二次函数线段和最值 最短路径
二次函数的最值问题——求线段,三角形周长及面积的最值

二次函数的最值问题——求线段,三角形周长及面积的最值摘要:二次函数作为初中最重要的函数,近几年来,中考拉分题常常利用二次函数求线段的最值、三角形周长的最小值及面积的最大值问题。
在解决二次函数的最值问题时,一般构建二次函数模型,通过数形结合把求三角形的周长、三角形面积的最值问题转化为求线段长度的问题。
关键词:二次函数;最值问题;轴对称;数形结合一、将军饮马“K”字形,两点之间线段最短问题1.二次函数与x轴交于点A(-1,0),B(3,0),与y轴交于点C(0,3).在抛物线的对称轴上是否存在一点P,使得的分析:由已知,可求得二次函数的对称轴为,又因为二次函数图像关于对称轴对称可知:A、B两点关于对称,,连接BC与对称轴的交点为所求P点,则,所以CH+EH的最小值为。
小结:利用二次函数求两线段和的最小值问题,我们通常是作其中一点关于对称轴的对称点,连接对称点与另一点得到的线段长度为我们所求的两线段和的最小值。
变式1.如问题1改为:的周长是否存在最小值?若存在,请求出的周长;若不存在,请说明理由。
分析:延伸1看起来跟问题1不一样,但实际上,万变不离其宗。
,已知A,C两点坐标,由勾股定理可得,,题目中要求周长的最小值可转化为求的最小值,也就转化为问题1,即:,问题2.如图,直线与抛物线交于点A(0,3),B(3,0) ,点F是线段AB上的动点,FE x轴,E在抛物线上,若点F的横坐标为m,请用含m的代数式表示EF的长并求EF的最大值。
分析:利用E、F分别在抛物线及一次函数上可得到,,因为,所以,可求得当时,EF的最大值为小结:利用二次函数求竖直线段的最大值,一般是通过设未知数表示出二次函数及一次函数图像上的两点,由横坐标相等,利用两点纵坐标相减可得到线段的长度,再利用二次函数求最值方法可求出线段的最大值。
变式1:问题2改为过E作,求的最大值是多少?分析:因为该一次函数,可知为等腰直角三角形,,要求的最大值只需求得的最大值,由此就转化为问题2,所以小结:求斜线段的最大值问题,一般转化为求平行于y轴线段的最值问题,再利用三角函数可求得斜线段的最大值。
专题06 二次函数最小值问题(解析版)

∴△QEF周长的最小值为 ,此时Q( , ).
4.如图1,二次函数y= x2﹣2x+1的图象与一次函数y=kx+b(k≠0)的图象交于A,B两点,点A的坐标为(0,1),点B在第一象限内,点C是二次函数图象的顶点,点M是一次函数y=kx+b(k≠0)的图象与x轴的交点,过点B作x轴的垂线,垂足为N,且AO:BN=1:7.
(1)求抛物线的解析式;
(2)点P(m,n)是抛物线上的任意一点,过点P作直线l的垂线,垂足为M.求证:点P在线段FM的垂直平分线上;
(3)点E为线段OA的中点,在抛物线上是否存在点Q,使△QEF周长最小?若存在,求点Q的坐标和△QEF周长的最小值;若不存在,请说明理由.
【解答】解:(1)∵y=ax2+bx+c(a≠0)过原点O和点A(3,﹣3),
=(m﹣1)4+ (m﹣1)2+ ,
∴PM2=PF2,
∴PM=PF,
∴点P在MF的垂直平分线上,
(3)如图,E( ),EF= ,
作QN⊥l于N,由(2)知:QN=QF,
∴要想△QEF的周长最小,只要使EQ+QN最小,
作EN'⊥l于N',交抛物线于Q',
∵EQ+QN≥EN',
∴E、Q、N三点共线时,EQ+QN最小,
∴PE×PF最大时,PE×PD也最大,
∴PE×PD=(k+1)(3﹣ k)=﹣ k2+ k+3,
∴当k= 时,PE×PD最大,即:PE×PF最大,
此时G(5, ),
∵△MNB是等腰直角三角形,过B作x轴的平行线,
∴ BH=B1H,GH+ BH的最小值转化为求GH+HB1的最小值,
二次函数中的最短路径问题课件

AA’=5 AP’=3
PE+EF+FA =P′E+EF+FA′ =A′P′
= 34
y
(0,2)A •
(0,1)P•1
..F
o CE
.-1
P′
. A′
X
练习1:如图,在直角坐标系中,点A,B,C的坐标分别为(-1, 0),(3,0),(0,3),过A,B,C三点的抛物的对称轴为 直线l,D为对称轴l上一动点. (1)求抛物线的解析式; (2)求当AD+CD最小时点D的坐标; (3)以点A为圆心,以AD为半径作⊙A.
二次函数中的 最短路径问题
课本原型:(七年级下册)如图,要在街道旁修建一个奶站,
向居民区A、B提供牛奶,奶站应建在什么地方,才能使 从A,B到它的距离之和最短?
A B
街道
PP
A’
基本解法: 利用对称性 基本依据:两点之间线段最短。
例:已知抛物线
y
=
1 2
x2
-
5 2
x+2
,
若一个动点M从OA的中点
求证:当AD+CD的最小时,直线BD与⊙A相切;
练习2:如图,在平面直角坐标系中,点A的坐标为 (1, ) ,B点在X轴上,△AOB的面积是
(1)求点B的坐标; (2)求过点A、O、B的抛物线的解析式; (3)在(2)中抛物线的对称轴上是否存在点C,使△AOC的 周长最小?若存在,求出点C的 坐标;若不存在,请说明理 由;
P出发,先到达对称轴上点F,最后运动到点A。确定使点M运
动的总路径最短的点Байду номын сангаас的位置,并求出这个最短路程的长.
