考点26 圆的方程,直线和圆的位置关系学生版(2021年高考艺体生基础生考点培优讲义

考点26  圆的方程,直线和圆的位置关系学生版(2021年高考艺体生基础生考点培优讲义
考点26  圆的方程,直线和圆的位置关系学生版(2021年高考艺体生基础生考点培优讲义

考点26 圆的方程

[玩前必备]

1.圆的定义

在平面内,到定点的距离等于定长的点的集合叫做圆.确定一个圆最基本的要素是圆心和半径. 2. 圆的标准方程

(1) 以(a ,b )为圆心,r (r >0)为半径的圆的标准方程为(x -a )2+(y -b )2=r 2. (2) 特殊的,以(0,0)为圆心,r (r >0)为半径的圆的标准方程为x 2+y 2=r 2. 3. 圆的一般方程 方程

x 2+y 2+Dx +Ey +F =0可变形为????x +D 22

+????y +E 22

=D 2+E 2

-4F 4

. (1) 当

D 2+

E 2-4

F >0

时,方程表示以????-D 2,-E 2为圆心,D 2+E 2-4F 2

为半径的圆;

(2) 当D 2+E 2-4F =0时,该方程表示一个点????-D 2,-E 2; (3) 当D 2+E 2-4F <0时,该方程不表示任何图形. 4. 直线与圆的位置关系的判断方法

设直线l :Ax +By +C =0(A ,B 不全为0),圆为(x -a )2+(y -b )2=r 2(r >0),d 为圆心(a ,b )到直线l 的距离,联立直线和圆的方程,消元后得到的一元二次方程的判别式为Δ.

5. (1) 圆与圆的位置关系有五种,分别为外离、外切、相交、内切、内含. (2) 判断两圆位置关系的方法

设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0),圆O 2:(x -a 2)2+(y -b 2)2=r 2

2(r 2>0).圆心距O 1O 2=d ,则

6.(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则(l

2)2=r 2-d 2.

(2)代数方法:运用根与系数的关系及弦长公式: 设直线与圆的交点为A (x 1,y 1),B (x 2,y 2),

则|AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]. 注意:常用几何法研究圆的弦的有关问题.

[玩转典例]

题型一 求圆的方程

例1 (2020·河南濮阳.高三期末)若圆C 经过(1,0),(3,0)两点,且与y 轴相切,则圆C 的方程为( ) A .(x -2)2+(y ±2)2=3 B .(x -2)2+(y ±3)2=3 C .(x -2)2+(y ±2)2=4 D .(x -2)2+(y ±3)2=4 [玩转跟踪]

1. (1)圆心在y 轴上且经过点(3,1)的圆与x 轴相切,则该圆的方程是( ) A .x 2+y 2+10y =0 B .x 2+y 2-10y =0 C .x 2+y 2+10x =0

D .x 2+y 2-10x =0

(2) 已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为______________. 题型二 判断直线与圆的位置关系

例2 (2020·福建高三期末)若直线 :1(0)l y kx k =+<与圆2

2:4230C x

x y y ++-+=相切,则直线l

与圆2

2:(2)3D x y -+=的位置关系是( )

A .相交

B .相切

C .相离

D .不确定

[玩转跟踪]

1.(2020·包头市田家炳中学高三期中)直线y =x ﹣1与圆x 2+y 2=1的位置关系为( ) A .相切 B .相离

C .直线过圆心

D .相交但直线不过圆心

题型三 直线与圆相交弦长问题

例3 在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________. [玩转跟踪]

1.(2020·河南濮阳)斜率为1的直线l 被圆x 2+y 2=4x 截得的弦长为4,则l 的方程为( ) A .y =x ﹣3

B .y =x +3

C .y =x ﹣2

D .y =x +2

题型四 直线与圆相切问题

例4 过点P (2,4)引圆(x -1)2+(y -1)2=1的切线,则切线方程为__________; [玩转跟踪]

1.过坐标原点且与圆x 2-4x +y 2+2=0相切的直线方程为______________. 题型五 圆与圆的位置关系问题

例5 (2020·湖南张家界.高三期末)已知圆22:(3)(4)4M x y -++=与圆22

:9N x y +=,则两圆的位

置关系为( ) A .内切 B .外切

C .相交

D .外离

[玩转跟踪]

1.(2020·贵州省思南中学高一期末)圆x 2+y 2-2x -3=0与圆x 2+y 2-4x +2y +3=0的位置关系是( ) A .相离

B .内含

C .相切

D .相交

2.过两圆x 2+y 2+6x +4y =0及x 2+y 2+4x +2y -4=0的交点的直线方程是( ) A .x +y +2=0 B .x +y -2=0 C .5x +3y -2=0 D .不存在

[玩转练习]

1.(2019?全国)若直线5x =与圆2260x y x a +-+=相切,则(a = ) A .13

B .5

C .5-

D .13-

2.(2018?新课标Ⅲ)直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则

ABP ?面积的取值范围是( )

A .[2,6]

B .[4,8]

C

D

3.(2016?山东)已知圆22:20(0)M x y ay a +-=>截直线0x y +=

所得线段的长度是M 与圆

22:(1)(1)1N x y -+-=的位置关系是( ) A .内切

B .相交

C .外切

D .相离

4.(2016?北京)圆22(1)2x y ++=的圆心到直线3y x =+的距离为( ) A .1

B .2

C

D

.5.(2016?新课标Ⅱ)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则(a = ) A .43

-

B .34

-

C

D .2

6.(2019?浙江)已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于点(2,1)A --,则m = ,r = .

