振弦式传感器汇总
(完整word版)振弦式传感器

基于振弦式传感器测频系统的设计白泽生(延安大学物理与电子信息学院陕西延安716000)利用振弦式传感器测量物理量是基于其钢弦振动频率随钢丝张力变化,输出的是频率信号,具有抗干扰能力强,对电缆要求低,有利于传输和远程测量的特点。
因此,可获得非常理想的测量效果。
1 振弦式传感器的工作原理振弦式传感器由定位支座、线圈、振弦及封装组成。
振弦式传感器可等效成一个两端固定绷紧的均匀弦,如图1所示。
振弦的振动频率可由以下公式确定:其中S为振弦的横截面积,ρv为弦的体密度(ρv=ρ/s),△l为振弦受张力后的长度增量,E为振弦的弹性模量,σ为振弦所受的应力。
当振弦式传感器确定以后,其振弦的质量m,工作段(即两固定点之间)的长度L,弦的横截面积S,体密度ρv及弹性模量E随之确定,所以,由于待测物理量的作用使得弦长有所变化,而弦长的变化可改变弦的固有振动频率,由于弦长的增量△l与振弦的最长驻波波长的固有频率存在确定的关系,因此只要能测得弦的振动频率就可以测得待测物理量。
2 测频系统的设计2.1 基本原理振弦式传感器工作时由激振电路驱动电磁线圈,当信号的频率和振弦的固有频率相接近时,振弦迅速达到共振状态,振动产生的感应电动势通过检测电路滤波、放大、整形送给单片机,单片机根据接收的信号,通过软件方式反馈给激振电路驱动电磁线圈。
通过反馈,弦能在电磁线圈产生的变化磁场驱动下在本振频率点振动。
当激振信号撤去后,弦由于惯性作用仍然振动。
单片机通过测量感应电动势脉冲周期,即可测得弦的振动频率,最后将所测数据显示出来。
测频原理框图如图2所示。
2.2 系统硬件电路设计根据以上的基本原理和思想,设计的测频系统的整体电路如图3所示。
主要由激振电路、检测电路、单片机控制电路和显示电路等几部分组成。
工作过程是由单片机产生某一频率的激振信号,经放大后激励振弦振动,拾振线圈中产生的感应电动势经几级放大后送给单片机处理,最后送显示电路显示。
2.2.1 激振电路激振电路采用扫频激振技术,就是用一个频率可以调节的信号去激励振弦式传感器的激振线圈,当信号的频率和振弦的固有频率相接近时,振弦能迅速达到共振状态。
振弦式传感器在长期监测中的应用

较差
较好 好 较好 起 惹 成变 、力 导线, 柯澎响 好
最
五、 结束语
试验中采用的振弦传感器进行应变数据采 集, 试验 结果表 明, 该设
备稳 定性能好 , 数据稳定 可靠 , 漂移小 , 能满足长期监测的需要 。 参考文献: 【】 1 张心斌 振 弦式应 变传感 器特性研究 , 传感器世界 【】 2 邢铁 雷 振 弦式应 变传感 器在混凝 土应 力测试 中的精度试验 研
较好的选择 。
原理 反射 被 K变化 振动 颧枣变 化 电5 蹙化 f l
ቤተ መጻሕፍቲ ባይዱ
温度补偿: 了尽量减少环境温度变化对应变 测量精 度的影 响, 为 采 用设立多处温度监测 点影 响。事前 实验 测定温 度对于钢材料 与传 感器
之间的影响。
减 少电磁干扰措施: 了减少现场 电磁场 的干扰 , 为 所有 导线选用屏 蔽电缆导线, 仪器 正确接地 。为了保证测试数据稳定应变采集系统和电
一
、
引言
目前应力应变测量有直接法和 间接法两种 ,直接法是指利 用应力 传感器直接感知混凝 土内部 的应力 的一种测 量方法 ,间接法是 指首先
利用各种应变传感器测量出混 凝土的内部应 变,再通过一 定的换算方
定分析 。 整个 模型共划分 678 24 个单元, 其中杆单元 (II)48 , LN8 12 个 梁 (
・ 专题研究 一其它
振弦式传感器在长期监测中的应用
华南理工大学土木 与交通学 院 张汉平 王涛
摘 要: 主要介绍 了 弦传感器的特性与在长期应力应变测试的应 用工程 实例。 振
