激光调腔与纵横模分析

激光调腔与纵横模分析
激光调腔与纵横模分析

实验4:激光调腔与纵横模分析

周震亚

华中科技大学物理学院 应用物理1101班 U201110249

摘要:光学谐振腔 氦氖激光器模式分析

实验内容:

1.了解激光原理、光学谐振腔的结构。

2.掌握谐振腔的模式稳定原则,并学会用其设计一个稳定的激光谐振腔。

3.掌握激光模式分析的基本方法,加深对其物理概念的理解。

4.了解共焦球面打描干涉仪的工作原理、性能。

实验原理:

1.激光原理与光学谐振腔

一个激光器应包括光放大器和光谐振腔两部分,对于光腔的作用,至少应该归结为两点:模式选择和提供轴向光波模的反馈。在本实验中的光放大器为氦-氖激光管。

2.模式稳定原则

在激活物质两端恰当的放置两个反射镜片,就构成一个最简单的光学谐振腔。光学谐振腔的分类大致为:闭腔、开腔(稳定腔、非稳腔、临界腔)和气体波导腔。本实验中采用的是一种开放式的共轴球面稳定腔,由两块具有公共轴线的球面镜构成。对于球面镜腔的稳定条件,可由几何光学理论来讨论,运用矩阵乘法法则,并将矩阵元用参数g 1和g2表示,其中

2

1111 ,1R L g R L g -=-= (8) 得到球面镜腔的稳定条件:1021<

上式即为共轴球面腔的模式稳定原则。式中,当凹面镜向着腔内时,R 取正值,而当凸面镜向着腔内时,R 取负值。通常来说,21g g 的值越接近1表示介质的利用率越高,越接近0表示越难以调整出光,在设计选择时应注意综合考虑。

3.He-Ne 气体激光器的模式分析

形成持续振荡的条件是,光在谐振腔中往返一周的光程差应是波长的整数倍,即

q q nL λ=2 (9)

这正是光波相干极大条件,满足此条件的光将获得极大增强,其它则相互抵消。式中,n 是折射率,对气体n ≈1,L 是腔长,q 是正整数,每一个q 值对应一种

纵向稳定的电磁场分布的波长q λ,称为一个纵模,q 称作纵模序数,q 是一个很大的数,通常我们不需要知道它的数值,而关心的是有几个不同的q 值,即激光器有几个不同的纵模。从式(9)中,我们还看出这也是驻波形成的条件,腔内的纵模是以驻波形成存在的,q 值反映的恰是驻波波腹的数目,纵模的频率为,

L

c q

q 2=ν (10) 同样,一般我们不去计算它,而关心的是相邻两个纵模的频率间隔,

L

c q 21=?=?ν 可看出,相邻纵模频率间隔和腔长成反比,腔越长,纵ν?越小,满足振荡

条件的纵模个数越多;腔越短,纵ν?越大,在同样增宽曲线范围内,纵模个数

就越少,因而可用缩短腔长的办法获得单纵模运行激光器的方法之一。

4.共焦球面扫描干涉仪

共焦球面扫描干涉仪是一个无源谱振腔,由两块球形凹面反射镜构成共焦腔,即两块镜的曲率半径和腔长相等,l R R ==21。反射镜镀有高反射膜。两块镜中的一块是固定不变的,另一块固定在可随外加电压而变化的压电陶瓷环上,如图7,图中1为由低膨胀系数制成的间隔圈,用以保持两球形凹面反射镜R 1和R 2总是处在共焦状态;2为压电陶瓷环,其特性是若在环的内外壁上加一定数值的电压,环的长度将随之发生变化,而且长度的变化量与外加电压的幅度成线性关系,这正是扫描干涉仪被用来扫描的基本条件,由于长度的变化量很小,仅为波长数量级,它不足以改变腔的共焦状态,但是当线性关系不好时,会给测量带来一定的误差。

(1)自由光谱范围

所谓自由光谱范围(S.R.)是指扫描干涉仪所能扫出的不重序的最大波长差或频率差,用..R S λ?或者..R S ν?表示。经推导,可得 l l a a d 42

λλ=-

由于d λ与a λ间相差很小,可共用λ近似表示

l R S 42..λλ=?

用频率表示,即为 l c R S 4..=?ν

(2)精细常数

精细常数F 是用来表征扫描干涉仪分辨本领高低的参数,定义是:自由光谱

范围与最小分辨率限宽度之比,即在自由光谱范围内能分辨的最多的谱线数目,根据精细常数定义

δλλ.

.R S F ?=

(19)

其中δλ就是干涉仪所能分辨出的最小波长差,我们用仪器测出的一个模的宽度△λ代替,从展开的频谱图中我们可以测定出F 值的大小,精细常数的理论公式为

R R

F -=1π

(20)

R 为凹面镜的反射率,从式(20)看,F 只与镜片的反射率有关,实际上还与共焦腔的调整精度、镜片加工精度、干涉仪的入射和出射光孔的大小及使用时的准直精度等因素有关。其实际值应由实验来确定。

实验仪器:

He-Ne 气体激光器的模式分析实验装置:

共焦球面扫描干涉仪

主要性能指标

1、反射镜(膜):多层介质高反射膜;反射中心波长:632.8nm

2、自由光谱区:2.5GHz (适用于氦氖)

3、精细常数:﹥100

4、振子:锆钛酸铅压电陶瓷

5、光电接收器:PIN光电接收器(含放大器)

6、仪器工作条件:环境温度较稳定,无剧烈变化,相对湿度在85%以下。

具体实验:

设计一个氦氖激光器谐振腔,并调整使其输出激光

一.按照实验讲义的装置图连接好实验的仪器。注意不要讲激光管的电源正负极接反,并且做实验的时候不要碰触接头。

二.首先,为了便于调节,先用肉眼粗略的将激光器的位置调节水平,然后将全反镜与半反镜粗略的放置与激光器垂直,下面开始精细的调节。

三.接通电源。先调节输出镜处的光路。首先透过输出镜,调节输出镜可以看到一个亮点。然后透过一个带有十字架的遮光板,可以看到在原来的亮点中还有一个小的更亮的点。这时,用台灯照亮十字架,可以看见视野中有一个十字架,这时,调节输出镜,将小的亮点与十字架的中心调节至重合。

四.重复上一步的做法,调节全反镜。

五.不停的重复调节全反镜和输出镜,使其与激光管三者完全在一条线上,这时,微微的调节全反镜与输出镜,看到视野中的白点微微发红时,就不要用眼睛观察,此时,细微的调节全反镜和输出镜,直到出现激光,此时调节成功。

激光模式分析

1.由于之前中调节出的激光强度太弱,不便于作模式分析,改用实验室提供的腔长为460mm的激光器。使被测激光束输入干涉仪的中心,细调干涉仪的方位螺丝,使反射光点能回到激光器输出镜上光的输出点,然后打开锯齿波的电源和示波器待测电源开关,进一步细调干涉仪支架上的两个方位调节旋钮,使谱线尽量强,噪声最小。