7.(2018?新课标Ⅰ)直线1y x =+与圆22230x y y ++-=交于A ,B 两点,则||AB = .

8.(2020?天津卷)

已知直线80x -+=和圆222(0)x y r r +=>相交于,A B 两点.若||6AB =,则r 的值为_________.

9.(2020·江苏建邺.高三期中)已知圆221216960x y x y +-++=圆心为C ,O 为坐标原点,则以OC 为

直径的圆的标准方程为_____.

10.(2020·景东彝族自治县第一中学高三月考)圆C 的圆心为点()8,3-,且经过点()5,1A ,则圆C 的方程为________.

11.(2020·开封市第二十五中学高三期末)若直线0x y +=与圆()()2

2

12x m y -+-=相切,则m =( ) A .1

B .1-

C .1-或3

D .3-或1

12.(2020·江苏泰州.

高三期末)过点P 且与圆224x y +=相切的直线方程 ___.

13.(2020·勃利县高级中学高三期末)若圆心坐标为()2,1-的圆被直线10x y --=

截得的弦长为则这个圆的方程是( ) A .()()2

2

212x y -++= B .()()22

218x y -++= C .()()2

2

214x y -++=

D .()()2

2

2112x y -++=

14.(2020·黑龙江高三期末)圆M :x 2+y 2+4x =0与圆N :(x +6)2+(y ﹣3)2=9的位置关系是( ) A .内切

B .相交

C .外切

D .相离

15.(2020·广东高三期末)已知圆C 1:x 2+y 2+2x ﹣4y +4=0,圆C 2:x 2+y 2﹣4x +4y ﹣1=0,则圆C 1与圆C 2( ) A .相交 B .外切

C .内切

D .外离

全国高考数学直线与圆的方程试题汇编

全国高考数学直线与圆的方程试题汇编 一、选择题: 1.(全国Ⅱ卷文科3)原点到直线052=-+y x 的距离为 ( D ) A .1 B .3 C .2 D .5 2.(福建文科2)“a =1”是“直线x +y =0和直线x -ay =0互相垂直”的 ( C ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 3.(四川理科4文科6)将直线3y x =绕原点逆时针旋转90?,再向右平移1个单位,所得到的直线 为 ( A ) A .1133 y x =- + B .1 13 y x =- + C .33y x =- D .1 13 y x = + 解析:本题有新意,审题是关键.旋转90?则与原直线垂直,故旋转后斜率为13 -.再右移1得 1 (1)3 y x =--. 选A .本题一考两直线垂直的充要条件,二考平移法则.辅以平几背景之旋转变换. 4.(全国I 卷理科10)若直线 1x y a b +=通过点(cos sin )M αα,,则 ( B ) A .2 2 1a b +≤ B .22 1a b +≥ C .22111a b +≤ D . 2 211 1a b +≥ 5.(重庆理科7)若过两点P 1(-1,2),P 2(5,6)的直线与x 轴相交于点P ,则点P 分有向线段12PP 所成的 比λ的值为 ( A ) A .- 13 B .- 15 C . 15 D . 13 (重庆文科4)若点P 分有向线段AB 所成的比为- 1 3,则点B 分有向线段PA 所成的比是( A ) A .- 32 B .- 12 C .12 D .3 6.(安徽理科8文科10)若过点(4,0)A 的直线l 与曲线2 2 (2)1x y -+=有公共点,则直线l 的斜率 的取值范畴为 ( C ) A .[ B .( C .[ D .( 7.(辽宁文、理科3)圆2 2 1x y +=与直线2y kx =+没有.. 公共点的充要条件是 ( C )

圆的方程_基础 知识讲解

圆的方程 编稿:丁会敏 审稿:王静伟 【学习目标】 1.掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程,能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题,并会推导圆的标准方程. 2.掌握圆的一般方程的特点,能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径;能用待定系数法,由已知条件导出圆的方程. 【要点梳理】 【高清课堂:圆的方程370891 知识要点】 要点一:圆的标准方程 222()()x a y b r -+-=,其中()a b ,为圆心,r 为半径. 要点诠释: (1)如果圆心在坐标原点,这时00a b ==,,圆的方程就是2 2 2 x y r +=.有关图形特征与方程的转化:如:圆心在x 轴上:b=0;圆与y 轴相切时:||a r =;圆与x 轴相切时:||b r =;与坐标轴相切时: ||||a b r ==;过原点:222a b r += (2)圆的标准方程2 2 2 ()()x a y b r -+-=?圆心为()a b ,,半径为r ,它显现了圆的几何特点. (3)标准方程的优点在于明确指出了圆心和半径.由圆的标准方程可知,确定一个圆的方程,只需要a 、b 、r 这三个独立参数,因此,求圆的标准方程常用定义法和待定系数法. 要点二:点和圆的位置关系 如果圆的标准方程为2 2 2 ()()x a y b r -+-=,圆心为()C a b ,,半径为r ,则有 (1)若点()00M x y ,在圆上()()2 2 200||CM r x a y b r ?=?-+-= (2)若点()00M x y ,在圆外()()2 2 200||CM r x a y b r ?>?-+-> (3)若点()00M x y ,在圆内()()2 2 200||CM r x a y b r ?时,方程2 2 0x y Dx Ey F ++++=叫做圆的一般方程.,22D E ?? - - ?? ?为圆心, 为半径. 要点诠释: 由方程2 2 0x y Dx Ey F ++++=得22 224224D E D E F x y +-? ???+++= ? ?? ??? (1)当2240D E F +-=时,方程只有实数解,22D E x y =- =-.它表示一个点(,)22 D E --. (2)当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.