AA’=5
y
PA=1
二次函数压轴题专题一 最短路径问题

二次函数压轴题专题一最短路径问题——和最小知识梳理最短路径就是无论在立体图形还是平面图形中,两点间的最短距离,常涉及以下 两个方面:1、两点之间,线段最短;2、垂线段最短。
常用思考的方式:1、把立体转化为平面;2、通过轴对称寻找对称点。
解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。
例题导航例1:如图A 是锐角∠MON 内部任意一点,在∠MON 的两边OM ,ON 上各取一点B ,C ,组成三角形,使三角形周长最小.例:如图,A.B 两地在一条河的两岸,现要在河上建一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平行的直线,桥要与河垂直) 解:1.将点B 沿垂直与河岸的方向平移一个河宽到E , 2.连接AE 交河对岸与点M,则点M 为建桥的位置,MN 为所建的桥。
证明:由平移的性质,得 BN ∥EM 且BN=EM, MN=CD, BD ∥CE, BD=CE, 所以A.B 两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD 处,连接AC.CD.DB.CE, 则AB 两地的距离为:AC+CD+DB=AC+CD+CE=AC+CE+MN,在△ACE 中,∵AC+CE >AE, ∴AC+CE+MN >AE+MN,即AC+CD+DB >AM+MN+BN 所以桥的位置建在CD 处,AB 两地的路程最短。
例:如图,A 、B 是两个蓄水池,都在河流a 的同侧,为了方便灌溉作物,•要在河边建一个抽水站,将河水送到A 、B 两地,问该站建在河边什么地方,•可使所修的渠道最短,试在图中确定该点。
作法:作点B 关于直线 a 的对称点点C,连接AC 交直线a 于点D ,则点D 为建抽水站的位置。
证明:在直线 a 上另外任取一点E ,连接AE.CE.BE.BD,··CDA BEa∵点B.C 关于直线 a 对称,点D.E 在直线 a 上,∴DB=DC,EB=EC, ∴AD+DB=AD+DC=AC, AE+EB=AE+EC在△ACE 中,AE+EC >AC, 即 AE+EC >AD+DB所以抽水站应建在河边的点D 处,常见问题归纳“和最小”问题常见的问法是,在一条直线上面找一点,使得这个点与两个定点距离的和最小(将军饮马问题).如图所示,在直线l 上找一点P 使得PA +PB 最小.当点P 为直线AB ′与直线l 的交点时,PA +PB 最小.【方法归纳】①如图所示,在直线l 上找一点B 使得线段AB 最小.过点A 作AB ⊥l ,垂足为B ,则线段AB 即为所求.②如图所示,在直线l 上找一点P 使得PA +PB 最小.过点B 作关于直线l 的对称点B ′,BB ′与直线l 交于点P ,此时PA +PB 最小,则点P 即为所求.③如图所示,在∠AOB 的边AO ,BO 上分别找一点C ,D 使得PC +CD +PD 最小.过点P 分别作关于AO ,BO 的对称点E ,F ,连接EF ,并与AO ,BO 分别交于点C ,D ,此时PC +CD +PD 最小,则点C ,D 即为所求.④如图所示,在∠AOB 的边AO ,BO 上分别找一点E ,F 使得DE +EF +CF 最小.分别过点C ,D 作关于AO ,BO 的对称点D ′,C ′,连接D ′C ′,并与AO ,BO 分别交于点E ,F ,此时DElBAllllBAOBOB+EF +CF 最小,则点E ,F 即为所求.⑤如图所示,长度不变的线段CD 在直线l 上运动,在直线l 上找到使得AC +BD 最小的CD 的位置.分别过点A ,D 作AA ′∥CD ,DA ′∥AC ,AA ′与DA ′交于点A ′,再作点B 关于直线l 的对称点B ′,连接A ′B ′与直线l 交于点D ′,此时点D ′即为所求.⑥如图所示,在平面直角坐标系中,点P 为抛物线(y =14x 2)上的一点,点A (0,1)在y轴正半轴.点P 在什么位置时PA +PB 最小?过点B 作直线l :y =-1的垂线段BH ′,BH ′与抛物线交于点P ′,此时PA +PB 最小,则点P 即为所求.二次函数中最短路径例题例1.(13广东)已知二次函数y =x 2-2mx +m 2-1.(1)当二次函数的图象经过坐标原点O (0,0)时,求二次函数的解析式; (2)如图,当m =2时,该抛物线与y 轴交于点C ,顶点为D ,求C 、D 两点的坐标; (3)在(2)的条件下,x 轴上是否存在一点P ,使得PC +PD 最短?若P 点存在,求出P 点的坐标;若P 点不存在,请说明理由.BOB Oll练习1.(11菏泽)如图,抛物线y =12x 2+bx ﹣2与x 轴交于A ,B 两点,与y 轴交于C 点,且A (﹣1,0).(1)求抛物线的解析式及顶点D 的坐标; (2)判断△ABC 的形状,证明你的结论;(3)点M (m ,0)是x 轴上的一个动点,当MC +MD 的值最小时,求m 的值.练习2.(12滨州)如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 经过A (﹣2,﹣4),O (0,0),B (2,0)三点.(1)求抛物线y =ax 2+bx +c 的解析式;(2)若点M 是该抛物线对称轴上的一点,求AM +OM 的最小值.例2.(14海南)如图,对称轴为直线x =2的抛物线经过A (-1,0),C (0,5)两点,与x 轴另一交点为B .已知M (0,1),E (a ,0),F (a +1,0),点P 是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a =1时,求四边形MEFP 的面积的最大值,并求此时点P 的坐标;(3)若△PCM 是以点P 为顶点的等腰三角形,求a 为何值时,四边形PMEF 周长最小?请说明理由.【思路点拨】 (1)由对称轴为直线x =2,可以得出顶点横坐标为2,设二次函数的解析式为y =a (x -2)2+k ,再把点A ,B 的代入即可求出抛物线的解析式;(2)求四边形MEFP 的面积的最大值,要先表示出四边形MEFP 面积.直接求不好求,可以考虑用割补法来求,过点P 作PN ⊥y 轴于点N ,由S 四边形MEFP =S 梯形OFPN -S △PMN -S △OME 即可得出; (3)四边形PMEF 的四条边中,线段PM ,EF 长度固定,当ME +PF 取最小值时,四边形PMEF 的周长取得最小值.将点M 向右平移1个单位长度(EF 的长度),得到点M 1(1,1),作点M 1关于x 轴的对称点M 2(1,-1),连接PM 2,与x 轴交于F 点,此时ME +PF =PM 2最小. 【解题过程】解:(1)∵对称轴为直线x =2,∴设抛物线解析式为y =a (x -2)2+k .将A (-1,0),C (0,5)代入得:⎩⎨⎧9a +k =04a +k =5,解得⎩⎨⎧a =-1k =9,∴y =-(x -2)2+9=-x 2+4x +5.(2)当a =1时,E (1,0),F (2,0),OE =1,OF =2.