2.调节示波器的参数,使屏幕上显示若干个干涉序的波形,同时把波形保存在U 盘里。

3.选择一个合适的波形,对示波器的x轴进行定标,由此计算纵模间隔和精细常数等。

数据分析:

用示波器观察激光透过干涉仪的激光模式频谱。波形图如下:

我组测出的数据为

ΔXs.R.=20.5ms

ΔX=2.9ms

δx=1.1ms

示波器上单位x 轴长度代表的频率

..R S ν?/Δx=(2.5E9)/20.5=1.2195E8

Δx 测量=(1.2195E8)*2.9=3.5266E8

Δx 理论=c/(2L)=(3.0E8)/(2*0.46)Hz=3.2609*10^8Hz

相对误差:(Δx 测量 -Δx 理论)/Δx 理论=8.15%

从波形中估测半波宽度

δx=1.1

Δν=δx*(..R S ν?/Δx)=1.3414E8Hz

共焦球面干涉仪的精细常数

δνν/..R S F ?==(2.5E9)/(1.3414E8)=18.6

仪器给出的精细常数大于100,可见实验的误差还是很大的,这个实验对环境以及操作还有仪器的要求比较大,稍微有一点不完美的地方就可能会导致很大的实验误差。

总结:

本实验个人认为是这次实验里面最难做的一个实验,主要就是实验的操作是在是很有难度,在调激光的过程中,每次都是自己看似调节的已经很完美了,可是就是不出来激光,还需要很细致的调节,这对自己的耐心有很大的考验,最终,在老师的帮助下我们终于调节出激光了,还是很有成就感的。在做第二个实验的时候,由于自己调节的激光实在是太弱了,所以在实验的初期对实验的影响还是很大的,

最后换用实验室提供的就好多了。最后感谢老师的帮助以及组员的协作。

参考文献:

华中科技大学物理学院实验教学中心,近代物理实验Ⅱ实验讲义,2014.4

实验一 半导体激光器P-I特性曲线测量

实验一半导体激光器P-I特性曲线测量 一、实验目的: 1.了解半导体光源和光电探测器的物理基础; 2.了解发光二极管(LED)和半导体激光二极管(LD)的发光原理和相关特性; 3.了解PIN光电二极管和雪崩光电二极管(APD)的工作原理和相关特性; 4.掌握有源光电子器件特性参数的测量方法; 二、实验原理: 光纤通信中的有源光电子器件主要涉及光的发送和接收,发光二极管(LED)和半导体激光二极管(LD)是最重要的光发送器件,PIN光电二极管和APD光电二极管则是最重要的光接收器件。 1.发光二极管(LED)和半导体激光二极管(LD): LED是一种直接注入电流的电致发光器件,其半导体晶体内部受激电子从高能级回复到低能级时发射出光子,属自发辐射跃迁。LED为非相干光源,具有较宽的谱宽(30~60nm)和较大的发射角(≈100°),常用于低速、短距离光波系统。 LD通过受激辐射发光,是一种阈值器件。LD不仅能产生高功率(≥10mW)辐射,而且输出光发散角窄,与单模光纤的耦合效率高(约30%—50%),辐射光谱线窄(Δλ=0.1-1.0nm),适用于高比特工作,载流子复合寿命短,能进行高速(>20GHz)直接调制,非常适合于作高速长距离光纤通信系统的光源。 使粒子数反转从而产生光增益是激光器稳定工作的必要条件,对于处于泵浦条件下的原子系统,当满足粒子数反转条件时将会产生占优势的(超过受激吸收)受激辐射。在半导体激光器中,这个条件是通过向P型和N型限制层重掺杂使费密能级间隔在PN结正向偏置下超过带隙实现的。当有源层载流子浓度超过一定值(称为透明值),就实现了粒子数反转,由此在有源区产生了光增益,在半导体内传播的输入信号将得到放大。如果将增益介质放入光学谐振腔中提供反馈,就可以得到稳定的激光输出。 (1) LED和LD的P-I特性与发光效率: 图1是LED和LD的P-I特性曲线。LED是自发辐射光,所以P-I曲线的线性范围较大。 LD有一阈值电流I th ,当I>I th 时才发出激光。在I th 以上,光功率P随I线性增加。 图1:LD和LED的P-I特性曲线 (a) LD的P-I特性曲线 (b) LED的P-I特性曲线

激光光束分析实验报告讲解

激光光束分析实验报告 引言 1960年,世界上第一台激光器诞生。激光作为一种相干光源,以其高亮度、高准直性、高单色性的优点,一直在各种生产和研究领域发挥着重要的作用。 虽然激光具有上述优点,然而严格地说,激光并不是平面光束,而是一种满足旁轴近似的旁轴波。由稳定谐振腔发出的激光束大多为高斯光束,其主要参数为光束宽度、光束发散角和光束传播因子。由于这几个参数不同,不同激光束的质量也就有了差别,因此就需要制定评价光束质量的普适方法。常用来评价光束 质量的因子有:衍射极限倍数因子、斯特列耳比、环围能量比、因子和因子的倒数K因子(通常称为光束传播因子)。其中因子为国际ISO组织推荐的评价标准,也是我们在实验中采用的评价标准。 因子的定义为: 其中为实际光束束腰宽度,为实际光束远场发散角。 采用因子时,作为光束质量比较标准的是理想高斯光束。基模(模) 高斯光束有最好的光束质量,其,可以证明对于一般的激光光束有 。因子越大,实际光束偏离理想高斯光束越远,光束品质越差。当 高斯光束通过无像差、衍射效应可忽略的透镜、望远镜系统聚焦或扩束镜时,虽然光腰尺寸或远场发散角会发生变化,但光束宽度和发散角之积不变,是几何光学中的拉格朗日守恒量。 实验原理

如图选定坐标系。设光束的束腰位置为,束腰直径为,远场发散角为。为了简化问题,假设光束关于束腰对称,则可求出传播轴上任一垂直面上的 光束直径。光束传播方程的一级近似为: 光束的因子为: 其中n为传播介质折射率,为光束波长。对于束腰宽度和远场发散角, 可用如下方法测得。 本实验中,我们采用的CCD能够测量在柱坐标系中传播轴上任一垂直面上的光束能量密度函数。由于能量密度函数关于传播轴中心对称,故在分布函数中没有自变量。对于高斯光束,可以证明: 其中: 因此只要测出能量密度函数就可以求出传播轴上任一垂直面上的光束直径。 有了测量光束直径的方法后,分别在轴向位置处测量能量密度 函数,求出光束直径和,之后将其代入光束传播的一级近似方程

