职高数学公式整理
职校高中数学知识点总结及公式大全

职校高中数学知识点总结及公式大全全文共四篇示例,供读者参考第一篇示例:职校高中数学知识点总结及公式大全一、初等代数1. 二项式定理(a + b)^n = C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)a b^(n-1) + C(n,n)b^n2. 多项式的加减乘除运算多项式加减法:合并同类项多项式乘法:展开式,按每一项分配展开多项式除法:长除法或者直接使用因式分解3. 一元二次方程一元二次方程的一般形式为ax^2 + bx + c = 0求根公式:x = (-b ± 根号(b^2 - 4ac)) / 2a判别式:Δ = b^2 - 4ac根的情况:Δ > 0,有两个不相等的实根Δ = 0,有两个相等的实根Δ < 0,无实数根4. 不等式解不等式的方法与解方程式类似,但需要注意不等式号的方向常见的不等式:线性不等式、一元二次不等式不等式的解集写法:用数轴表示或者写成区间形式5. 函数函数的定义:对于每个元素x,存在唯一的元素y 与之对应函数的图像:以y 轴为对称轴的曲线常见函数:一次函数、二次函数、指数函数、对数函数、三角函数二、平面几何1. 几何基本定理射影定理:两平行线被一截线相交,所成的两对对应角相等全等三角形的判定:SSS、SAS、ASA、AAS、HL相似三角形的判定:AA、SSS、SAS比例定理正弦定理:a/sinA = b/sinB = c/sinC余弦定理:c^2 = a^2 + b^2 - 2ab cosC2. 圆圆的相关性质:半径、直径、周长、面积圆的弦、割、切切线与半径的垂直性:切线与半径垂直于接触点圆内角的性质:内切圆、外切圆4. 向量向量的表示:用一个有向线段或者坐标表示向量的模:|a| = √(a1^2 + a2^2)向量的运算:加减法、数量积、向量积5. 空间几何点、直线、平面在空间中的位置关系直线和平面的交点及夹角平行线和垂直线的性质空间几何问题的解决方法第二篇示例:职校高中数学知识点总结在职校的高中数学课程中,学生将会接触到许多重要的数学知识点和公式。
职业高中常用数学公式

职业高中常用数学公式三、指数部分与对数部分常用公式1、指数部分:⑵分数指数幂与根式形式的互化: ① nmnm a a= ② nmnm aa1=-)1*,(>∈n N n m 且、①10=a② a a n n =)( ③ ⎩⎨⎧=为偶数,当为奇数当n a n a a n n ||,2、对数部分:⑴1log =a a ;⑵01log =a ;⑶对数恒等式:N aNa =log 。
⑷N M N M a a a log log )(log +=⋅ ⑸N M NMa a a log log )(log -=; ⑹ M p M a pa log log =⑺换底公式:abb c c a log log log =﹡四、三角部分公式 1、弧度与角度⑴换算公式:1800=π,10=180πrad 1rad=π0180≈57018'=57.3002、角α终边经过点P ),(y x ,22y x r +=,则r y =αsin ,r x =αcos ,xy=αtan 1、 三角函数在各象限的正负情况:4、同角函数基本关系式:5、简化公式:①⎪⎩⎪⎨⎧-=-=--=-ααααααtan )tan(cos )cos(sin )sin( ②⎪⎩⎪⎨⎧-=-=--=-ααπααπααπtan )2tan(cos )2cos(sin )2sin( ③⎪⎩⎪⎨⎧-=--=-=-ααπααπααπtan )tan(cos )cos(sin )sin( ④ ⎪⎩⎪⎨⎧=+-=+-=+ααπααπααπtan )tan(cos )cos(sin )sin( ⑤⎪⎩⎪⎨⎧=+=+=+ααπααπααπtan )2tan(cos )2cos(sin )2sin(k k k (k Z ∈)⑥⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=-ααπααπααπcot )2tan(sin )2cos(cos )2sin(6、两角和与差的正弦、余弦、正切:⑴两角和与差的正弦:βαβαβαsin cos cos sin )sin(+=+βαβαβαsin cos cos sin )sin(-=-⑵两角和与差的余弦:βαβαβαsin sin cos cos )cos(-=+βαβαβαsin sin cos cos )cos(+=-⑶两角和与差的正切:βαβαβαtan tan 1tan tan )tan(-+=+βαβαβαtan tan 1tan tan )tan(+-=-7、二倍角公式:⑴二倍角的正弦:αααcos sin 22sin =⑵二倍角的余弦:ααα22sin cos 2cos -== α2sin 21-= 1cos 22-α⑶二倍角的正切:ααα2tan 1tan 22tan -=五、几何部分 1、 向量④向量的数量积:θcos ||||⋅⋅=⋅b a b a(其中θ为两个向量的夹角)﹡ ⑵代数方式的运算:设),(21a a a =,)(2,1b b b = ,①加法:),(2211b a b a b a ++=+②减法:),(2211b a b a b a --=-③数乘向量:),(21a a a λλλ=④向量的数量积:2211b a b a b a +=⋅(结果为实数)⑶两个向量平行与垂直的判定:设),(21a a a =,)(2,1b b b = ,①平行的判定:a ∥b ⇔a bλ=⇔1221b a b a =②垂直的判定:a ⊥b ⇔0=⋅b a⇔02211=+b a b a⑷其它公式:设),(21a a a =,)(2,1b b b =①向量的长度:2221||a a a +=﹡②设),(),,(2211y x B y x A ,则),(1212y y x x B A --=;|212212)()(|y y x x B A -+-=﹡③设),(),,(2211y x B y x A ,则线段AB 的中点M 的坐标为M )2,2(2121y y x x ++﹡④两个向量的夹角为θ,则222122212211||||cos b b a a b a b a b a ba +++=⋅= θ2、 直线部分⑴斜率公式:①)为直线的倾斜角,090(tan ≠=αααk②)(211212x x x x y y k ≠--=⑵直线方程的形式:① 点斜式:)(00x x k y y -=- (k 为斜率,),(00y x 为直线过的点); ② 斜截式:b kx y +=(k 为斜率,b 为直线在y 轴上的截距); ③ 一般式:)0(0≠=++A C By Ax (斜率BCb B A k -=-=,) ⑶两条直线平行或垂直的条件:① 两条直线斜率为21,k k ,且不重合则1l ∥2l ⇔21k k = ② 两条直线的斜率为21,k k ,则1l ⊥2l ⇔121-=⋅k k ⑷两条直线的夹角公式(设夹角为θ): ①21k k =时,1l ∥2l ,夹角θ=00; ②121-=⋅k k 时,1l ⊥2l ,则夹角θ=900; ⑷点),(00y x 到直线0=++C By Ax 的距离公式: ||2200BA CBy Ax d +++=⑸两平行线0:11=++C By Ax l 与0:22=++C By Ax l 间距离 ||2221B A C C d ++=3、圆部分⑴圆的方程:① 标准方程:222)()(r b y a x =-+-(其中圆心为),(b a ,半径为r ) ② 一般方程:022=++++F Ey Dx y x (其中圆心为)2,2(ED --,半径为2422FE D r -+=)六、数列1、 已知前n 项和公式n S :⎩⎨⎧∈≥-==-),2()1(11Z n n s s n s a n n n2、 等差数列:⑴通项公式d n a a n )1(1-+=(1a 是首项;d 为公差n 为项数;n a 为通项即第n 项)⑵等差公式:a ,A ,b 三数成等差数列,A 为a 与b 的等差中项,则)2(2b a A ba A +=+=或 ⑶前n 项和公式:① d n n n a S n 2)1(1-+=(已知n d a ,,1时应用此公式) ②2)(1n n a a n S +=(已知n a a n ,,1时应用此公式) ③特殊地:当数列为常数列,,,a a a ----时,na S n = 3、等比数列:⑴通项公式:11-=n n qa a⑵等比中项公式:若a ,A ,b 三数成等比数列,则A 为a 与b 的等比中项,则)(2b a A b a A ⋅±=⋅=或⑶前n 项和公式:①)1(1)1(1≠--=q qq a S nn (已知n q a ,,1时应用)②)1(1)1≠--=q qq a a S n n (已知n a a n ,,1时应用)③当1=q 时,数列为常数列,则1na S n =。
职高数学知识点总结及公式大全

职高数学知识点总结及公式大全一、数学知识点总结1. 数列与数列的概念数列是由一系列有序数按照一定排列顺序组成的数集合。
常见的数列有等差数列、等比数列等。