设P (x ,-x 2+4x +5),如答图2,过点P 作PN ⊥y 轴于点N ,则PN =x ,ON =-x 2+4x +5,∴MN =ON -OM =-x 2+4x +4.S 四边形MEFP =S 梯形OFPN -S △PMN -S △OME =12(PN +OF )•ON -12PN•MN -12OM •OE =12(x +2)(-x 2+4x +5)-12x •(-x 2+4x +4)-12×1×1=-x 2+92x +92 =-(x -94)2+15316 ∴当x =94时,四边形MEFP 的面积有最大值为15316,此时点P 坐标为(94,15316). (3)∵M (0,1),C (0,5),△PCM 是以点P 为顶点的等腰三角形,∴点P 的纵坐标为3.令y =-x 2+4x +5=3,解得x =2±6.∵点P 在第一象限,∴P (2+6,3).四边形PMEF 的四条边中,PM 、EF 长度固定,因此只要ME +PF 最小,则PMEF 的周长将取得最小值. 如答图3,将点M 向右平移1个单位长度(EF 的长度),得M 1(1,1);作点M 1关于x 轴的对称点M 2,则M 2(1,-1);连接PM 2,与x 轴交于F 点,此时ME +PF =PM 2最小.设直线PM 2的解析式为y =mx +n ,将P (2+6,3),M 2(1,-1)代入得:⎩⎨⎧(2+6)m +n =3m +n =-1,解得:m =46-45 ,n =46+45,∴y =46-45x -46+45.当y =0时,解得x =6+54.∴F (6+54,0).∵a +1=6+54,∴a =6+14. ∴a =6+14时,四边形PMEF 周长最小.图1 图2练习3.(11眉山)如图,在直角坐标系中,已知点A (0,1),B (﹣4,4),将点B 绕点A 顺时针方向90°得到点C ;顶点在坐标原点的拋物线经过点B . (1)求抛物线的解析式和点C 的坐标;(2)抛物线上一动点P ,设点P 到x 轴的距离为d 1,点P 到点A 的距离为d 2,试说明d 2=d 1+1;(3)在(2)的条件下,请探究当点P 位于何处时,△PAC 的周长有最小值,并求出△PAC 的周长的最小值.例4.(14福州)如图,抛物线y =12(x -3)2-1与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D 了. (1)求点A ,B ,D 的坐标; (2)连接CD ,过原点O 作OE ⊥CD ,垂足为H ,OE 与抛物线的对称轴交于点E ,连接AE ,AD .求证:∠AEO =∠ADC ;(3)以(2)中的点E 为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P ,过点P 作⊙E 的切线,切点为Q ,当PQ 的长最小时,求点P 的坐标,并直接写出点Q 的坐标.【思路点拨】(1)由顶点式直接得出点D 的坐标,再令y =0,得12(x -3)2-1=0解出方程,即可得出点A ,B 的坐标;(2)设HD 与AE 相交于点F ,可以发现△HEF 与△ADF 组成一个“8字型”.对顶角∠HFE =∠AFD ,只要∠FHE =∠FAD 即可.因为∠EHF =90°,只需证明∠EAD =90°即可.由勾股定理的逆定理即可得出△ADE 为直角三角形,得∠FHE =∠FAD =90°即可得出结论;(3)先画出图形.因为PQ 为⊙E 的切线,所以△PEQ 为直角三角形,半径EQ 长度不变,当斜边PE 最小时,PQ 的长度最小.设出点P 的坐标,然后表示出PE ,求出PE 的最小值,得到点P 的坐标,再求出点Q 的坐标即可.【解题过程】解:(1)顶点D 的坐标为(3,-1).令y =0,得12 (x -3)2-1=0,解得x 1=3+2,x 2=3-2.∵点A 在点B 的左侧,∴A 点坐标(3-2,0),B 点坐标(3+2,0).(2)过D 作DG ⊥y 轴,垂足为G .则G (0,-1),GD =3.令x =0,则y =72,∴C 点坐标为(0,72).∴GC =72-(-1) = 92.设对称轴交x 轴于点M .∵OE ⊥CD ,∴∠GCD +∠COH =90︒.∵∠MOE +∠COH =90︒,∴∠MOE =∠GCD .又∵∠CGD =∠OMN =90︒,∴△DCG ∽△EOM . ∴CG OM =DGEM ,即923=3EM .∴EM =2,即点E 坐标为(3,2),ED =3. 由勾股定理,得AE 2=6,AD 2=3,∴AE 2+AD 2=6+3=9=ED 2. ∴△AED 是直角三角形,即∠DAE =90︒.设AE 交CD 于点F .∴∠ADC +∠AFD =90︒.又∵∠AEO +∠HFE =90︒, ∴∠AFD =∠HFE ,∴∠AEO =∠ADC .(3)由⊙E 的半径为1,根据勾股定理,得PQ 2=EP 2-1.要使切线长PQ 最小,只需EP 长最小,即EP 2最小.设P 坐标为(x ,y ),由勾股定理,得EP 2=(x -3)2+(y -2)2.∵y =12 (x -3)2-1,∴(x -3)2=2y +2.∴EP 2=2y +2+y 2-4y +4=(y -1)2+5.当y =1时,EP 2最小值为5.把y =1代入y =12(x -3)2-1,得12(x -3)21=1,解得x 1=1,x 2=5.又∵点P 在对称轴右侧的抛物线上,∴x 1=1舍去.∴点P 坐标为(5,1).此时Q 点坐标为(3,1)或(195,135).例5.(14遂宁)已知:直线l :y =﹣2,抛物线y =ax 2+bx +c 的对称轴是y 轴,且经过点(0,﹣1),(2,0).(1)求该抛物线的解析式;(2)如图①,点P 是抛物线上任意一点,过点P 作直线l 的垂线,垂足为Q ,求证:PO =PQ .(3)请你参考(2)中结论解决下列问题:(i )如图②,过原点作任意直线AB ,交抛物线y =ax 2+bx +c 于点A 、B ,分别过A 、B 两点作直线l 的垂线,垂足分别是点M 、N ,连结ON 、OM ,求证:ON ⊥OM . (ii )已知:如图③,点D (1,1),试探究在该抛物线上是否存在点F ,使得FD +FO 取得最小值?若存在,求出点F 的坐标;若不存在,请说明理由.【解题过程】解:(1)由题意,得⎩⎨⎧-b 2a =0-1=c 0=4a +2b +c ,解得:⎩⎨⎧a =14b =0c =-1,∴抛物线的解析式为:y =14x 2-1; (2)如图①,设P (a ,14a 2﹣1),就有OE =a ,PE =14a 2﹣1,∵PQ ⊥l ,∴EQ =2,∴QP =14a 2+1.在Rt △POE 中,由勾股定理,得PO =a 2+(14a 2-1)2=14a 2+1,∴PO =PQ ; (3)(i )如图②,∵BN ⊥l ,AM ⊥l ,∴BN =BO ,AM =AO ,BN ∥AM ,∴∠BNO =∠BON ,∠AOM =∠AMO ,∠ABN +∠BAM =180°.∵∠BNO +∠BON +∠NBO =180°,∠AOM +∠AMO +∠OAM =180°,∴∠BNO +∠BON +∠NBO +∠AOM +∠AMO +∠OAM =360°,∴2∠BON +2∠AOM =180°, ∴∠BON +∠AOM =90°,∴∠MON =90°,∴ON ⊥OM ;(ii )如图③,作F ′H ⊥l 于H ,DF ⊥l 于G ,交抛物线与F ,作F ′E ⊥DG 于E ,∴∠EGH =∠GHF ′=∠F ′EG =90°,FO =FG ,F ′H =F ′O ,∴四边形GHF ′E 是矩形,FO +FD =FG +FD =DG ,F ′O +F ′D =F ′H +F ′D ,∴EG =F ′H ,∴DE <DF ′,∴DE +GE <HF ′+DF ′,∴DG <F ′O +DF ′,∴FO +FD <F ′O +DF ′,∴F 是所求作的点.∵D (1,1),∴F 的横坐标为1,∴F (1,54).l。