专业实验 实验四 氦氖多谱线激光器实验讲义

多谱线氦氖激光器 实验 实验讲义 大恒新纪元科技股份有限公司 版权所有不得翻印 多谱线氦氖激光器

在增益管长为1m的外腔式He-Ne激光器中,用腔内插入色散棱镜选择谱线的方法,在可见光区分别使氖原子的九条谱线产生激光振荡。实验要求掌握He-Ne多谱线激光线器的工作原理及腔型结构的特点;学习外腔式激光器及腔内带棱镜激光器的调节方法;测量各条激光谱线的波长;找出各条谱线的最佳放电电流及测量最大输出功率。 一、实验原理 一台激光器除激励电流外主要由两部分组成,一是增益介质;二是谐振腔。对He-Ne激光器而言增益介质就是在两端封有布儒斯特窗的毛细管内按一定的气压充以适当比例的氦氖气体,当氦氖混合气体被电流激励时,与某些谱线对应的上下能级的粒子数发生反转,使介质具有增益。介质增益与毛细管长度、内径粗细、两种气体的比例、总气压以及放电电流等因素有关。对谐振腔而言腔长要满足频率的驻波条件,谐振腔镜的曲率半径要满足腔的稳定条件。总之腔的损耗必须小于介质的增益,才能建立激光振荡。由于介质的增益具有饱和特性,增益随激光强度增加而减小。初始建立激光振荡时增益大于损耗,随着激光的增强而增益逐渐减小直到增益等于损耗时才有持续稳定的振荡。稳定振荡时的增益叫阈值增益,初始的增益叫小信号增益。小信号增益与阈值增益之差越大,腔内的激光强度越强,对小信号增益很低的激光谱线是否能获得激光振荡,关键在于谐振腔的损耗能降低到什么程度。 1、在可见光区激光谱线的小信号增益系数 在氦氖混合气体的增益管中氖原子的3S2能级对2P i(2P i是2P1,2P2,…,2P8,2P10九个能级的简称,3S2-2P9的跃迁是违禁的)九个能级之间能够产生粒子数反转,使介质具有增益,九条谱线的小信号增益系数G0如表1所示。 测量时各谱线的放电电流值不相同;表中相对增益系数是用用光谱相对强度研究氦氖放电管的增益特性的装置测得的,各谱线的放电电流相同。 表1 He-Ne 3S2-2P i谱线的小信号增益系数

半导体激光器pi特性测试实验

太原理工大学现代科技学院 课程实验报告 专业班级 学号 姓名 指导教师

实验名称 半导体激光器P-I 特性测试实验 同组人 专业班级 学号 姓名 成绩 一、 实验目的 1. 学习半导体激光器发光原理和光纤通信中激光光源工作原理 2. 了解半导体激光器平均输出光功率与注入驱动电流的关系 3. 掌握半导体激光器P (平均发送光功率)-I (注入电流)曲线的测试方法 二、 实验仪器 1. ZY12OFCom13BG 型光纤通信原理实验箱 1台 2. 光功率计 1台 3. FC/PC-FC/PC 单模光跳线 1根 4. 万用表 1台 5. 连接导线 20根 三、 实验原理 半导体激光二极管(LD )或简称半导体激光器,它通过受激辐射发光,(处于高能级E 2的电子在光场的感应下发射一个和感应光子一模一样的光子,而跃迁到低能级E 1,这个过程称为光的受激辐射。所谓一模一样,是指发射光子和感应光子不仅频率相同,而且相位、偏振方向和传播方向都相同,它和感应光子是相干的。)是一种阈值器件。由于受激辐射与自发辐射的本质不同,导致了半导体激光器不仅能产生高功率(≥10mW )辐射,而且输出光发散角窄(垂直发散角为30~50°,水平发散角为0~30°),与单模光纤的耦合效率高(约30%~50%),辐射光谱线窄(Δλ=0.1~1.0nm ),适用于高比特工作,载流子复合寿命短,能进行高速信号(>20GHz )直接调制,非常适合于作高速长距离光纤通信系统的光源。 P-I 特性是选择半导体激光器的重要依据。在选择时,应选阈值电流I th 尽可能小,I th 对应P 值小,而且没有扭折点的半导体激光器,这样的激光器工作电流小,工作稳定性高,消光比(测试方法见实验四)大, ……………………………………装………………………………………订…………………………………………线………………………………………

氦氖激光器的调腔实验

氦氖激光器的调腔实验 (北京师范大学物理系) 摘要:本实验分别通过准直法和十字叉丝法来调节谐振腔两端腔镜的位置,使得两个腔镜平行且和毛细管垂直,发射激光,并通过统调法获得最强激光。 理论: 激光器由激励电流、增益介质和谐振腔组成,如图1。对He-Ne激光器而言增益介质就是在两端封有布儒斯特窗的毛细管内按一定的气压充以适当比例的氦氖气体,当氦氖混合气体被电流激励时,与某些谱线对应的上下能级的粒子数发生反转,使介质具有增益。 介质增益与毛细管长度、内径粗细、两种气体的比例、总气压以及放电电流等因素有关。对谐振腔而言腔长要满足频率的驻波条件,谐振腔镜的曲率半径要满足腔的稳定条件。总之腔的损耗必须小于介质的增益,才能建立激光振荡。由于介质的增益具有饱和特性,增益随激光强度增加而减小。初始建立激光振荡时增益大于损耗,随着激光的增强而增益逐渐减小直到增益等于损耗时才有持续稳定的振荡。 图1 激光器原理图 实验内容: 1.清洗镜头 在清洗镜头时候可以通过腔镜的具体情况选择合适的清洗方法,首先应用洗耳球吹去镜头上的灰尘等颗粒物,对于软膜我们采用拖曳的方法,首先将镜头放置在水平的桌面上,取一张镜头纸并将光滑一面放置在镜头上,并且在此之前确保不会用手去接触光滑面,在擦镜纸上接触镜头的部位滴一到两滴丙酮试剂,轻轻拖曳擦镜纸的一端直到整张擦镜纸擦过镜头。

图2 软膜清洗法 对于硬膜,洗耳球吹去镜头上的灰尘等颗粒物之后,将镜头着对折,如图,用止血钳夹住擦镜纸,露出一段,在露出一端上滴一到两滴丙酮,轻甩之后擦 拭镜头,擦拭的过程保证擦拭方向永远朝着一个方向,不来回擦拭。 图3 硬膜清洗法 2.准直法调腔 用具:He-Ne激光器、准直激光器、贴有白纸的立板。 步骤: (1)通过上述方法清洗完镜头和布儒斯特窗后,打开准直激光器; (2)首先调节准直激光器的上下高度和俯仰角度,使得准直激光器打出来的光与毛细管的中心在同一水平线上; (3)将准直激光器固定在谐振腔一端的前段,将激光穿透整个毛细管,此时可以调节准直激光器的横向位移和左右偏移动,直到穿透的光打在对面的白 纸上呈现同心圆环状; (4)装上阴极反射镜,调整反射镜的左右偏转和俯仰,使反射回的激光与出来的激光重合出现在准直激光器镜头上的正中心; (5)装上阳极反射镜,调整反射镜的左右偏转和俯仰,使反射回的激光出现规则的明暗变化;