2. 几何图形的性质几何图形的性质包括平行四边形的性质、三角形的性质、圆的性质等。
3. 概率与统计概率与统计是数学中重要的分支,包括事件的概率、随机变量、概率分布、统计参数估计等内容。
4. 三角函数三角函数是用来描述角度与边长之间关系的函数,包括正弦函数、余弦函数、正切函数等。
5. 导数与微分导数是描述函数变化率的概念,微分是导数的一种形式化表达。
6. 积分积分是导数的逆运算,用来求函数与坐标轴之间的面积。
二、常见公式大全1. 等差数列求和公式等差数列的前n项和公式为:Sn = n * (a1 + an) / 2,其中n为项数,a1为首项,an为末项。
2. 二项式定理(a + b)^n = C(n,0)*a^n*b^0 + C(n,1)*a^(n-1)*b^1 + ... +C(n,k)*a^(n-k)*b^k + ... + C(n,n)*a^0*b^n。
3. 正弦定理在三角形ABC中,有a/sinA = b/sinB = c/sinC。
4. 求导法则常用的求导法则包括幂函数的导数、指数函数的导数、对数函数的导数等。
5. 积分表积分表包括基本积分表、换元法、分部积分法等。
6. 概率公式常用的概率公式包括加法法则、乘法法则、独立事件的概率计算等。
三、数学知识点的应用1. 在工程中的应用数学知识在工程领域中有着广泛的应用,包括力学、材料力学、电路原理、数值计算等方面。
2. 在金融中的应用金融数学是数学在金融领域的应用,包括利率计算、复利计算、金融衍生品定价等。
3. 在科学研究中的应用科学研究中常常需要运用数学方法进行建模、分析数据、进行实验设计等。
4. 在日常生活中的应用数学知识在日常生活中有着广泛的应用,比如计算购物折扣、理财规划、家庭预算等。
职高数学知识点的掌握对于学生的学习和未来的发展都具有重要意义。
中职数学公式大全总结

中职数学公式大全总结中职数学公式大全总结1、三角形的面积公式:S=1/2 × a × b ×sin C2、圆柱体体积公式:V = r2 × h × π3、球体的表面积公式:S=4πr^24、圆的面积公式:S=πr^25、椭圆的面积公式:S=π × a × b6、平面向量内积公式:a•b= |a||b|cos<a,b>7、圆段面积公式:S=1/2 × R2 ×2θ8、矩形面积公式:S=a × b9、正多边形面积公式:S=1/2 × a2 ×sin(2π/n )10、梯形面积公式:S= 1/2 × (a+b) × h11、等边三角形面积公式:S=a2/4 × √312、平行四边形面积公式:S=a × b ×sin C13、三维空间两向量夹角公式: cos<a,b>= a•b/|a||b|14、切线斜率公式:k=1/tan α15、三角函数的基本关系公式:sin2α+cos2α=116、边长关系公式:a2=b2+c2-2bc cosA17、余弦定理公式:a2=b2+c2-2bc cosA18、角平分线公式:tanα/2=√(1/2-cosα/1+cosα)19、平面角平分线公式:1/tanα/2=1-cosα/1+cosα20、椭圆长轴短轴公式:a2-b2=e221、内切圆半径公式:r=abc/(4s)22、外切圆半径公式:R=abc/(4S-a)23、法线方程公式:nx+ny+c=024、贝塞尔曲线参数方程公式:(x-x0)^2+(y-y0)^2=(x0x1)^2+(y0y1)^225、中心弦长公式:2R sin (1/2α)26、中心角公式:α=2sin-1(2R/2a)27、等差数列求和公式:Sn= n/2 ×(a1+an)28、等比数列求和公式:Sn=a1(1-qn)/1-q29、等分被积函数求定积分公式:∫f(x)dx=1/n × (f(a1)+f(an))30、双曲线椭圆方程: x2/a2-y2/b2=131、积分计算公式:∫f(x) dx = Rf(x) + C32、利用抛物线方程计算公式:x=Vt+1/2at233、发散函数求和公式:∑a(n) = a+2a2 + 3a3 + …… + n an以上就是中职数学的一些常用公式汇总,熟练掌握这些公式,可以帮助中职生们更好地解决数学难题,提高学习效率,提高考试分数。
中职数学常用公式及常用结论大全