二次函数与“最短距离”问题

二次函数与“最短距离”问题一.教学目标1.会求二次函数的解析式及对称轴、交点坐标、顶点坐标.2.掌握二次函数中求最短距离问题的解决思路,延伸到解决三角形、四边形周长的最小值问题.3.二次函数与“最短距离”问题解题流程熟练化,能够熟练解决该类型问题. 二.疑难点分析本节课根据“两点之间,线段最短”,利用轴对称变换,将同侧的两点转化为处于异侧的两点,从而解决最短距离问题.三.教学流程四.教学环节(一)复习旧知:最短路径(将军饮马)问题唐朝诗人李欣的诗《古从军行》开头两句:“白日登山望烽火,黄昏饮马傍交河”诗中隐含着一个有趣的数学问题.如图,将军在观望烽火后从山脚下A 点出发,走到河边饮马后再走到B 点的营地,怎样走才能使总的路程最短?解:思路分析:如图,先作点A 关于直线MN 的对称点E ,连接BE ,那么BE 与MN 的交点即为P 点,此时BP +AP =BE ,值最小.总结:将军饮马问题=轴对称问题=最短距离问题(轴对称是工具,最短距离是题眼),把最短路径问题抽象为数学中的线段和最小的问题,利用轴对称将处在直线同侧的两点,变为两点处在直线的异侧,从而转化为“两点之间,线段的最短”问题。
(二)主例题讲解例1(自编):如左图,抛物线y=x2 +bx+c过B(1,0),A(3,0).(1)求抛物线的解析式;(2)求抛物线的对称轴;(3)点P 是对称轴上的一点,当PD +PB 达到最小值时,求点 P 的坐标.⎨ ⎨ ⎨ ⎨ 思路分析:解:(1)将 B (1,0), A (3,0) 代入 y = x 2 + bx + c ,⎧1+ b + c = 0 得 ⎩9 + 3b + c = 0 ∴ y = x 2 - 4x + 3⎧b = -4 ,解得 ⎩c = 3,(2) 对称轴:直线 x = - b 2a= -- 4 = 2 2 (3) B 点关于对称轴的对称点为 A ,则直线 AD 与对称轴的交点即为所求的点 P .令 y = x 2 - 4x + 3 的 x = 0 ,解得 y = 3 ,所以 D (0,3) .设直线 AD 的函数表达式为: y = kx + b (k ≠ 0),将 A (3,0),D (0,3) 代入,得,⎧0 = 3k + b ⎩3 = 0 + b ,解得 ⎧k = -1 ⎩b = 3 ,∴ y = -x + 3.将 x = 2 代入 y = -x + 3 , y = 1,∴ P (2,1)归纳:第(3)小问是“将军饮马”问题的派生,函数中求最短距离问题的解法: ①利用坐标系中点的对称性质及抛物线自身的对称性找到对称点,根据“三点共线时,两点之间,线段最短”,找到满足条件的点;②求这两点的直线表达式,当x = 2 ,求出y ,得P 的坐标. 变式 1(导教导学案):如图,抛物线y=x2 -4x+3与y轴交于点D ,与x 轴的交点为A, B .(1)求点B, D 的坐标;(2)连接BD ,则BD = .(3)点P 是对称轴上的一动点,求∆PBD 周长的最小值.思路分析:解:(1)令y=0,x2 -4x+3=0,解得x= 3, x2=1,∴B(1,0),A(3,0)12 2 令 x = 0, y = 3,∴ D (0,3)(2)连接 BD , Rt ∆BOD 中, 由勾股定理得, BD 2 = BO 2 + OD 2 = 32 +12 = 10,∴BD = 10 .(3) C ∆PBD = BD + PD +P B = + PD + PB , 要使C ∆PBD 最小,只需 PD + PB 最短.如图,点关于对称轴的对称 B 点为 A ,则直线 AD 与对称轴的交点即为所求的点P ,此时 PD + PB = PD + PA = AD ,在 Rt ∆AOD 中,由勾股定理得, AD 2 = OD 2 + OA 2 = 32 + 32 =18,∴ AD = 3 ,C ∆PBD 最小 = + 3 .归纳:这是主例题的变式,是两条线段和最短问题的延伸,二次函数中三角形周长最小问题可转化为“线段最短”问题.变式 2(专题提优攻略):如图,抛物线 y = ax 2 + bx + c 经过 A (1,0) ,B (4,0) ,C (0,3)三点.(1) 求抛物线的解析式;(2) 如图,在抛物线的对称轴上是否存在点 P ,使得四边形 PAOC 的周长最小?若存在,求出四边形 PAOC 周长的最小值;若不存在,请说明理由.思路分析:10 10所以,抛物线的解析式为y =3x 2 -15x + 3 .4 4(2) A,B 关于对称轴,如图,连接 BC,∴B C与对称轴的交点即为所求的点P,此时PA+PC=BC,∴四边形PAOC的周长最小值为:OC +OA+BC ,A(1,0)、B(4,0)、C(0,3),∴OA = 1,OC = 3,BC =∴OC +OA+BC =1+ 3+ 5 = 9即四边形 PAOC 的周长最小值为 9.= 5,归纳:这是“将军饮马”问题解决方法的再一次派生,只要熟悉“线段最短” 问题,求四边形周长最小问题就迎刃而解了.(三)课堂小结方法提炼:函数中求最短距离问题的解法:二次函数中的最短距离问题和找一点使得三角形、四边形的周长最小问题,实质就是我们学过的“直线同侧两点到该直线上一点距离之和最小问题”,即“将军饮马”问题的派生,只是在函数中将“河”演变成了坐标系中的x 轴或者y 轴或抛物线的对称轴等直线,所以解法如下:(1)利用坐标系中点的对称性质及抛物线自身的对称性找到满足条件的点;(2)利用函数的相关知识求出找到的点或对称点的坐标;(1)借助两点间的距离公式或勾股定理求出最短距离。
二次函数有关的线段最短问题

与x轴交于A、B两点,与y轴交于点C,点D是抛物线的顶点
. (5)若M为抛物线对称轴上任 意一点,是否存在一点M使得
y (0,3) C
D(1,4)
△ACM的周长最小.若有,求 出点M的坐标,若没有,说明 理由.
(-1,0) A
M
0
B(3,0) x
典例分析
例 如图,在平面直角坐标系中,抛物线 y x2 2x 3
数
的图象经过A、C两点.
(1)求该二次函数的表达式; (2)F、G分别为x轴、y轴上的动点,顺次连结D、E、F、G构 成四边形DEFG,求四边形DEFG周长的最小值;
2.如图,抛物线y=-x 2+bx+c与x轴交于A(1,0),B(-3,0) 两点.
(1)求该抛物线的解析式; (2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是 否存在点Q,使得△QAC的周长最小?若存在,求出点Q的坐标; 若不存在,请说明理由;
Py P
Q C
(1)抛物线解析式为y x2 - 2x 3
Q(1,2)
B
A
O
x
P( 3 , 15) 24
. (1)求A、B、C、D的坐标.
y (0,3) C
D (1,4)
(2)在x轴上是否存在一点P,
使得P到C,D两点的距离之和最 小.若有,求出点P的坐标,若
(-1,0) A 0P
B(3,0) x
没有,说明理由.