光束质量M2因子测试及分析实验报告

实验名称:光束质量M2因子测试及分析 实验目的 1、了解M2因子的概念及M2因子评价光束质量的优越性; 2、掌握M2因子的测量原理及测量方法; 3、掌握测量激光器的腰斑大小和位置的方法。 实验原理 1988 M2 束质量的影响。在二阶矩定义下,利用与量子力学中不确定关系类似的数学证明过程可得 M2≥1,它说明小的束宽和小的发散角二者不可兼得。当M2=1时,激光束为基模高斯光束;当M2>1时,激光束为多模高斯光束。当激光光斑为圆斑时,光束质量因子M2可表示为 式中为光束束腰宽,为光束的远场发散角,A 为激光波长。 根据国际标准组织提供的ISOlll46—1的测量要求设计测试方案。采用多点法测量光束质量因子,就是在激光束的传输方向上测量多个位置处的激光参数。利用曲线拟合的方法求得各激光参数。CCD 通过数据采集卡连接到计算机,二阶矩定义的光束宽度通过编程确定,在计算机上可以读到束宽的大小。对测量结果采用多点双曲线拟法拟

合或抛物线拟合,求出按二阶矩定义束宽的传输方程中3个系数a i、b i;、c i后,就可以计算出相应的光束参数 对于束腰不可直接测量的激光柬(绝大多数激光器产生的激光都是发散的),先要用无像差透镜进行束腰变换。实验测量两台会聚光束He-Ne激光器(一台是基模的,一台是多模的)M2因子和其腰斑的大小与位置、发散角及瑞利长度。根据透镜对高斯光束的变化规律,可以根据以下公式算出和Z0。从而求出激光器腰斑的大小和位置。 实验数据记录及处理 ①基模激光的拟合图像

原始实验数据 Waist Width X 0.538 mm Waist Width Y 0.583 mm Divergence X 3.374 mrad Divergence Y 3.304 mrad Waist Location X 232.03 mm Waist Location Y 233.64 mm M2 X 2.2532 M2 Y 2.3898 Rayleigh Range X 159.47 mm Rayleigh Range Y 176.33 mm Wavelength 632.8 nm Focal Length 100 mm Laser Location 507 mm Z-Position X Width Y Width mm mm mm 106.55 0.2303 0.21891

半导体激光器TEC温控实验

半导体激光器TEC温控实验 温度对半导体激光器的特性有很大的影响.为了使半导体激光器输出功率稳定,必须对其温度进行高精度的控制.TEC-10A利用PID模糊控制网络设计了温控系统,控制精度达到0.0625℃,与无PID控制网络相比,极大的提高了系统的瞬态特性,并且试验发现TEC-10A采用带有温控系统的半导体激光器的输出功率稳定性比没有温控系统的输出功率得到显著改善。 TEC-10A使用上位机软件,获得数据如下: 图1 目标温度设定为60度的加热曲线图 TEC-10A模糊自适应PID 算法比传统PID 算法具有更小的温度过冲和更高的控温精度,精度为±0.0625℃,达到稳定的时间小于70s。 TEC-10A的“模糊控制理论”是由美国加利福尼亚大学教授L.A.Zadeh 于1965 年首先提出的,至今只有40 余年的时间,它属于智能控制的范畴。那么到底什么是模糊控制?其实模糊控制是一种被精确定义的特殊的非线性控制,它利用类似人类的启发式知识对系统进行控制。模糊控制的基本原理框图如下图所示。 图2 模糊算法 首先建立模糊规则 根据上面的输入量的模糊化,确定了误差及误差变化的模糊集合,下面将建立模糊规则。模糊控制规则主要有两种形式:一种是经验归纳法,一种是采用数学的推理合成法。经验归纳法是根据操作者对控制经验的整理、加工而形成的控制规则,虽然具有主观臆断,但其中

必须经过对客观事实的合理归纳而形成。下面的表就是根据经验归纳法总结的模糊控制规则表。 下面是一些简单的一维和二维控制形式: “如果A,那么B”(IfAThen B);例如,如果激光器的温度很高,那么快速降温。“如果A,那么B,否则C”(If A Then B Else C);例如,如果激光器温度很低,那么快速加热,否则缓慢加热。 “如果A 且B,那么C”(If A And B Then C)。例,如果激光器温度很高且温度下降很慢,那么快速加热。 在实际操作中第三种形式较常见,“A”为偏差e,“B”为偏差变化量Ec。 TEC-10A的尺寸也是比较小的,如下图所示: 图3 TEC-10A具有较小尺寸 TEC-10A是一款高功率密度的TEC温度控制器,额定工作负载5A,峰值电流可达10A。此温度控制器可以连接专用调试器来进行参数的调节,参数调节完毕并保存后,撤去调试器,此温度控制器仍可以独立工作。可以通过专用RS232调试线和电脑进行通讯,以进行参数设

基础性实验:趣味光学实验汇总

光学基础性趣味实验 目录 实验1 光与彩虹(人造彩虹) (2) 实验2 人造彩虹2 (3) 实验3 光的折射实例 (5) 实验4 自制放大镜 (6) 实验5 红外线实验的设计 (7) 实验6 多功能小孔成像仪的制作 (8) 实验7 自制针孔眼镜——小孔成像的应用 (9) 实验8 镜子中有无数个镜子 (10) 实验9 日食和月食的演示 (11) 实验10 制作针孔照相机 (12) 实验11 用激光器演示光的直线传播 (13) 实验12 全反射现象观察......................................... 14错误!未定义

实验1 光与彩虹(人造彩虹) 思考:你用什么办法能制作出与空中彩虹颜色一样的彩虹? 实验准备:清水1盆、平面镜1个 实验操作: 1.取一小盆并加入2/3的水,再把镜子斜放于盆内; 2.使镜面对着阳光,在水盆对面的墙上就能看到美丽的彩虹。 实验中的科学:将镜子插入水中时,在对面的墙上就能看到美丽的彩虹。它是光的折射作用,实验表明:白光通过三棱镜后就会分解为红、橙、黄、绿、蓝、靛、紫等七种颜色的光,这就是光的色散。这里镜面左侧的水就好像一个三棱镜,因而光射出水面后就会发生色散,形成彩虹。 创新:想一想,还有什么办法,可以制造出美丽的彩虹?