关键 词: 振弦传感器 应 力应 变测试 月, 中途遇多次台风与暴雨天气, 温差高达 l ℃。 O ( 理论计算 一) 用 AsS N Y 有限元分析软件对移动模架 空问实体结构进行 静力及稳
振弦式传感器解析PPT课件

8.2.1 工作原理 8.2.2 激振装置 8.2.3 振弦传感器的误差 8.2.4 振弦式传感器应用
返回
下一页
2020年9月28日
2
概述
✓ 振弦式传感器具有良好的测量特性,它可以做到小于0.1% 的非线性特性,0.05%的灵敏度和小于0.01%/℃的温度误差。
✓ 此外,传感器的结构和测量电路都比较简单。 ✓ 广泛应用于精密的压力、力、扭矩等测量中。
返回
上一页
下一页
2020年9月28日
12
✓ 从式(8.2.10),取f对ε的微分,则得
df 1 E E d 4l E 8l2f
(8.2.11)
✓ 式(8.2.11)为振弦的应变灵敏度表达式。
返回
上一页
下一页
2020年9月28日
13
88..23..22 激扭振矩装测置量原理
✓ 振弦振动有强迫振动、自由振动和自激振动三种方式。 ✓ 图8.2.2给出了振弦传感器在自激振动状态下的两种激励方
✓ 此时,振弦所感受的力为: FBlei。
✓ 它可以分为两部分:一部分Fc用来克服弦的质量m的惯性, 使它获得运动速度v;另一部分FL用来克服振弦作为一个 横向弹性元件的弹性力。
返回
上一页
下一页
2020年9月28日
7
✓ 据此,可以写出
Fc
Belic
md
dt
(8.2.1)
Bleicdt m
(8.2.2)
2020年9月28日
15
✓ 振弦的等效LC谐振回路作为整个振荡电路中的正反馈网 络,由于振弦对于它的固有振动频率有着非常尖锐的阻 抗特性,电路只在其信号频率等于振弦的固有振动频率 时才能达到振荡条件。
浅谈振弦式传感器在大坝安全监测中的优势与应用

浅谈振弦式传感器在大坝安全监测中的优势与应用摘要:振弦式传感器由于其工作原理简单、精度和稳定性高及抗干扰力强,在大坝安全监测中已经被广泛应用。
本文介绍了振弦式传感器的工作原理、在大坝安全监测中的优势以及在应力/应变、变形、渗流和温度等大坝安全监测项目中的应用。
关键词:大坝安全监测监测仪器振弦式传感器振弦应用大坝安全监测是指:水库大坝从施工开始到工程结束投入使用的全部过程,都需要对建筑物安全性能和运行状态进行安全监测。
大坝安全监测中最基础、最主要的就是监测仪器,对建筑物安全性能和运行状态的了解和分析,主要依靠各种监测仪器提供的测量数据。
振弦式传感器就是众多监测仪器中的一种,从20世纪30年代发明至今,随着电子读数仪技术、材料和生产工艺的发展,振弦式传感器已成为一种性能十分完善且能满足大坝安全监测应用要求的监测仪器。
1 振弦式传感器工作原理的介绍1.1振弦式传感器的构造振弦式传感器由受力弹性形变外壳(或膜片)、钢弦、紧固夹头、激振和接收线圈等组成。
而钢弦就是振弦式传感器的振弦。
(如图l所示)1.2振弦式传感器的工作原理振弦式传感器的工作原理就是测量张紧钢弦的频率变化来测量钢弦应力的物理量。
1.2.1频率(周期)与变形(应变)之间的关系振弦的固有频率(共振频率)与应力,长度和质量有关,公式如下:由于钢弦的质量m、钢弦长度Lw、截面积S、弹性模量E可视为常数,因此,钢弦的应力F与输出频率f建立了相应的关系:即当外力F0未施加时,则钢弦按初始应力作稳幅振动,输出初频f0;当施加外力F1 (即被测力——拉力或压力)时,则形变壳体(或膜片)发生相应的拉伸或压缩,使钢弦的应力增加或减少,这时频率也随之增加或减少为f1。
因此,只要测得振弦频率值f1,即可得到相应被测的力——拉力或压力值等。
1.2.2振弦式传感器的工作原理现以双线圈连续等幅振动的激振方式,来表述振弦式传感器的工作原理。