典例分析
例 如图,在平面直角坐标系中,抛物线 y x2 2x 3
Hale Waihona Puke 与x轴交于A、B两点,与y轴交于点C,点D是抛物线的顶点
. (1)求A、B、C、D的坐标.
y (0,3) C
D (1,4)
二次函数压轴题最短路径问题

最短路径问题——和最小【方法说明】“和最小”问题常见的问法是,在一条直线上面找一点,使得这个点与两个定点距离的和最小(将军饮马问题).如图所示,在直线l 上找一点P 使得PA +PB 最小.当点P 为直线AB ′与直线l 的交点时,PA +PB 最小.【方法归纳】①如图所示,在直线l 上找一点B 使得线段AB 最小.过点A 作AB ⊥l ,垂足为B ,则线段AB 即为所求.②如图所示,在直线l 上找一点P 使得PA +PB 最小.过点B 作关于直线l 的对称点B ′,BB ′与直线l 交于点P ,此时PA +PB 最小,则点P 即为所求.③如图所示,在∠AOB 的边AO ,BO 上分别找一点C ,D 使得PC +CD +PD 最小.过点P 分别作关于AO ,BO 的对称点E ,F ,连接EF ,并与AO ,BO 分别交于点C ,D ,此时PC +CD +PD 最小,则点C ,D 即为所求.④如图所示,在∠AOB 的边AO ,BO 上分别找一点E ,F 使得DE +EF +CF 最小.分别过点C ,D 作关于AO ,BO 的对称点D ′,C ′,连接D ′C ′,并与AO ,BO 分别交于点E ,F ,此时DE +EF +CF 最小,则点E ,F 即为所求.⑤如图所示,长度不变的线段CD 在直线l 上运动,在直线l 上找到使得AC +BD 最小的CD 的位置.分别过lBAlAllAlOBOBBOB O点A ,D 作AA ′∥CD ,DA ′∥AC ,AA ′与DA ′交于点A ′,再作点B 关于直线l 的对称点B ′,连接A ′B ′与直线l 交于点D ′,此时点D ′即为所求.⑥如图所示,在平面直角坐标系中,点P 为抛物线(y =14x 2)上的一点,点A (0,1)在y 轴正半轴.点P在什么位置时PA +PB 最小?过点B 作直线l :y =-1的垂线段BH ′,BH ′与抛物线交于点P ′,此时PA +PB 最小,则点P 即为所求.1.(13广东)已知二次函数y =x 2-2mx +m 2-1.(1)当二次函数的图象经过坐标原点O (0,0)时,求二次函数的解析式; (2)如图,当m =2时,该抛物线与y轴交于点C ,顶点为D ,求C 、D 两点的坐标;(3)在(2)的条件下,x 轴上是否存在一点P,使得PC +PD 最短?若P 点存在,求出P 点的坐标;若P 点不存在,请说明理由.【思路点拨】ll(1)由二次函数的图象经过坐标原点O(0,0),直接代入求出m的值即可;(2)把m=2代入求出二次函数解析式,令x=0,求出y的值,得出点C的坐标;利用配方法或顶点坐标公式求出顶点坐标即可;(3)根据当P、C、D共线时根据“两点之间,线段最短”得出PC+PD最短,求出CD的直线解析式,令y =0,求出x的值,即可得出P点的坐标.【解题过程】解:(1)∵二次函数的图象经过坐标原点O(0,0),∴代入二次函数y=x2-2mx+m2-1,得出:m2-1=0,解得:m=±1,∴二次函数的解析式为:y=x2-2x或y=x2+2x;(2)∵m=2,∴二次函数y=x2-2mx+m2-1得:y=x2-4x+3=(x-2)2-1,∴抛物线的顶点为:D(2,-1),当x=0时,y=3,∴C点坐标为:(0,3),∴C(0,3)、D(2,-1);(3)当P、C、D共线时PC+PD最短,【方法一】∵C(0,3)、D(2,-1),设直线CD的解析式为y=kx+3,代入得:2k+3=-1,∴k=-2,∴y=-2x+3,当y=0时,-2x+3=0,解得x=32,∴PC+PD最短时,P点的坐标为:P(32,0).【方法二】过点D作DE⊥y轴于点E,∵PO∥DE,∴PODE=COCE,∴PO2=34,解得:PO=32,∴PC+PD最短时,P点的坐标为:P(32,0).2.(11菏泽)如图,抛物线y=12x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,求m的值.【思路点拨】(1)把点A 的坐标代入求出b 的值,即可得出抛物线的解析式,通过配方法即可求出顶点D 的坐标; (2)观察发现△ABC 是直角三角形,可以通过勾股定理的逆定理证明.由抛物线的解析式,分别求出点B ,C 的坐标,再得出AB ,AC ,BC 的长度,易得AC 2+BC 2=AB 2,得出△ABC 是直角三角形;(3)作出点C 关于x 轴的对称点C ′,连接C 'D 交x 轴于点M ,根据“两点之间,线段最短”可知MC +MD 的值最小.求出直线C 'D 的解析式,即可得出点M 的坐标,进而求出m 的值. 【解题过程】解:(1)∵点A (-1,0)在抛物线y =12x 2+bx -2上,∴12×(-1 )2+b ×(-1)-2=0,解得b =-32,∴抛物线的解析式为y =12x 2-32x -2=12(x -32)2-258,∴顶点D 的坐标为 (32,-258).(2)当x =0时y =-2,∴C (0,-2),OC =2.当y =0时,12x 2-32x -2=0,∴x 1=-1,x 2=4,∴B (4,0),∴OA =1,OB =4,AB =5.∵AB 2=25,AC 2=OA 2+OC 2=5,BC 2=OC 2+OB 2=20,∴AC 2+BC 2=AB 2. ∴△ABC 是直角三角形.(3)作出点C 关于x 轴的对称点C ′,则C ′(0,2),OC ′=2,连接C ′D 交x 轴于点M ,根据轴对称性及两点之间线段最短可知,MC +MD 的值最小. 【方法一】设直线C ′D 的解析式为y =kx +n ,则⎩⎨⎧n =232k +n =-258,解得:⎩⎨⎧n =2k =-4112.∴y =-4112x +2. ∴当y =0时,-4112x +2=0,x =2441.∴m =2441.【方法二】设抛物线的对称轴交x 轴于点E .∵ED ∥y 轴,∴∠OC ′M =∠EDM ,∠C ′OM =∠DEM ,∴△C ′OM ∽△DEM . ∴OM EM =OC ′ED ,∴m 32-m =2258,∴m =2441.3.(11福州)已知,如图,二次函数y=ax2+2ax﹣3a(a≠0)图象的顶点为H,与x轴交于A、B两点(B在A点右侧),点H、B关于直线l:y=33x+3对称.(1)求A、B两点坐标,并证明点A在直线l上;(2)求二次函数解析式;(3)过点B作直线BK∥AH交直线l于K点,M、N分别为直线AH和直线l上的两个动点,连接HN、NM、MK,求HN+NM+MK和的最小值.【思路点拨】(1)二次函数y=ax2+2ax﹣3a(a≠0)中只有一个未知参数a,令y=0,解出方程ax2+2ax﹣3a=0(a≠0),即可得到点A,B的坐标.把点A的坐标代入直线l的解析式即可判断A是否在直线上;(2)根据点H、B关于过A点的直线l:y=33x+3对称,得出AH=AB=4,过顶点H作HC⊥AB交AB于C点,得AC=12AB=2,利用勾股定理求出HC的长,即可得出点H的坐标,代入二次函数解析式,求出a,即可得到二次函数解析式;(3)直线BK∥AH易得直线BK的解析式,联立直线l的解析式方程组,即可求出K的坐标.