中职数学常用公式及常用结论大全一、基本运算公式1.加法公式:- (a + b)² = a² + 2ab + b²- (a - b)² = a² - 2ab + b²-(a+b)(a-b)=a²-b²2.乘法公式:- (a + b) · (c + d) = ac + ad + bc + bd- (a - b) · (c - d) = ac - ad - bc + bd- (a + b)² = a² + 2ab + b²3.除法公式:-(a+b)/c=a/c+b/c4.平方公式:- (a + b)² = a² + 2ab + b²- (a - b)² = a² - 2ab + b²二、代数公式1.因式分解公式:-a²-b²=(a+b)(a-b)- a³ + b³ = (a + b)(a² - ab + b²)- a³ - b³ = (a - b)(a² + ab + b²)2.二次方程公式:- 一元二次方程: ax² + bx + c = 0根的求法:x = (-b ± √(b² - 4ac))/(2a)- 二项式平方公式:(a + b)² = a² + 2ab +b²- 二项式差平方公式:(a - b)² = a² - 2ab + b²三、几何公式1.周长和面积:-正方形:周长P=4a,面积S=a²- 长方形:周长P = 2(a + b),面积S = ab- 三角形:周长P = a + b + c,面积S = 1/2bh-圆形:周长C=2πr,面积S=πr²2.三角函数公式:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:c² = a² + b² - 2abcosC- 正切公式:tanA = sinA/cosA3.三角恒等式:- sin²A + cos²A = 1- 1 + tan²A = sec²A- 1 + cot²A = csc²A四、概率统计公式1.期望公式:-离散型随机变量:E(X)=Σx·P(x)- 连续型随机变量:E(X) = ∫xf(x)dx2.方差公式:-离散型随机变量:D(X)=Σ(x-E(X))²·P(x)- 连续型随机变量:D(X) = ∫(x - E(X))²f(x)dx 3.二项分布公式:-P(x)=C(n,x)·pˣ·(1-p)^(n-x)4.正太分布公式:-P(x)=1/√(2πσ²)·e^(-(x-μ)²/(2σ²))五、常用结论1.公倍数与公约数:-两数的最小公倍数=两数的乘积/最大公约数-两数的最大公约数=两数的乘积/最小公倍数2.平行线与三角形:-平行线截割等腰直角三角形得到的两个三角形相似-平行线截割等腰三角形得到的两个三角形相似3.三角形中位线和中心线:-三角形的中位线交于一点,分割成6个全等的小三角形-三角形的中心线交于一点。
中职数学常用公式及常用结论大全

中职数学常用公式及常用结论大全一、代数运算常用公式:1. 平方差公式:(a + b)² = a² + 2ab + b²,(a - b)² = a² - 2ab + b²2.完全平方公式:a²-b²=(a+b)(a-b)3. 二次方程求根公式:对于二次方程ax² + bx + c = 0 (a ≠ 0),其解为 x = [-b ± √(b² - 4ac)] / (2a)4. 一元二次方程因式分解公式:ax² + bx + c = a(x - α)(x - β),其中α和β是方程的两个根。
二、几何公式和结论:1.圆的周长公式:C=2πr,其中C为圆的周长,r为半径。
2.圆的面积公式:A=πr²,其中A为圆的面积,r为半径。
3.直角三角形勾股定理:a²+b²=c²,其中c为斜边,a和b为两条边。
4.等腰三角形底边中线和高的关系:底边中线的长度等于等腰三角形的高。
5.平行四边形面积公式:A=底边×高,其中A为面积,底边为底边的长度,高为平行于底边的线段的长度。
三、函数与方程常用公式:1.直线的斜率公式:斜率m=(y₂-y₁)/(x₂-x₁),其中P₁(x₁,y₁)和P₂(x₂,y₂)为直线上的两个点。
2. 一次函数的一般式方程:y = kx + b,其中k为斜率,b为y轴截距。
3. 二次函数顶点坐标公式:对于二次函数y = ax² + bx + c,其顶点坐标为(-b/2a, -(b² - 4ac)/4a)。
4. 一元一次方程求解公式:对于一元一次方程ax + b = 0,其解为x = -b/a。
四、概率与统计常用公式:1.随机事件的概率公式:P(A)=n(A)/n(S),其中P(A)为事件A发生的概率,n(A)为事件A发生的次数,n(S)为样本空间中的总次数。
职中数学公式总结大全

职中数学公式总结大全1.代数公式:- 二次方程求根公式: 对于二次方程a某^2 + b某 + c = 0,解的公式为某 = (-b ± √(b^2 - 4ac))/(2a)。
- 因式分解公式: 根据巴斯卡定理和二项式定理,可以将多项式进行因式分解,如(a+b)^2 = a^2 + 2ab + b^2。