实验2 人造彩虹2 准备材料:水、一个玻璃杯、一张白纸。 实验步骤: 1.在玻璃杯中装满水,把杯子拿到阳光可以照射到的窗台上;2.把纸放到阳光透过杯子投射进来的地方,这样在纸上就可以看到彩虹的色彩。 实验中的科学: 光线被水折射了,因而投射到纸上的颜色是阳光被分解之后的颜色,原理跟天空中彩虹的形成是一样的。当阳光以40到42度的角度照射空中的水珠时,阳光通过水珠时发生折射,投射到空中形成了彩虹。 知识问答:彩虹为什么总是弯曲的? 想象你看着东边的彩虹,太阳在从背后的西边落下。白色的阳光(彩虹中所有颜色的组合)穿越了大气,向东通过了你的头顶,碰到了从暴风雨落下的水滴。当一道光束碰到了水滴,会有两种可能:一是光可能直接穿透过去,或者更有趣的是,它可能碰到水滴的前缘,在进入时水滴内部产生弯曲,接着从水滴后端反射回来,再从水滴前端离开,往我们这里折射出来。这就是形成彩虹的光。 水滴对光的反射,折射加色散形成彩虹。色散后不同色光出射的方向不同,对一个水滴出射的光我们只有站在特定的观察点上才能看见特定的颜色光,而我们平时是站在固定的观察点上去看空中多个水滴,这样,不同水滴中出射的同一种色光能够到达眼睛,这些水滴

半导体激光器实验报告

半导体激光器实验报告 课程:_____光电子实验_____ 学号: 姓名: 专业:信息工程 南京大学工程管理学院

半导体激光器 一.实验目的 (1)通过实验熟悉半导体激光器的光学特性 (2)掌握半导体激光器耦合、准直等光路的调节 (3)根据半导体激光器的光学特性考察其在光电技术方面的应用 二.实验原理 1.半导体激光器的基本结构 半导体激光器大多数用的是GaAs或Gal-xAlxAs材料。P-n结通常在n 型衬底上生长p型层而形成,在p区和n区都要制作欧姆接触,使激励 电流能够通过,电流使结区附近的有源区产生粒子数反转。 2.半导体激光器的阈值条件 当半导体激光器加正向偏置并导通时,器件不会立刻出现激光震荡,小电流时发射光大都来自自发辐射,随着激励电流的增大,结区大量粒 子数反转,发射更多的光子,当电流超过阈值时,会出现从非受激发射 到受激发射的突变。这是由于激光作用过程的本身具有较高量子效率的 缘故,激光的阈值对应于:由受激发射所增加的激光模光子数(每秒) 正好等于平面散射,吸收激光器的发射所损耗的光子数(每秒)。 3.横模和偏振态 半导体激光器的共振腔具有介质波导的结构,所以在共振腔中传播光以模的形式存在。每个模都由固有的传播常数和横向电场分布,这些 模就构成了激光器中的横模。横模经端面射出后形成辐射场,辐射场的 角分布沿平行于结面方向和垂直于结面方向分别成为侧横场和正横场。 共振腔横向尺寸越小,辐射场发射角越大,由于共振腔平行于结面方向 的宽度大于垂直于结面方向的厚度,所以侧横场小于正横场的发散角。 激光器的GaAs晶面对TE模的反射率大于对TM模的反射率,因而TE模需要的阈值增益低,TE模首先产生受激发射,反过来又抑制了TM 模,另一方面形成半导体激光器共振腔的波导层一般都很薄,这一层越

光学实验报告 (一步彩虹全息)

光学设计性实验报告(一步彩虹全息) 姓名: 学号: 学院:物理学院

一步彩虹全息 摘要彩虹全息是用激光记录全息图, 是用白光再现单色或彩色像的一种全息技术。彩虹全息术的关键之处是在成像光路( 即记录光路) 中加入一狭缝, 这样在干板上也会留下狭缝的像。本文研究了一步彩虹全息图的记录和再现景象的基本原理、一步彩虹全息图与普通全息图的区别和联系、一步彩虹全息的实验光路图,探讨了拍摄一步彩虹全息图的技术要求和注意事项,指出了一步彩虹全息图的制作要点, 得出了影响拍摄效果的佳狭缝宽度、最佳狭缝位置及曝光时间对彩虹全息图再现像的影响。 关键词:一步彩虹全息;狭缝;再现 1 光学实验必须要严密,尽可能地减少实验所产生的误差; 2 实验仪器 防震全息台激光器分束镜成像透镜狭缝干板架光学元件架若干干板备件盒洗像设备一套线绳辅助棒扩束镜2个反射镜2个 3 实验原理 3.1 像面全息图 像面全息图的拍摄是用成像系统使物体成像在全息底板上,在引入一束与之相干的参考光束,即成像面全息图,它可用白光再现。再现象点的位置随波长而变化,其变化量取决于物体到全息平面的距离。 像面全息图的像(或物)位于全息图平面上,再现像也位于全息图上,只是看起来颜色有变化。因此在白光照射下,会因观察角度不同呈现的颜色亦不同。 3.2 彩虹全息的本质 彩虹全息的本质是要在观察者与物体的再现象之间形成一狭缝像,使观察者通过狭缝像来看物体的像,以实现白光再现单色像。若观察者的眼睛在狭缝像附近沿垂直于狭缝的方向移动,将看到颜色按波长顺序变化的再现像。若观察者的眼睛位于狭缝像后方适当位置, 由于狭缝对视场的限制, 通过某一波长所对应的狭缝只能看到再现像的某一条带, 其色彩与该波长对应, 并且狭缝像在空间是连

实验40 用迈克尔逊干涉仪测量氦氖激光器波长

实验40 用迈克尔逊干涉仪测量氦氖激光器波长 一、实验目的 1.了解迈克尔逊干涉仪的结构及调整方法,并用它测光波波长 2.通过实验观察等倾干涉现象 二、实验仪器 氦氖激光器、迈克尔逊干涉仪(250nm)、透镜、毛玻璃等。 迈克尔逊干涉仪外形如图一所示。 其中反射镜M1是固定的,M2可以在导轨上前后移动,以改变光程差。反射镜M2的移动采用蜗轮蜗杆传动系统,转动粗调手轮(2)可以实现粗调。M2移动距离的毫米数可在机体侧面的毫米刻度尺(5)上读得。通过读数窗口,在刻度盘(3)上可读到0.01mm;转动微调手轮(1)可实现微调,微调手轮的分度值为1×10-4mm。可估读到10-5mm。M1、M2背面各有3个螺钉可以用来粗调M1和M2的倾度,倾度的微调是通过调节水平微调(15)和竖直微调螺丝(16)来实现的。 图一图二 三、实验原理 1.仪器基本原理 迈克尔逊干涉仪的光路和结构如图二所示。M1、M2是一对精密磨光的平面反射镜。P1、P2是厚度和折射率都完全相同的一对平行玻璃板,与M1、M2均成45°角。P1的一个表面镀有半反半透膜,使射到其上的光线分为光强度差不多相等的反射光和透射光;P1称为分光板。当光照到P1上时,在半透膜上分成相互垂直的两束光,透射光(1)射到M1,经M1反射后,透过P2,在P1的半透膜上反射后射向E;反射光(2)射到M2,经M2反射后,透过P1射向E。由于光线(2)前后共通过P1三次,而光线(1)只通过P1一次,有了P2,它