因为点H,B 关于直线AK对称,所以HN=BN,所以根据“两点之间,线段最短”得出HN+MN的最小值是MB.作点K关于直线AH的对称点Q,连接QK,交直线AH于E,所以QM=KM,易得BM+MK的最小值为BQ,即BQ的长是HN+NM+MK的最小值,求出QB的长即可.【解题过程】解:(1)依题意,得ax2+2ax﹣3a=0(a≠0),解得x1=﹣3,x2=1,∵B点在A点右侧,∴A点坐标为(﹣3,0),B点坐标为(1,0),∵直线l:y=33x+3,当x=﹣3时,y=33×(-3)+3=0,∴点A在直线l上.(2)∵点H、B关于过A点的直线l:y=33x+3对称,∴AH=AB=4,过顶点H作HC⊥AB交AB于C点,则AC=12AB=2,HC=23,∴顶点H(-1,23),代入二次函数解析式,解得a=-32,∴二次函数解析式为y=-32x2-3x+332,(3)直线AH 的解析式为y =3x +33,直线BK 的解析式为y =3x +33,由⎩⎪⎨⎪⎧y =33x +3y =3x -3,解得⎩⎨⎧x =3y =23,即K (3,23),则BK =4,∵点H 、B 关于直线AK 对称,∴HN +MN 的最小值是MB ,KD =KE =23,过点K 作直线AH 的对称点Q ,连接QK ,交直线AH 于E ,则QM =MK ,QE =EK =23,AE ⊥QK , ∴BM +MK 的最小值是BQ ,即BQ 的长是HN +NM +MK 的最小值, ∵BK ∥AH ,∴∠BKQ =∠HEQ =90°,由勾股定理得QB =8, ∴HN +NM +MK 的最小值为8.4.(14海南)如图,对称轴为直线x =2的抛物线经过A (-1,0),C (0,5)两点,与x 轴另一交点为B .已【思路点拨】(1)由对称轴为直线x =2,可以得出顶点横坐标为2,设二次函数的解析式为y =a (x -2)2+k ,再把点A ,B 的代入即可求出抛物线的解析式;(2)求四边形MEFP 的面积的最大值,要先表示出四边形MEFP 面积.直接求不好求,可以考虑用割补法来求,过点P 作PN ⊥y 轴于点N ,由S 四边形MEFP =S 梯形OFPN -S △PMN -S △OME 即可得出;(3)四边形PMEF 的四条边中,线段PM ,EF 长度固定,当ME +PF 取最小值时,四边形PMEF 的周长取得最小值.将点M 向右平移1个单位长度(EF 的长度),得到点M 1(1,1),作点M 1关于x 轴的对称点M 2(1,-1),连接PM 2,与x 轴交于F 点,此时ME +PF =PM 2最小. 【解题过程】解:(1)∵对称轴为直线x =2,∴设抛物线解析式为y =a (x -2)2+k .将A (-1,0),C (0,5)代入得:⎩⎨⎧9a +k =04a +k =5,解得⎩⎨⎧a =-1k =9,∴y =-(x -2)2+9=-x 2+4x +5.(2)当a =1时,E (1,0),F (2,0),OE =1,OF =2.设P (x ,-x 2+4x +5),如答图2,过点P 作PN ⊥y 轴于点N ,则PN =x ,ON =-x 2+4x +5, ∴MN =ON -OM =-x 2+4x +4.S 四边形MEFP =S 梯形OFPN -S △PMN -S △OME =12(PN +OF )•ON -12PN •MN -12OM •OE=12(x +2)(-x 2+4x +5)-12x •(-x 2+4x +4)-12×1×1 =-x 2+92x +92=-(x -94)2+15316∴当x =94时,四边形MEFP 的面积有最大值为15316,此时点P 坐标为(94,15316).(3)∵M (0,1),C (0,5),△PCM 是以点P 为顶点的等腰三角形,∴点P 的纵坐标为3.令y =-x 2+4x +5=3,解得x =2±6.∵点P 在第一象限,∴P (2+6,3). 四边形PMEF 的四条边中,PM 、EF 长度固定,因此只要ME +PF 最小,则PMEF 的周长将取得最小值.如答图3,将点M 向右平移1个单位长度(EF 的长度),得M 1(1,1); 作点M 1关于x 轴的对称点M 2,则M 2(1,-1); 连接PM 2,与x 轴交于F 点,此时ME +PF =PM 2最小.设直线PM 2的解析式为y =mx +n ,将P (2+6,3),M 2(1,-1)代入得: ⎩⎨⎧(2+6)m +n =3m +n =-1,解得:m =46-45 ,n =46+45,∴y =46-45x -46+45.当y =0时,解得x =6+54.∴F (6+54,0).∵a +1=6+54,∴a =6+14. ∴a =6+14时,四边形PMEF 周长最小.图1 图22.(14福州)如图,抛物线y =12(x -3)2-1与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D 了.(1)求点A ,B ,D 的坐标;(2)连接CD ,过原点O 作OE ⊥CD ,垂足为H ,OE 与抛物线的对称轴交于点E ,连接AE ,AD .求证:∠AEO =∠ADC ;(3)以(2)中的点E 为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P ,过点P 作⊙E 的切线,切点为Q ,当PQ 的长最小时,求点P 的坐标,并直接写出点Q 的坐标.【思路点拨】(1)由顶点式直接得出点D 的坐标,再令y =0,得12(x -3)2-1=0解出方程,即可得出点A ,B 的坐标;(2)设HD 与AE 相交于点F ,可以发现△HEF 与△ADF 组成一个“8字型”.对顶角∠HFE =∠AFD ,只要∠FHE =∠FAD 即可.因为∠EHF =90°,只需证明∠EAD =90°即可.由勾股定理的逆定理即可得出△ADE 为直角三角形,得∠FHE =∠FAD =90°即可得出结论;(3)先画出图形.因为PQ 为⊙E 的切线,所以△PEQ 为直角三角形,半径EQ 长度不变,当斜边PE 最小时,PQ 的长度最小.设出点P 的坐标,然后表示出PE ,求出PE 的最小值,得到点P 的坐标,再求出点Q 的坐标即可. 【解题过程】解:(1)顶点D 的坐标为(3,-1).令y =0,得12(x -3)2-1=0,解得x 1=3+2,x 2=3-2.∵点A 在点B 的左侧,∴A 点坐标(3-2,0),B 点坐标(3+2,0).(2)过D 作DG ⊥y 轴,垂足为G .则G (0,-1),GD =3.令x =0,则y =72,∴C 点坐标为(0,72).∴GC =72-(-1) = 92.设对称轴交x 轴于点M .∵OE ⊥CD ,∴∠GCD +∠COH =90︒.∵∠MOE +∠COH =90︒,∴∠MOE =∠GCD .又∵∠CGD =∠OMN =90︒,∴△DCG ∽△EOM . ∴CG OM =DGEM ,即923=3EM .∴EM =2,即点E 坐标为(3,2),ED =3. 由勾股定理,得AE 2=6,AD 2=3,∴AE 2+AD 2=6+3=9=ED 2. ∴△AED 是直角三角形,即∠DAE =90︒.