解函数,对一些简单的微分方程进行了数值解法的计算。
通过比较数值解和解析解的结果,我们可以评估数值解法的准确性和稳定性,并选择最适合的数值解法来解决实际问题。
五、线性方程组的数值解法线性方程组是数值分析中的经典问题,它在科学计算和工程设计中广泛应用。
在实验中,我们通过MATLAB的线性方程组求解函数,对一些简单的线性方程组进行了数值解法的计算。
通过比较数值解和解析解的结果,我们可以评估数值解法的准确性和稳定性,并选择最适合的数值解法来解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) 解题过程如下:
(1)MATLAB中创建复化梯形公式和复化辛普森公式的 M 文件:1)复化梯形公式文件:
function s=T_fuhua(f,a,b,n)
h=(b-a)/n;
s=0;
for k=1:(n-1)
x=a+h*k;
s=s+feval(f,x);
end
s=h*(feval(f,a)+feval(f,b))/2+h*s;
2)复化辛普森公式文件:
function s=S_fuhua(f,a,b,n)
h=0;
h=(b-a)./(2*n);
s1=0;
-5-
s2=0;
for k=1:n-1
x=a+h*2*k;
s1=s1+feval(f,x);
end
for k=1:n
x=a+h*(2*k-1);
s2=s2+feval(f,x);
end
s=h*(feval(f,a)+feval(f,b)+s1*2+s2*4)/3;
在MATLAB中输入:
f=inline('x/(4+x^2)');a=0;b=1;
%inline 构造内联函数对象
for n=2:10
s(n-1)=T_fuhua(f,a,b,n);s(n-1)=vpa(s(n-1),10);
%调用复化梯形公式,生成任意精度的数值
end
exact=int('x/(4+x^2)',0,1);exact=vpa(exact,10)
%求出积分的精确值
输出结果:exact =
.1115717755
s =
Columns 1 through 6
0.1088 0.1104 0.1109 0.1111 0.1113 0.1114
Columns 7 through 9
0.1114 0.1114 0.1115
在MATLAB中输入以下函数用以画出计算误差与 n 之间的曲线:
r=abs(exact-s);
n=2:10;
plot(double(n),double(r(n-1)))
得到结果如图所示:
(2)在 MATLAB中输入以下程序代码:
f=inline('x/(4+x^2)');a=0;b=1;n=9;
%inline 构造内联函数对象
t=T_fuhua(f,a,b,n);t=vpa(t,10)
s=S_fuhua(f,a,b,n);s=vpa(s,10)
%调用复化梯形和复化辛普森公式,生成任意精度的数值
exact=int('x/(4+x^2)',0,1);exact=vpa(exact,10)
%求出积分的精确值
计算结果:t =
.1114379370
s =
.1115717991
exact =
.1115717755
E1=|t-exact|=0.0001338385
E2=|s-exact|=0.0000000236
所以,两种方法计算所得的绝对误差:E1>E2
(1)中的两个结果 s 与t,两个函数的计算量基本相同,但是精度却有很大
差别:与精确值exact =.1115717755比较,复化梯形公式的结果t =.1114379370 只有三位有
效数字,而复化辛普森公式的结果 s =.1115717991 却有七位有效数字。
由此例子可以知道,复化辛普森公式比复化梯形公式的代数精度高,更适合于科学计
算与应用。
(2)用求定积分的函数int求积分的值:
在命令窗口中键入如下的命令:
sym x
int(sqrt(x),1,9)
I=vpa(int (sqrt(x),1,9))
回车后输出积分结果为:
I =17.3333
编写求复合辛普森公式的m文件如下:
function Simpson2
x=1:1/2:9;
f= sqrt(x);
a=1,b=9;
%f(1)=1;
h=(b-a)/4;
s=f(1)+f(17);
for k=1:1:8
s=s+4*f(2*k);
end
for k=2:1:8
s=s+2*f(2*k-1);
end
s=(h/6)*s
运行上述程序:s=17.3332
(2)用求定积分的函数int求积分的值:
在命令窗口中键入如下的命令:
sym x
int(sqrt(4-sin(x).^2),0,pi/6)
I=vpa(int (sqrt(4-sin(x).^2),0,pi/6))
回车后输出积分结果为:
I =1.03576
编写求复合辛普森公式的m文件如下:
function Simpson3
x=0:pi/96:pi/6;
f=sqrt(4-sin(x).^2);
a=0,b=pi/6;
%f(1)=1;
h=(b-a)/6;
s=f(1)+f(17);
for k=1:1:8
s=s+4*f(2*k);
end
for k=2:1:8
s=s+2*f(2*k-1);
end
s=(h/6)*s
运行上述程序:s= 1.0358 误差为0.00004
分析:本题是求解定积分的问题,可以采用复化的辛普森公式求解。
根据题中的条件可以计算出c,a的值。
解:用matlab求解才c,a如下:
a =(2R+H+h)/2 ,c=(H-h)/2. c=972.5, a=7782.5
用求定积分的函数int求积分值:
在命令窗口中键入如下的命令:
sym x
int(4*7782.5*sqrt(1-(972.5/7782.5)^2*sin(x).^2),0,pi/2)
I=vpa(int
(4*7782.5*sqrt(1-(972.5/7782.5)^2*sin(x).^2),0,pi/2))
回车后输出积分结果为:
I =48707.60111
下面编写M文件用复合的辛普森公式计算周长:
function Simpson4
e=7782.5 ; %因为下面要用到a,为了避免变量冲突,所以这里将
c=972.5; %a改成e了。
x=0:pi/16:pi/2;
f=4*e*sqrt(1-(c/e)^2*(sin(x)).^2);
a=0,b=pi/2;
h=(b-a)/4;
s=f(1)+f(9);
for k=1:1:4
s=s+4*f(2*k);
end
for k=2:1:4
s=s+2*f(2*k-1);
end
s=(h/6)*s
运行上述程序得出周长为:4.870743851190015e+004km.
用梯形求积分函数trapz求积分
在命令行输入下列程序:
d=pi/16;
x=0:d:pi/2;
T=d*trapz(4*7782.5*sqrt(1-(972.5/7782.5)^2*sin(x).^2))
回车后,可见 T= 4.870743851190014e+004km
用复化的梯形公式求解该题:
Matlab程序如下:
function t=tixing()%梯形法求积分
clear;
clc;
options={'积分下限a','积分上限b' ,'插入点相关的值n'};
topic='seting';
lines=1;
def={'0','1','1000'};
h=inputdlg(options,topic,lines,def);
a=eval(h{1});%积分下限
b=eval(h{2});%积分上限
n=eval(h{3});%子区间个数
%********************************************
f='func';%用f来调用被积函数func
h=(b-a)/(n);
t=0;
for k=1:1:n-1
x=a+h*(k);
t=t + feval(f,x);
end
format long
t=h*( feval(f,a) +feval(f,b)+2*t)/2;%s是梯形规则的总计
end
%定义被积函数func
function y=func(x)
y=4*7782.5*sqrt(1-(972.5/7782.5)^2*sin(x).^2);
end
运行上面的程序得周长为:4.870743851190014e+004。
由上述计算结果可知编程计算与用积分函数计算的结果是一样的。
与精确值之间的误差也在允许的范围内。
终上所述,卫星轨道的周长约为48707km.。