们在玻璃中的光程便相等了,于是计算这两束光的光程差时,只需计算两束光在空气中的光程差就可以了,所以P 2称为补偿板。当观察者从E 处向P 1看去时,除直接看到M 2外还看到M 1的像M 1ˊ。于是(1)、(2)两束光如同从M 2与M 1ˊ反射来的,因此迈克尔逊干涉仪中所产生的干涉和M 1′~M 2间“形成”的空气薄膜的干涉等效。 2.干涉条纹的图样 本实验用He-Ne 激光器作为光源(见图三),激光S 射向迈克尔逊干涉仪,点光源经平面镜M 1、M 2反射后,相当于由两个点光源S 1ˊ和S 2ˊ发出的相干光束。S ˊ是S 的等效光源,是经半反射面A 所成的虚像。S 1′是S ′经M 1′所成的虚像。S 2′是S ′经M 2所成的虚像。由图三可知,只要观察屏放在两点光源发出光波的重叠区域内,都能看到干涉现象。如果M 2与M 1′严格平行,且把观察屏放在垂直于S 1′和S 2′的连线上,就能看到一组明暗相间的同心圆干涉环,其圆心位于S 1′S 2′轴线与屏的交点P 0处,从图四可以看出P 0处的光程差ΔL =2d ,屏上其它任意点P ′或P ″的光程差近似为 ?cos 2d L =? (1) 式中?为S 2′射到P ″点的光线与M 2法线之间的夹角。当λ?k d =?cos 2时,为明纹;当 2/)12(cos 2λ?+=?k d 时,为暗纹。 由图四可以看出,以P 0为圆心的圆环是从虚光源发出的倾角相同的光线干涉的结果,因此,称为“等倾干涉条纹”。?=0时光程差最大,即圆心P 0处干涉环级次最高,越向边缘级次越低。当d 增加时,干涉环中心级次将增高,条纹沿半径向外移动,即可看到干涉环从中心“冒”出;反之当d 减小,干涉环向中心“缩”进去。 图三 图四 由明纹条件可知,当干涉环中心为明纹时,ΔL =2d=k λ。此时若移动M 2(改变d),环心处条纹的级次相应改变,当d 每改变λ/2距离,环心就冒出或缩进一条环纹。若M 2移动距离为Δd ,相应冒出或缩进的干涉环条纹数为N ,则有

实验一-半导体激光器系列实验

实验一-半导体激光器系列实验

实验一半导体激光器系列 实验

一、实验设备介绍 2.配套仪器的使用 WGD-6光学多道分析器的使用参考WGD-6光学多道分析器的使用说明书。 3.激光器概述 光电子器件和技术是当今和未来高技术的基础,引起世界各国的极大关注。其中半导体激光器的生产和应用发展特别迅猛,它已经成功地用于光通讯和光学唱片系统;还可以作为红外高分辨率光谱仪光源,用于大气测污和同位素分离等;同时半导体激光器可以成为雷达,测距,全息照相和再现、射击模拟器、红外夜视仪、报警器等的光源。半导体激光器,调频器,放大器集成在一起的集成光路将进一步促进光通 - 1 -

讯,光计算机的发展。 激光器一般包括三个部分: (1)激光工作介质 激光的产生必须选择合适的工作介质,可以是气体、液体、固体或半导体。在这种介质中可以实现粒子数反转,以制造获得激光的必要条件。显然亚稳态能级的存在,对实现粒子数反转是非常有利的。现有工作介质近千种,可产生的激光波长包括从真空紫外到远红外,非常广泛。 (2)激励源 为了使工作介质中出现粒子数反转,必须用一定的方法去激励原子体系,使处于上能级的粒子数增加。一般可以用气体放电的办法来利用具有动能的电子去激发介质原子,称为电激励;也可用脉冲光源来照射工作介质,称为光激励;还有热激励、化学激励等。各种激励方式被形象化地称为泵浦或抽运。为了不断得到激光输出,必须不断地“泵浦”以维持处于上能级的粒子数比下能级多。 (3)谐振腔 有了合适的工作物质和激励源后,可实现粒子数反转,但这样产生的受激辐射强度很弱,无法实际应用。于是人们就想到了用光学谐振腔进行放大。所谓光学谐振腔,实际是在激光器两端,面对面装上两块反射率很高的镜。一块几乎全反射,一块大部分反射、 - 2 -

光纤光学与半导体激光器的电光特性实验

光纤光学与半导体激光器的电光特性实验 上个世纪70年代光纤制造技术和半导体激光器技术取得了突破性的进展。光纤通信具有容量大、频带宽、光纤损耗低、传输距离远、不受电磁场干扰等优点,因此光纤通信已成为现代社会最主要的通信手段之一。半导体激光器是近年来发展最为迅速的一种激光器。由于它的体积小、重量轻、效率高、成本低,已进入了人类社会活动的多个领域。 【实验目的】 1.了解半导体激光器的电光特性和测量阈值电流。 2.了解光纤的结构和分类以及光在光纤中传输的基本规律。 3.掌握光纤数值孔径概念、物理意义及其测量方法。 4.对光纤本身的光学特性进行初步的研究。 【实验仪器】 GX-1000光纤实验仪,导轨,半导体激光器+二维调整,Array三维光纤调整架+光纤夹,光纤,光探头+二维调整架,激光功 率指示计,一维位移架+十二档光探头(选购),专用光纤钳、 光纤刀,示波器,音源等。如右图所示。 1.设备参数: (1)半导体激光器类型:氮化镓,工作电流:0-70mA,激 光功率:0-10mW,输出波长:650nm; (2)总输出电压为3.5-4V,考虑保护电路分压,所以管芯 电压降为2.2V。 (3)光纤损耗率:每千米70%,实验所用光纤长度:200m,计算损耗为93.1%,如激光输出功率为10mW,除去损耗后激光输出的总功率:9.31mW,(计算耦合效率时用到)。 (4)信号源频率可用范围:10KH Z-300KH Z。 2.主机功能 实验主机面板如下图 主机主要由3部分组成:电源模块、发射模块、接收模块。 (1)电源模块主要是为半导体激光器和主机其它模块提供电源。由3部分组成:

①表头:三位半数字表头,用于显示半导体激光器的平均工作电流。该电流可通过表头下的 电位器进行调整。 ②电源开关:220VAC电源开关。 ③电流调节旋钮:半导体激光器的工作电流调整钮。 (2)发射模块主要功能为半导体激光器工作状态和频率参数的控制。内含一频率可调的矩形波发 生器、一个频率固定的矩形波发生器和模拟信号调制电路。 ①功能状态选择钮:用于选择半导体激光器的工作状态。直流档:半导体激光器工作在直流 状态。脉冲频率档:半导体激光器工作在周期脉冲状态下。输出的激光是一系列的光脉冲,且频率可 调。调制档:激光器工作在周期脉冲状态下,但频率固定,脉冲宽度受外部输入的音频信号调制。 ②脉冲频率旋钮:用于调节脉冲信号的频率。 ③输出插座:三芯航空插座。连接半导体激光器。 ④输出波形插座:Q9插座。接示波器,用于观察驱动激光器的波形。 ⑤音频输入插座:3.5mm耳机插座。连接音频信号源——单放机。 ⑥音频输入波形插座:Q9插座。接示波器,可用于观察音频信号波形。 (3)接收模块主要功能为光信号的接受、放大、解调和还原。内含光电二极管偏置驱动、高频放 大、解调、音频功放电路和扬声器等。 ①输入插座:Q9插座。连接光电二极管。用于探测光脉冲信号。 ②波形插座:两个Q9插座。可分别接示波器,观察波形。前一个为解调前的脉冲信号波形, 后一个为解调后的模拟音频信号波形。 ③扬声器开光:用于控制内置扬声器的开和关。在主机后面板上。 : 3. OPT-1A型激光功率指示计是一种数字显示的光功率测量仪器,采用硅光电池作为光传感器,针对650nm波长的激光进行了标定,用于测量该波段的激光功率。如图: (1)前面板 ①表头 :3位半数字表头,用于显示光强的大小。 ②量程选择钮:分为200uW、2mW、20mW、200mW四个标定量程和可调档;测量时尽量采用合适 的量程,如测得的光强为1.732mW,则采用2mW量程。可调档显示的是光强的相对值。 ③调零:调零时应遮断光源,旋动调零旋钮,使显示为零,调零完毕。 (2)后面板 ①电源开关按钮:电源开关(220VAC)。