设AE 交CD 于点F .∴∠ADC +∠AFD =90︒.又∵∠AEO +∠HFE =90︒, ∴∠AFD =∠HFE ,∴∠AEO =∠ADC .(3)由⊙E 的半径为1,根据勾股定理,得PQ 2=EP 2-1.要使切线长PQ 最小,只需EP 长最小,即EP 2最小.设P 坐标为(x ,y ),由勾股定理,得EP 2=(x -3)2+(y -2)2.∵y =12(x -3)2-1,∴(x -3)2=2y +2.∴EP 2=2y +2+y 2-4y +4=(y -1)2+5.当y =1时,EP 2最小值为5.把y =1代入y =12(x -3)2-1,得12(x -3)2-1=1,解得x 1=1,x 2=5.又∵点P 在对称轴右侧的抛物线上,∴x 1=1舍去.∴点P 坐标为(5,1). 此时Q 点坐标为(3,1)或(195,135).6.(14遂宁)已知:直线l :y =﹣2,抛物线y =ax 2+bx +c 的对称轴是y 轴,且经过点(0,﹣1),(2,0).(1)求该抛物线的解析式;(2)如图①,点P 是抛物线上任意一点,过点P 作直线l 的垂线,垂足为Q ,求证:PO =PQ . (3)请你参考(2)中结论解决下列问题:(i )如图②,过原点作任意直线AB ,交抛物线y =ax 2+bx +c 于点A 、B ,分别过A 、B 两点作直线l 的垂线,垂足分别是点M 、N ,连结ON 、OM ,求证:ON ⊥OM .(ii )已知:如图③,点D (1,1),试探究在该抛物线上是否存在点F ,使得FD +FO 取得最小值?若存在,求出点F 的坐标;若不存在,请说明理由.【思路点拨】(1)因为抛物线的对称轴是y 轴,所以b =0,再代入点(0,﹣1),(2,0)即可求出抛物线的解析式; (2)由(1)设出P 的坐标,分别表示出PE ,PQ 的长度,即可得出结论;(3)(i )因为BN ∥AM ,所以∠ABN +∠BAM =180°.由(2)的结论可得BO =BN ,AO =AM ,可得出∠BON =∠BNO ,∠AOM =∠AMO ,易得∠BON +∠AOM =90°再得到∠MON =90°即可;(ii )如图③,作F ′H ⊥l 于H ,DF ⊥l 于G ,交抛物线与F ,作F ′E ⊥DG 于E ,由(2)的结论根据矩形的性质可以得出结论. 【解题过程】解:(1)由题意,得⎩⎪⎨⎪⎧-b 2a =0-1=c 0=4a +2b +c ,解得:⎩⎪⎨⎪⎧a =14b =0c =-1,∴抛物线的解析式为:y =14x 2-1;(2)如图①,设P (a ,14a 2﹣1),就有OE =a ,PE =14a 2﹣1,∵PQ ⊥l ,∴EQ =2,∴QP =14a 2+1.在Rt△POE 中,由勾股定理,得PO =a 2+(14a 2-1)2=14a 2+1,∴PO =PQ ;(3)(i )如图②,∵BN ⊥l ,AM ⊥l ,∴BN =BO ,AM =AO ,BN ∥AM ,∴∠BNO =∠BON ,∠AOM =∠AMO ,∠ABN +∠BAM =180°. ∵∠BNO +∠BON +∠NBO =180°,∠AOM +∠AMO +∠OAM =180°,∴∠BNO +∠BON +∠NBO +∠AOM +∠AMO +∠OAM =360°,∴2∠BON +2∠AOM =180°, ∴∠BON +∠AOM =90°,∴∠MON =90°,∴ON ⊥OM ;(ii )如图③,作F ′H ⊥l 于H ,DF ⊥l 于G ,交抛物线与F ,作F ′E ⊥DG 于E ,∴∠EGH=∠GHF′=∠F′EG=90°,FO=FG,F′H=F′O,∴四边形GHF′E是矩形,FO+FD=FG+FD=DG,F′O+F′D=F′H+F′D,∴EG=F′H,∴DE<DF′,∴DE+GE<HF′+DF′,∴DG<F′O+DF′,∴FO+FD<F′O+DF′,∴F是所求作的点.∵D(1,1),∴F的横坐标为1,∴F(1,54).【举一反三】1.(12滨州)如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣2,﹣4),O(0,0),B(2,0)三点.(1)求抛物线y=ax2+bx+c的解析式;(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值.l2.(13成都)在平面直角坐标系中,已知抛物线y=﹣12x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;(ii)取BC的中点N,连接NP,BQ.试探究PQNP+BQ是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.3.(11眉山)如图,在直角坐标系中,已知点A(0,1),B(﹣4,4),将点B绕点A顺时针方向90°得到点C;顶点在坐标原点的拋物线经过点B.(1)求抛物线的解析式和点C的坐标;(2)抛物线上一动点P,设点P到x轴的距离为d1,点P到点A的距离为d2,试说明d2=d1+1;(3)在(2)的条件下,请探究当点P位于何处时,△PAC的周长有最小值,并求出△PAC的周长的最小值.【参考答案】1.解:(1)把A (﹣2,﹣4),O (0,0),B (2,0)三点的坐标代入y =ax 2+bx +c 中,得⎩⎨⎧4a -2b +c =-44a +2b +c =0c =0,解得a =﹣12,b =1,c =0,∴解析式为y =﹣12x 2+x . (2)由y =﹣12x 2+x =﹣12(x ﹣1)2+12,可得抛物线的对称轴为x =1,并且对称轴垂直平分线段OB ,∴OM =BM , ∴OM +AM =BM +AM ,连接AB 交直线x =1于M 点,则此时OM +AM 最小, 过点A 作AN ⊥x 轴于点N ,在Rt△ABN 中,AB =AN 2+BN 2=42+42=42, ∴OM +AM 最小值为42.2.解:(1)∵等腰直角三角形ABC 的顶点A 的坐标为(0,-1),C 的坐标为(4,3),∴点B 的坐标为(4,-1).∵抛物线过A (0,-1),B (4,-1)两点,∴ ⎩⎨⎧c =-1-12×16+4b +c =-1,解得:b =2,c =-1,∴抛物线的函数表达式为:y =-12x 2+2x -1.(2)(i )∵A (0,-1),C (4,3),∴直线AC 的解析式为:y =x -1.设平移前抛物线的顶点为P 0,则由(1)可得P 0的坐标为(2,1),且P 0在直线AC 上. ∵点P 在直线AC 上滑动,∴可设P 的坐标为(m ,m -1), 则平移后抛物线的函数表达式为:y =-12(x -m )2+m -1.解方程组:⎩⎨⎧y =x -1y =-12(x -m )2+(m -1),解得⎩⎨⎧x 1=m y 1=m -1, ⎩⎨⎧x 2=m -2y 2=m -3, ∴P (m ,m -1),Q (m -2,m -3). 过点P 作PE ∥x 轴,过点Q 作QF ∥y 轴,则PE =m -(m -2)=2,QF =(m -1)-(m -3)=2.∴PQ =22=AP 0.