如图l所示,工作时开启电源,线圈带电激励钢弦振动,钢弦振动后在磁场中切割磁力线,所产生的感应电势由接收线圈送入放大器放大输出,同时将输出信号的一部分反馈到激励线圈,保持钢弦的振动,这样不断地反馈循环,加上电路的稳幅措施,使钢弦达到电路所保持的等幅、连续的振动,然后输出的与钢弦张力有关的频率信号。
光纤振弦智能传感器

FF型光纤温度传感器 a)调幅型 b)极化面旋转型 c)调相型 1—多模或单模光纤 2—单模光纤 3—极化面旋转 4—检光板5—相位变化 6—参照光
光纤温度传感器
保护管内 为高温光纤 低温光纤
2、光纤压力传感器 利用弹性体的受压变形,将压力信号转换成位移信号, 从而对光强进行调制。因此,只要设计好合理的弹性元件及 结构,就可以实现压力的检测。下图为简单的利用Y形光纤束 的膜片反射型光纤压力传感器。在Y形光纤束前端放臵一感压 膜片,当膜片受压变形时,使光纤束与膜片间的距离发生变 化,从而使输出光强受到调制。
图5-1-2 连续激励方式电路
当电路不振荡时,输出信号为零, 场效应管处于偏压 状态,漏源间电阻较小,负反馈较弱,有利于起振。 振荡 时,输出信号经VD2整流,电容C滤波,R4、R5分压,得到一 个与输出信号幅度成正比的负电压,使场效应管漏源间电阻 增大, 负反馈加强。 输出信号越大,负反馈越强, 更能 达到稳定输出信号幅度的作用。
光纤位移测量的特性如下图所示,前坡区灵敏 度高,用以测量µm级位移;后坡区,Y∝1/X2,用 于较远距离而灵敏度、线性度和精度要求不高的测 量;光峰区位移灵敏度很低而光强度变化的灵敏度 很高。用于表面状态的光学测量。
光的反射原理及输出特性曲线
振弦式频率传感器
一、振弦式频率传感器的结构原理
光发送器 光纤 信号处理 光受信器 敏感元件
非功能型光纤(NF型) 在非功能型(NF)光纤传感器中,光纤仅作传 光通路,被测量通过非光纤敏感元件对光进行调 制,也称传输型。NF型较易实现,成本低,但灵 敏度也低。
光发送器
信号 处理 光受 信器
耦合器 光纤
拾光型光纤
在拾光型(天线型)光纤传感器中,光纤作为探头, 接收由被测对象辐射或被其反射、散射的光,如天线型 位移传感器。拾光型实质上也属NF型。
8.2振弦式传感器

8.2.1 工作原理 8.2.2 激振装置 8.2.3 振弦传感器的误差 8.2.4 振弦式传感器应用
返回
下一页
概述
✓ 振弦式传感器具有良好的测量特性,它可以做到小于0.1% 的非线性特性,0.05%的灵敏度和小于0.01%/℃的温度误差。
✓ 此外,传感器的结构和测量电路都比较简单。 ✓ 广泛应用于精密的压力、力、扭矩等测量中。
✓ 根据以下三式
d
dt
, eBle ,和 FL BeliL
可得
eBed d ltB ked d lF tLB k 2 le2d d itL (8.2.6)
式中,iL为对应于力FL的电流。
返回
上一页
下一页
✓ 由式(8.2.6)可以看出,振弦的弹簧作用相当于电路中
的电感,其等效电感为
L B 2le2 k
返回
上一页
下一页
返回
图8.2.1 振弦式传感器工作原理 (a) 结构示意 (b)电路原理图
上一页
下一页
✓ 振弦在电路中可以等效为一个并联的LC回路。
✓ 如图8.2.1(a),一根有效长度为le的振弦在磁感应强 度为B的磁场中振动时,振弦上有感应电动势e产生和电 路i流过。
✓ 此时,振弦所感受的力为: FBlei。
图8.2.2 振弦传感器的自激振动方式原理图 a) 磁电式变换器 b)电磁式变换器
返回
上一页
下一页
(2)电磁式变换器
✓ 图8.2.2b为电磁式变换器的原理图,其中有两个磁钢和 两个线圈。线圈1激励振弦振动,线圈2拾振并产生感应 电动势。
✓ 图中线圈2检测到的电动势e被送到放大器输入端,经放 大后送到电磁铁线圈1以补充能量。
振弦式传感器的工作原理及其特点