- 平方差公式: (a+b)(a-b) = a^2 - b^2,(a+b)^2 - (a-b)^2 =4ab。
- 三角函数公式:例如sin(a+b) = sin(a)cos(b) + cos(a)sin(b),cos^2(a) + sin^2(a) = 1等。
2.几何公式:-直角三角形的勾股定理:对于直角三角形,边长分别为a、b,斜边长为c,满足a^2+b^2=c^2。
-圆的面积和周长公式:圆的面积为πr^2,周长为2πr,其中r为半径。
- 三角形面积公式: 三角形的面积可以通过海伦公式或两边夹角的正弦公式计算,如S = 1/2ab某sin(c),其中a、b为两边长,c为两边夹角。
-直线方程:直线方程可以用点斜式、截距式或一般式表示。
3.概率公式:-计算概率公式:概率P=事件发生的次数/总次数。
-互斥事件概率公式:对于互斥事件A、B,概率P(A∪B)=P(A)+P(B)。
-条件概率公式:对于事件A和事件B,P(A,B)=P(A∩B)/P(B)。
-乘法定理:对于两个独立事件A和B,P(A∩B)=P(A)某P(B)。
4.统计公式:-平均数公式:平均数=总和/数量。
-方差公式:方差是指每个数据与均值之差的平方的平均数。
-标准差公式:标准差是方差的平方根。
-正态分布公式:正态分布可以由概率密度函数表示,公式为f(某)=(1/√(2πσ^2))某e某p(-(某-μ)^2/(2σ^2)),其中μ为均值,σ为标准差。
以上只是一些常见的职中数学公式的总结,仅包含了一小部分,实际应用中还有很多其他公式。
在数学学习和工作中,熟练掌握这些公式对于解题和计算非常有帮助。
中职数学知识点总结及公式大全

中职数学知识点总结及公式大全一、集合。
1. 集合的概念。
- 集合是由确定的元素组成的总体。
例如,一个班级的所有学生可以组成一个集合。
- 元素与集合的关系:属于(∈)和不属于(∉)。
如果a是集合A中的元素,就说a∈ A;如果a不是集合A中的元素,就说a∉ A。
2. 集合的表示方法。
- 列举法:把集合中的元素一一列举出来,写在大括号内。
例如A = {1,2,3}。
- 描述法:用确定的条件表示某些对象是否属于这个集合。
例如B={xx >0,x∈ R},表示所有大于0的实数组成的集合。
3. 集合间的基本关系。
- 子集:如果集合A的任意一个元素都是集合B的元素,那么集合A称为集合B的子集,记作A⊆ B(或B⊇ A)。
- 真子集:如果A⊆ B,且B中至少有一个元素不属于A,那么A是B的真子集,记作A⊂neqq B。
- 相等:如果A⊆ B且B⊆ A,那么A = B。
4. 集合的运算。
- 交集:A∩ B={xx∈ A且x∈ B}。
例如A = {1,2,3},B={2,3,4},则A∩ B = {2,3}。
- 并集:A∪ B={xx∈ A或x∈ B}。
对于上面的A和B,A∪ B={1,2,3,4}。
- 补集:设U是全集,A⊆ U,则∁_UA={xx∈ U且x∉ A}。
二、不等式。
1. 不等式的基本性质。
- 对称性:如果a > b,那么b < a;如果b < a,那么a > b。
- 传递性:如果a > b,b > c,那么a > c。
- 加法单调性:如果a > b,那么a + c>b + c。
- 乘法单调性:如果a > b,c>0,那么ac > bc;如果a > b,c < 0,那么ac < bc。
2. 一元一次不等式。
- 一般形式为ax + b>0(a≠0)或ax + b < 0(a≠0)。
- 求解步骤:移项、合并同类项、系数化为1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公式
一、集合实数集R 空集∅ 有理数集Q 自然数集N 正整数集*
N 整数集Z 交集:{}B ∈A ∈=B ⋂A χχχ且 并集:{}B ∈A ∈=B ⋃A χχχ或
补集:
{}A ∉∈=A χχχ且U C U
充分条件:条件p ⇒结论q 必要条件:条件p ⇐结论q 充要条件:条件p ⇔结论q
三、函数)(x f =γ 函数奇偶性
奇函数:设函数的定义域为数集D ,如果对于任意的,都有D x ∈-且)()(x f x f -=-,那么函数)(x f 叫做奇函数。
偶函数:设函数的定义域为数集D ,如果对于任意的,都有D x ∈-且)()(x f x f =-,那么函数)(x f 叫做偶函数。
不具有奇偶性的函数叫做非奇非偶函数。
四、指数函数与对数函数 分式指数幂:n m
n
m a
a
=n
m
n
m a
a
1
=
-
实数指数幂:q p q p a a a +=⋅()
pq q