若以M 、P 、Q 三点为顶点的等腰直角三角形,则可分为以下两种情况: ①当PQ 为直角边时:点M 到PQ 的距离为22(即为PQ 的长). 由A (0,-1),B (4,-1),P 0(2,1)可知,△ABP 0为等腰直角三角形,且BP 0⊥AC ,BP 0=22.如答图1,过点B 作直线l 1∥AC ,交抛物线y =-12x 2+2x -1于点M ,则M 为符合条件的点.∴可设直线l 1的解析式为:y =x +b 1,∵B (4,-1),∴-1=4+b 1,解得b ==-5,∴直线l 1的解析式为:y =x -5.解方程组 ⎩⎨⎧y =x -5y =-12x 2+2x -1,得:⎩⎨⎧x 1=4y 1=-1,⎩⎨⎧x 2=-2y 2=-7, ∴M 1(4,-1),M 2(-2,-7).②当PQ 为斜边时:MP =MQ =2,可求得点M 到PQ 的距离为 2 . 如答图2,取AB 的中点F ,则点F 的坐标为(2,-1). 由A (0,-1),F (2,-1),P 0(2,1)可知:△AFP 0为等腰直角三角形,且点F 到直线AC 的距离为 2 .过点F 作直线l 2∥AC ,交抛物线y =-12x 2+2x -1于点M ,则M 为符合条件的点.∴可设直线l 2的解析式为:y =x +b 2,∵F (2,-1),∴-1=2+b 2,解得b 2=-3,∴直线l 2的解析式为:y =x -3.解方程组⎩⎨⎧y =x -3y =-12x 2+2x -1,得:⎩⎨⎧x 1=1+5y 1=-2+5,⎩⎨⎧x 1=1-5y 1=-2-5, ∴M 3(1+5,-2+5),M 4(1-5,-2-5). 综上所述,所有符合条件的点M 的坐标为:M 1(4,-1),M 2(-2,-7),M 3(1+5,-2+5),M 4(1-5,-2-5).(ii )PQNP +BQ存在最大值.理由如下:由i )知PQ =22为定值,则当NP +BQ 取最小值时,PQNP +BQ有最大值. 如答图2,取点B 关于AC 的对称点B ′,易得点B ′的坐标为(0,3),BQ =B ′Q . 连接QF ,FN ,QB ′,易得FN ∥PQ ,且FN =PQ ,∴四边形PQFN 为平行四边形.∴NP =FQ . ∴NP +BQ =FQ +B ′Q ≥FB ′=22+42=25.∴当B ′、Q 、F 三点共线时,NP +BQ 最小,最小值为25.∴PQ NP +BQ 的最大值为2225=105.F3.解:(1)设抛物线的解析式:y=ax2,∵拋物线经过点B(﹣4,4),∴4=a•42,解得a=14,所以抛物线的解析式为:y=14x2;过点B作BE⊥y轴于E,过点C作CD⊥y轴于D,如图,∵点B绕点A顺时针方向90°得到点C,∴Rt△BAE≌Rt△ACD,∴AD=BE=4,CD=AE=OE﹣OA=4﹣1=3,∴OD=AD+OA=5,∴C点坐标为(3,5);(2)设P点坐标为(a,b),过P作PF⊥y轴于F,PH⊥x轴于H,如图,∵点P在抛物线y=14x2上,∴b=14a2,∴d1=14a2,∵AF=OF﹣OA=PH﹣OA=d1﹣1=14a2﹣1,PF=a,在Rt△PAF中,PA=d2=AF2+PF2=(14a2-1)2+a2=14a2+1,∴d2=d1+1;(3)由(1)得AC=5,∴△PAC的周长=PC+PA+5=PC+PH+6,要使PC+PH最小,则C、P、H三点共线,∴此时P点的横坐标为3,把x=3代入y=14x2,得到y=94,即P点坐标为(3,94),此时PC+PH=5,∴△PAC的周长的最小值=5+6=11.。
二次函数求线段最值问题

二次函数求线段最值问题二次函数求线段最值问题是指给定一个二次函数,要求求出函数在某个线段上的最大值或最小值。
以下是求解二次函数线段最值问题的详细步骤:1. 确定二次函数公式:首先,确定二次函数的标准形式为f(x) = ax^2 + bx + c,其中a、b和c分别为常数。
根据具体问题的条件,可以得到函数的具体表达式。
2. 确定线段的范围:根据问题中给定的线段范围,确定函数的自变量x的取值区间。
这个区间必须在函数的定义域内。
3. 确定最值类型:判断问题中要求求解的是最大值还是最小值。
这可以通过问题的描述或背景来确定。
4. 求解最值点:针对求解最大值或最小值的情况,进行以下步骤:- 求解函数的导数f'(x)。
导数可以通过对函数f(x)进行求导得到。
- 解求导函数f'(x)的解析解或数值解。
这些解即为函数的驻点,也就是函数取得最值的可能点。
- 验证驻点是否在线段范围内。
检查求得的驻点是否在给定的线段范围内。
如果在范围内,则进入下一步;如果不在范围内,则取线段端点的函数值作为最值点。
- 计算驻点或线段端点的函数值。
将驻点或线段端点的x值代入二次函数,计算对应的函数值。
- 比较函数值大小,找出最值点。
比较上一步中得到的函数值,找出最大值或最小值点。
5. 补充边界情况:除了在线段内求解最值以外,还需要检查函数在线段的端点处的函数值。
比较端点的函数值与之前求得的最值点的函数值,确定最终的最值点。
6. 验证最值点:最后,将求得的最值点代入二次函数,验证它们是否为最大值或最小值。
即比较最值点的函数值与其他可能的函数值,以确定最值点的正确性。
以上是求解二次函数线段最值问题的详细步骤。
通过这些步骤,可以找到函数在给定线段上的最大值或最小值点。
注意,在具体的问题中,可能需要对步骤进行一些适当的调整和修改,以适应不同的求解需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数与线段和、周长最值问题
此类问题主要涉及最短路径问题的如下三种题型:
例:如图,平面直角坐标系中有两点A(3,4),B(1,0)试在y轴上找到一点P使得PA+PB 的值最小.
例:1.已知,抛物线与x轴的交点A,B的横坐标分别为-1,-4,与y轴的交点C的纵坐标为3.
⑴求该抛物线的解析式;
⑵在抛物线的对称轴上是否存在点P,使得PA+PC值最小?若存在,求出PA+PC的最小值;若不存在,
请说明理由.
⑶在抛物线的对称轴上是否存在点P,使得△PAC的周长值最小?若存在,求出△PAC周长的最小值;
若不存在,请说明理由.
⑷在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长值最小?若存在,求出四边形PAOC周
长的最小值;若不存在,请说明理由.
2.如图,直线y=-x+5与x轴交于点B,与y轴交于点C,抛物线y=-x2+bx+c与直线y=-x+5交
于B、C两点.已知点D的坐标为(0,3).
⑴求该抛物线的解析式;
⑵点M、N分别是直线BC和x轴上的动点,则当△DMN的周长最小时,求点M,N的坐标,并写出△DMN 周长的最小值.
3.如图,二次函数y=ax2+bx+c(a>0)图像的顶点为D,与x轴的交点为A(-1,0),B(3,0),与y 轴负半轴交于点C.
⑴若△ABD为等腰直角三角形,求该抛物线的解析式;
⑵在⑴的条件下,抛物线与直线y=
5
4
x-4交于M、N两点(点M在点N的左侧),动点P从M点出发,先到达抛物线对称轴上的某点E,再到达x轴上的某点F,最后运动到点N,若使点P运动的总路径最短,求点P运动的总路径的长.。