60年代起,先后研制开发了适合各种测试目的的多种振弦传感器的系列产品,如振弦式压力计、土压力计、空隙水压力计、应变计、测力(应力)计、钢筋计、扭力计、位移计、反力计、吊重负荷计、倾斜计等等。
它们广泛应用于港口工程、土木建筑、道路桥梁、矿山冶金、机械船舶、水库大坝、地基基础等测试,已成为工程、科研中一种不可缺少的测试手段,显示出了其广阔应用和发展的前景。
2.工作原理振弦式传感器由受力弹性形变外壳(或膜片)、钢弦、紧固夹头、激振和接收线圈等组成。
钢弦自振频率与张紧力的大小有关,在振弦几何尺寸确定之后,振弦振动频率的变化量,即可表征受力的大小。
现以双线圈连续等幅振动的激振方式,来表述振弦式传感器的工作原理。
如图丨所示,工作时开启电源,线圈带电激励钢弦振动,钢弦振动后在磁场中切割磁力线,所产生的感应电势由接收线圈送入放大器放大输出,同时将输出信号的一部分反馈到激励线圈,保持钢弦的振动,这样不断地反馈循环,加上电路的稳幅措施,使钢弦达到电路所保持的等幅、连续的振动,然后输出的与钢弦张力有关的频率信号。
接收贱圈输止團]掘弦旬割S器工作原理團(连鮭超D振弦这种等幅连续振动的工作状态,符合柔软无阻尼微振动的条件,振弦的振动频率可由下式确疋;L --- 钢弦的有效长度i p 一-钢弦材料密度;(T 0——钢弦上的初始应力。
由于钢弦的质量m长度L、截面积S、弹性模量E可视为常数,因此,钢弦的应力与输出频率f 0 建立了相应的关系。
当外力F未施加时,则钢弦按初始应力作稳幅振动,输出初频 f 0 ;当施加外力(即被测力——应力或压力)时,则形变壳体(或膜片)发生相应的拉伸或压缩,使钢弦的应力增加或减少,这时初频也随之增加或减少。
因此,只要测得振弦频率值f,即可得到相应被测的受力壳体钢弦式中,f 0初始频率;力——应力或压力值等。
3.振弦的激振方式振弦式传感器的振弦是钢弦,通过激振产生振动。
振弦激振的方式分为间歇触发激振和等幅连续激振。
振弦式传感器的工作原理及其特点

振弦式传感器的工作原理及其特点1. 概述振弦式传感器是目前国内外普遍重视和广泛应用的一种非电量电测的传感器。
由于振弦传感器直接输出振弦的自振频率信号,因此,具有抗干扰能力强、受电参数影响小、零点飘移小、受温度影响小、性能稳定可靠、耐震动、寿命长等特点。
与工程、科研中普遍应用的电阻应变计相比,有着突出的优越性:(1)振弦传感器有着独特的机械结构形式并以振弦频率的变化量来表征受力的大小,因此具有长期零点稳定的性能,这是电阻应变计所无法比拟的。
在长期、静态测试传感器的选择中,振弦传感器已成为取代电阻应变计、而广泛应用于工程、科研的长期原观的测试手段。
(2)随着电子、微机技术的发展,从实现测试微机化、智能化的先进测试要求来看,由于振弦传感器能直接以频率信号输出,因此,较电阻应变计模拟量输出能更为简单方便地进行数据采集、传输、处理和存储,实现高精度的自动测试。
为此,振弦传感器得到了迅速的发展和应用。
在国外,德国的MAlHAK、法国的TELEMAL、美国的SINCO和FOXBORO、英国的SCHLUBERGER及挪威等多家公司,都有振弦传感器的系列产品。
国内从60年代起,先后研制开发了适合各种测试目的的多种振弦传感器的系列产品,如振弦式压力计、土压力计、空隙水压力计、应变计、测力(应力)计、钢筋计、扭力计、位移计、反力计、吊重负荷计、倾斜计等等。
它们广泛应用于港口工程、土木建筑、道路桥梁、矿山冶金、机械船舶、水库大坝、地基基础等测试,已成为工程、科研中一种不可缺少的测试手段,显示出了其广阔应用和发展的前景。
2. 工作原理振弦式传感器由受力弹性形变外壳(或膜片)、钢弦、紧固夹头、激振和接收线圈等组成。
钢弦自振频率与张紧力的大小有关,在振弦几何尺寸确定之后,振弦振动频率的变化量,即可表征受力的大小。