p a a =()p p p
b a ab ⋅=
幂函数:)(R x ∈=αγα
指数函数:)10(≠>=a a a x 且γ 性质:
1)函数的定义域为R ,域值为()∞+,
0; 2)当0=x 时,函数值1=y ;
3)当()()内是减函数。
时,函数在内是增函数,当时,函数在+∞∞-<<+∞∞->,10,1a a
对数:b N N a a b =⇔=log
性质:1)01log =a 2)1log =a a 3)0>N ,即零和负数没有对数 常用对数:N N lg log 10简记为
自然对数:以无理数e (e=……)为底的对数,N N e ln log 简记为 积、商、幂的对数: 对数函数:x y a log = 性质:
1)函数的定义域为()∞+,
0,域值为R ; 2)当1=x 时,函数值0=y ;
3)当()()内是减函数。
时,函数在内是增函数,当时,函数在+∞<<+∞>,010,01a a
三角函数:
角α终边相同的角的集合:{}
Z ∈⋅+=k k ,360οαββ 任意角的正弦、余弦和正切函数
22α
sin 各象限的三角函数正负号
正切()()βαβ
αβαβ
αβ
αβαtan tan 1tan tan tan tan tan 1tan tan tan ⋅+-=
-⋅-+=
+
二倍角公式
由公式1cos sin 22=+αα可变形为:
正弦型函数()ϕωχγ+=sin A 1>ω横坐标缩短..
为原来的ω
1
倍 10<<ω横坐标伸长..
为原来的ω
1倍ωχγsin =
0<ϕ横坐标向右.平移ω
ϕ
个单位 0>ϕ横坐标向左.
平移ω
ϕ
个单位)sin(ϕωχγ+=
1>A 纵坐标伸长..为原来的A 倍 10<<A 纵坐标缩短..为原来的A 倍 ①周期ω
π
2=T
②振幅=A ③频率T =
1f ④相位=ϕωχ+初相:当x=0时,ϕ
ωχ+的值
关键五点法:()ϕωχγ+=sin A 正弦定理:
余弦定理六、数列
等差数列d a a n n +=+1(d :公差) 通项公式:()d n a a n 11-+= 前n 项和公式:2)(1n n a a n S +=
d n n na S n 2
)
1(1-+= 等比数列q a a n n ⋅=+1(q :公比) 通项公式:11-⋅=n n q a a
前n 项和公式:)1(1)1(1≠--=
q q q a S n n )1(11≠--=q q
q
a a S n n 当q=1时,前n 项和为1na S n = 七、平面向量
平面向量的加法:b a =+=+ 平面向量的减法:=-
平面向量的数乘运算:a a λλ=若0≠a λ,则当0>λ时,的a λ方向与a 的方向相同,当0<λ时,a λ的方向与a 相反。
对于非零向量b a 、,当0≠λ时有,一般的,有00,00==λa 法则:
1)a a a a -=-=)1(;12)()()()a a a λμμλλμ== 3)()λμλμλ+=+a a 4)()b a b a λλλ+=+ 平面向量的坐标()1212,y y x x --=
向量线性运算的坐标:()2121,y y x x b a ++=+()2121,y y x x b a --=-()11,y x a λλλ= 共线向量的坐标表示:),(11y x a ),(22y x b 01221=-y x y x 平面向量的内积:><=⋅b a b a b a ,cos
内积的坐标表示:2121y y x x b a +=⋅22y x a += 八、直线和圆的方程
两点间的距离:()()21221221y y x x P P -+-===
线段中点坐标:2210x x x +=
2
2
10y y y += 直线的斜率:)(211
21
2x x x x y y k ≠--=
直线的点斜式...方程:)(00x x k y y -=- 直线的斜截式...方程:b kx y ==(b 为截距) 直线的一般式...方程:0=++C By Ax (A 、B 不全为零) 两条直线的位置关系:平行、相交。
点到直线的距离:2
2
00B
A C
By Ax d +++=
圆的标准方程:222)()(r b y a x =-+-圆心:(a,b ) 圆的一般方程:022=++++F Ey Dx y x (0422>-+F E D )
圆心:)2
,2(E
D --半径:2422F
E D -+
直线与圆的位置关系:判断d 与r 的大小。
排列及排列数的计算 组合及组合数的计算 二项式定理 二项分布
伯努利公式:k n k k
n
n p p C k P --⋅⋅=)1()(。