激光实验报告讲解

激光实验报告 He-Ne 激光器模式分析 一.实验目的与要求 目的:使学生了解激光器模式的形成及特点,加深对其物理概念的理解;通过测 试分析,掌握模式分析的基本方法。对本实验使用的重要分光仪器——共焦球面扫描干涉仪,了解其原理,性能,学会正确使用。 要求:用共焦球面扫描干涉仪测量He-Ne 激光器的相邻纵横模间隔,判别高阶 横模的阶次;观察激光器的频率漂移记跳模现象,了解其影响因素;观察激光器输出的横向光场分布花样,体会谐振腔的调整对它的影响。 二.实验原理 1.激光模式的一般分析 由光学谐振腔理论可以知道,稳定腔的输出频率特性为: L C V mnq η2= [1q (m 2n 1)+++π]cos -1[(1—1 R L )(1—2R L )]1/2 (17) 其中:L —谐振腔长度; R 1、R 2—两球面反射镜的曲率半径; q —纵横序数; m 、n —横模序数; η—腔内介质的折射率。 横模不同(m 、n 不同),对应不同的横向光场分布(垂直于光轴方向),即有不同的光斑花样。但对于复杂的横模,目测则很困难。精确的方法是借助于仪器测量,本实验就是利用共焦扫描干涉仪来分析激光器输出的横模结构。 由(17)式看出,对于同一纵模序数,不同横模之间的频差为: )(12' ':n m L C n m mn ??πηυ?+= cos -1[(1-1R L )(1-2 R L )]1/2 (18) 其中:Δm=m -m ′;Δn=n -n ′。对于相同的横模,不同纵模间的频差为 q L C q q ?ηυ?2':= 其中:Δq=q -q ′,相邻两纵模的频差为

L C q ηυ?2= (19) 由(18)、(19)式看出,稳定球面腔有如图2—1的频谱。 (18)式除以(19)式得 cos )(1'':n m n m mn q ??πν??+=-1[(1-1R L )(1-2 R L )]1/2 (20) 设:q n m mn υ?υ??'':= ; S= π 1 cos -1[(1-)]1)(21R L R L -1/2 Δ表示不同的两横模(比如υ00与υ 10)之间的频差与相邻两纵模之间的频差之 比,于是(20)式可简写作: S n m ? = ?+?)( (21) 只要我们能测出Δ,并通过产品说明书了解到L 、R 1、R 2(这些数据生产厂家常给出),那么就可以由(21)式求出(Δm +Δn )。如果我们选取m=n=0作为基准,那么便可以判断出横模序数m 、n 。例如,我们通过测量和计算求得(Δm +Δn )=2,那么,激光器可能工作于υ00、υ10、υ01、υ11、υ20、υ02。 2. 共焦球面扫描干涉仪的基本工作原理 共焦球面扫描干涉仪由两块镀有高反射率的凹面镜构成,如图2—2。反射镜的曲率半径R 1=R 2=L 。 图 2-2

氦氖激光器实验论文

共焦球面扫描干涉仪调整及高斯光束变换与测量实验 刘岩1, 贾艳1 (1.东北师范大学,吉林长春 130000) 摘要:本文介绍了氦氖激光器的原理及其相关的基本结构,并系统的做了氦氖激光器系列实验中的共焦球面扫描干涉仪调整实验和高斯光束变换与测量实验。 关键词:氦氖激光器;共焦球面扫描;高斯光束;干涉仪 中图分类号:G3 文献标识码:A 引言 虽然在1917年爱因斯坦就预言了受激辐射的存在,但在一般热平衡情况下,物质的受激辐射总是被收激吸收所掩盖,未能在实验中观察到。直到1960年,第一台红宝石激光器才面世,他标志了激光技术的诞生。激光器由光学谐振腔、工作物质、激励系统构成,相对一般光源,激光有良好的方向性,也就是说,光能量在空间的分布高度集中在光的传播方向上,但它也有一定的发散度。在激光的横截面上,光强是以高斯函数型分布的,故称作高斯光束。同时激光还具有单色性好的特点,也就是说,它可以具有非常窄的谱线宽度。受激辐射后经过谐振腔等多种机制的作用和相互干涉,最后形成一个或者多个离散的、稳定的谱线,这些谱线就是激光的模。在激光生产与应用中,如定向、制导、精密测量、焊接、光通讯等,我们常常需要先知道激光器的构造,同时还要了解激光器的各种参数指标。因此,激光原理与技术综合实验是光电专业学生的必修课程。 1 实验原理 1.1氦氖激光器原理与结构 氦氖激光器(简称He-Ne激光器)由光学谐振腔(输出镜与全反镜)、工作物质(密封在玻璃管里的氦气、氖气)、激励系统(激光电源)构成。对He-Ne 激光器而言增益介质就是在毛细管内按一定的气压充以适当比例的氦氖气体,当氦氖混合气体被电流激励时,与某些谱线对应的上下能级的粒子数发生反转,使介质具有增益。介质增益与毛细管长度、内径粗细、两种气体的比例、总气压以及放电电流等因素有关。对谐振腔而言,腔长要满足频率的驻波条件,谐振腔镜的曲率半径要满足腔的稳定条件。总之腔的损耗必须小于介质的增益,才能建立激光振荡。内腔式He-Ne激光器的腔镜封装在激光管两端,而外腔式He-Ne激光器的激光管、输出镜及全反镜是安装在调节支架上的。调节支架能调节输出镜与全反镜之间平行度,使激光器工作时处于输出镜与全反镜相互平行且与放电管垂直的状态。在激光管的阴极、阳极上串接着镇流电阻,防止激光管在放电时出现闪烁现象。氦氖激光器激励系统采用开关电路的直流电源,体积小,份量轻,可靠性高,可长时间运行。 图1 氦氖激光器原理图 1.2 高斯光束的基本性质 众所周知,电磁场运动的普遍规律可用Maxwell方程组来描述。对于稳态传输光频电磁场可以归结为对光现象起主要作用的电矢量所满足的波动方程。在标量场近似条件下,可以简化为赫姆霍兹方程,高斯光束是赫姆霍兹方程在缓变振幅近似下的一个特解,它可以足够好地描述激光光束的性质。使用高斯光束的复参数表示和ABCD定律能够统一而简洁的处理高斯光束在腔内、外的传输变换问题。在缓变振幅近似下求解赫姆霍兹方程,可以得到高斯光束的一般表达式: () 2 2 2() [] 2() 00 , () r z kr i R z A A r z e e z ω ψ ω ω --- =?(1) 式中,A0为振幅常数;ω(z)定义为场振幅减小到最大值的e-1的r值称为腰斑,它是高斯光束光斑半径的最小值;ω(z)、R(z)、Ψ分别表示了高斯光束的光斑半径、等相面曲率半径、相位因子,是描述高斯光束的三个重要参数,其具体表达式分别为:

激光粒度仪实验报告

实验一LS230/VSM+激光粒度仪测定果汁饮料粒度 1实验目的 1.1了解激光粒度仪的基本操作; 1.2了解激光粒度仪测定的基本原理。 2实验原理 激光粒度分析仪的原理是基于激光的散射或衍射,颗粒的大小可直接通过散射角的大小表现出来,小颗粒对激光的散射角大,大颗粒对激光的散射角小,通过对颗粒角向散射光强的测量(不同颗粒散射的叠加),再运用矩阵反演分解角向散射光强即可获得样品的粒度分布。 激光粒度仪原理图如图1所示,来自固体激光器的一束窄光束经扩充系统扩充后,平行地照射在样品池中的被测颗粒群上,由颗粒群产生的衍射光或散射光经会聚透镜会聚后,利用光电探测器进行信号的光电转换,并通过信号放大、A/D 变换、数据采集送到计算机中,通过预先编制的优化程序,即可快速求出颗粒群的尺寸分布。 3实验试剂与仪器 3.1实验样品:果汁饮料。 3.2实验仪器:LS230/VSM+激光粒度仪。 4实验步骤 4.1按照粒度仪、计算机、打印机的顺序将电源打开,并使样品台里充满蒸馏水,开泵,仪器预热10分钟。

4.2进入LS230的操作程序,建立连接,再进行相应的参数设置: 启动Run-run cycle(运行信息) (1)选择measure offset(测量补偿),Alignment(光路校正),measure background(测量空白),loading(加样浓度),Start 1 run(开始测量(2)输入样品的基本信息,并将分析时间设为60秒,点击start(开始)。 如需要测量小于0.4μm以下的颗粒,选择Include PIDS,并将分析时 间改为90秒后,点击start(开始) (3)泵速的设定根据样品的大小来定,一般设在50,颗粒越大,泵速越高,反之亦然。 4.3在测量补偿,光路校正,测量空白的工作通过后,根据软件的提示,加入样品控制好浓度,Obscuratio n应稳定在8-12%:假如选择了PIDS,则要把PIDS 稳定在40-50%,待软件出现ok提示后,点击Done(完成)。 4.4分析结束后,排液,并加水清洗样品台,准备下一次分析。 4.5作平行试验,保存好结果,根据要求打印报告。 4.6退出程序,关电源,样品台里加满水,防止残余颗粒附着在镜片上。 5实验结果与讨论 5.1实验结果 由实验结果显示: 平均粒径:141.7μm

氦氖激光器系列实验

氦氖激光器实验 袁庆勇 081273018 信息工程 一、实验仪器 氦氖激光器、光功率指示仪、硅光电池接收器、狭缝、微动位移台、扫描干涉仪、高速光电接收器及其电源、锯齿波发生器、示波器、氦氖激光器及其电源。 氦氖激光器技术参数: 谐振腔曲率半径 1m ∞ 中心波长 632.8nm 共焦球面扫描干涉仪技术参数: 腔长20mm 凹面反射镜曲率半径20mm 凹面反射镜反射率99% 精细常数>100 自由光谱范围4GHz 二、实验目的 Ⅰ、氦氖激光束光斑大小和发散角 1、掌握测量激光束光斑大小和发散角的方法。 2、深入理解基模激光束横向光场高斯分布的特性及激光束发散角的意义。 Ⅱ、共焦球面扫描干涉仪与氦氖激光束的模式分析 1、了解扫描干涉仪原理,掌握其使用方法。 2、学习观测激光束横模、纵模的实验方法。 三、实验原理 激光束的发散角和横向光斑大小是激光应用中的两个重要参数,激光束虽有方向性好的特点,但它不是理想的平行光,而具有一定大小的发散角。在激光准直和激光干涉测长仪中都需要设置扩束望远镜来减小激光束的发散度。 1、激光束的发散角θ θ为激光束的发散角,()()0=2/2/z z θλπωω=,z 很大 只要我们测得离束腰很远的z 处的光斑大小2 w(z),便可算出激光束发散角。 2、激光束横向光场分布 将光束半径w(z)定义为振幅下降到中心振幅1/e 的点离中心的距离,光束半径w(z)也可定义为光强下将为中心光强e -2倍的点离中心点的距离。 3、光束半径和发散角的测量 束腰处的光斑半径为 由这个值,也可从算出激光束的发散角θ 4、纵模频率差△ν=c/2n 2L ,L 为激光器腔长 5、不同横模之间的频率差 6、自由光谱范围△λ: 7、精细常数F :()F=1-R

光学谐振腔的分类之一

光学谐振腔的分类之一 腔内傍轴光线几何逸出损耗的高低:稳定腔、非稳腔、临界腔。 稳定腔:腔内傍轴光线经过任意多次往返传播而不逸出腔外的谐振腔。 非稳腔:腔内光线经过有限次往返传播后逸出腔外的谐振腔。 临界腔:能够保证截面平行于反射镜面的光束在反射镜间传播不逸出。 什么样几何形状的谐振腔?共轴球面腔的三个参数:腔镜的曲率半径R 1、R 2、腔长 L 需要满足什么样的条件呢? 本节讨论光学谐振腔的稳定性条件。 1.共轴球面谐振腔的稳定性条件 光线在球面谐振腔内往返n 次的光学变换矩阵: = 往返n 次后光线的空间位置坐标与方向坐标: 如果在无论n 取多大值、任何值的情况下,An 、Bn 、Cn 和Dn 都是在一定范 围内的有限值,那么 和 就是有限值,只要反射镜的镜面横向尺寸足够大,就可以保证傍轴光线在腔内往返任意次、无限次而不会从侧面逸出。 从M n 的表达式中可以看出,角度 的大小对矩阵中的四个元素An 、Bn 、Cn 和Dn 起着决定性的作用。 和 取值大小,反映的是光线偏离光轴能力的大小,即造成激光几何 损耗的大小。 下面我们就分三种情况对 角的取值加以讨论,并希望能从中寻找出谐振腔的稳定性条件。 n n n n n A B M C D ??=?????? ? ???----???? ???)1sin(sin sin sin )1sin(sin sin 1n n D n C n B n A 1111n n n n n n r A r B C r D θθθ=+?? =+? ?n r n θn r n θ????? ??? ??? - --=+-=-=-=1212121222)21)(21() 11(24)1(221R L R L R L D R R R R L C R L L B R L A

相关文档
最新文档