现以双线圈连续等幅振动的激振方式,来表述振弦式传感器的工作原理。
如图l所示,工作时开启电源,线圈带电激励钢弦振动,钢弦振动后在磁场中切割磁力线,所产生的感应电势由接收线圈送入放大器放大输出,同时将输出信号的一部分反馈到激励线圈,保持钢弦的振动,这样不断地反馈循环,加上电路的稳幅措施,使钢弦达到电路所保持的等幅、连续的振动,然后输出的与钢弦张力有关的频率信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弦丝的长度↓,l=12~20mm;弦丝的横截面积↑
2020/9/29
第四章 非电量的电测技术
7
2、非线性
振弦式传感器的输出-输入一般为非线性关系,其输 出-输入特性如下图所示。
为了得到线性的输出,可以选取曲线中近似直线的一段。 也可以用两根振弦构成差动式振弦传感器,通过测量两根 振弦的频率差来表示应力,可以大大地减小传感器的温度 误差和非线性误差。
2020/9/29
第四章 非电量的电测技术
8
3、频率稳定性
f
2
1 4l 2
El
vl
K
f
df f
dE E 3 dl 2 2l
振弦长度l和材料弹性模量E受温度的影响直接影响传 感器的频率稳定性,而两者的影响是相反的。
2020/9/29
第四章 非电量的电测技术
9
三、振弦式传感器的应用
1、振弦式混凝土表面应变计
2020/9/29
第四章 非电量的电测技术
11
2020/9/29
第四章 非电量的电测技术
3
1、间歇激发 当振荡器给出激励脉冲,继电器吸合,电流通过磁铁线
圈,使磁铁吸住振弦。脉冲停止后松开振弦,振弦便自 由振动,在线圈中产生感应电动势经继电器常闭接点输 出。感应电动势的频率即为振弦的固有频率,通过测量 感应电动势的频率即可测量振弦张力的大小。
(三)部件性能对传感器性能的影响
振弦 电磁铁 弦的夹紧件
2020/9/29
第四章 非电量的电测技术
6
二、传感器的特性分析
1、灵敏度
1 El f=
2l vl
2 fdf Kd
f
2
1 4l 2
El
vl
K
k df K
d 2 f
K 1 E
4l 2 v
l
l
灵敏度k与材料系数K成正比而与弦的振动频率成反 比。
振频率成单值函数关系。
磁钢和线圈
i
f 1 F 2 ml
1 El
f= 2l
vl
对已定传感器:
活动支点
支点 弦
f (F)
l
f F
2020/9/29
第四章 非电量的电测技术
2
(二)弦的激发方式
要测量振弦振动频率,必须先激发振弦起振,给弦 以足够的激励力。
振弦的激振方式: 1. 间歇激发 2. 连续发4.8 振弦式传感器
弦乐器和乐鼓改变弦的粗细和长度,或改变鼓皮 的张紧度和厚度,就可改变它们的发声频率。
2020/9/29
第四章 非电量的电测技术
1
一、工作原理和测量电路 (一)工作原理
顾名思义,传感器的敏感元件是一根张紧的金属丝,
称为振弦。在电激励下,振弦按其固有频率振动。改变
振弦的张力F,可以得到不同的振动频率f,即张力与谐
运用:测量混凝土表面的应变, 主要设计用于安装到混凝土结 构上,如:混凝土结构、桩;梁; 桥;锚筋;隧洞衬砌;吊索。 在混凝土结构上以及使用区间 有限的部位仅需一个小截面即 可安装。
2020/9/29
第四章 非电量的电测技术
10
2、振弦式沉降仪
运用:用于测量和控制纵 向运动,水坝和河堤沉降; 建筑地基和储油罐的沉降 和隆起;海填埋的施工控 制;桥墩和桥拱座的沉降; 掩埋场的监测;
2020/9/29
第四章 非电量的电测技术
4
2、连续激发
连续激振使用了两个电磁线圈,一个用于连续激励, 另一个用于接收振弦的振荡信号。当振弦被激励后, 接收线圈2接受感应电势,经放大后,正反馈给激励 线圈1以维持振弦的连续振荡。
A1
电磁铁1
i
电磁铁2
F
2020/9/29
第四章 非电量的电测技术
5