高中数学圆的方程典型例题总结归纳(极力推荐)

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2 = ++==AC r . 故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(2 2 . ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢? 类型二:切线方程、切点弦方程、公共弦方程 例5 已知圆42 2 =+y x O :,求过点()42, P 与圆O 相切的切线. 解:∵点()42, P 不在圆O 上,∴切线PT 的直线方程可设为()42+-=x k y 根据r d = ∴ 21422 =++-k k 解得4 3 = k

高三总复习直线与圆的方程知识点总结

直线与圆的方程 一、直线的方程 1、倾斜角: ,围0≤α<π, x l //轴或与x 轴重合时,α=00 。 2、斜率: k=tan α α与κ的关系:α=0?κ=0 已知L 上两点P 1(x 1,y 1) 0<α< 02 >?k π P 2(x 2,y 2) α= κπ ?2 不存在 ?k= 1 212x x y y -- 022

二、两直线的位置关系 (说明:当直线平行于坐标轴时,要单独考虑) 2、L 1 到L 2的角为0,则1 21 21tan k k k k ?+-= θ(121-≠k k ) 3、夹角:1 21 21tan k k k k +-= θ 4、点到直线距离:2 2 00B A c By Ax d +++= (已知点(p 0(x 0,y 0),L :AX+BY+C=0) ①两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0?2 221B A c c d +-= ②与AX+BY+C=0平行且距离为d 的直线方程为Ax+By+C ±022 =+B A d ③与AX+BY+C 1=0和AX+BY+C 2=0平行且距离相等的直线方程是 02 2 1=++ +C C BY AX 5、对称:(1)点关于点对称:p(x 1,y 1)关于M (x 0,y 0)的对称)2,2(1010Y Y X X P --'

2021届高考数学(理)考点复习:圆的方程(含解析)

2021届高考数学(理)考点复习 圆的方程 圆的定义与方程 定义 平面内到定点的距离等于定长的点的轨迹叫做圆 方 程 标准 式 (x -a )2+(y -b )2=r 2(r >0) 圆心为(a ,b ) 半径为r 一 般 式 x 2+y 2+Dx +Ey +F =0 充要条件:D 2+E 2-4F >0 圆心坐标:????-D 2,-E 2 半径r =1 2 D 2+ E 2-4F 概念方法微思考 1.二元二次方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的条件是什么? 提示 ???? ? A =C ≠0, B =0, D 2+ E 2-4A F >0. 2.点与圆的位置关系有几种?如何判断? 提示 点和圆的位置关系有三种. 已知圆的标准方程(x -a )2+(y -b )2=r 2,点M (x 0,y 0), (1)点在圆上:(x 0-a )2+(y 0-b )2=r 2; (2)点在圆外:(x 0-a )2+(y 0-b )2>r 2; (3)点在圆内:(x 0-a )2+(y 0-b )2

, 半径为1的圆经过点(3,4),可得该圆的圆心轨迹为(3,4)为圆心,1为半径的圆, 故当圆心到原点的距离的最小时, 连结OB ,A 在OB 上且1AB =,此时距离最小, 由5OB =,得4OA =, 即圆心到原点的距离的最小值是4, 故选A . 2.(2018?天津)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________. 【答案】22(1)1x y -+=(或2220)x y x +-= 【解析】【方法一】根据题意画出图形如图所示, 结合图形知经过三点(0,0),(1,1),(2,0)的圆, 其圆心为(1,0),半径为1, 则该圆的方程为22(1)1x y -+=. 【方法二】设该圆的方程为220x y Dx Ey F ++++=, 则0 42020F D F D E F =?? ++=??+++=? , 解得2D =-,0E F ==; ∴所求圆的方程为2220x y x +-=. 故答案为:22(1)1x y -+=(或2220)x y x +-=.

高一数学圆的方程、直线与圆位置关系典型例题

高一数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-.∵圆心在0=y 上,故0=b .∴圆的方程为 222)(r y a x =+-.又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2=++==AC r . 故所求圆的方程为20)1(2 2 =++y x .又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22.∴点P 在圆外. 例2 求半径为4,与圆04242 2 =---+y x y x 相切,且和直线0=y 相切的圆的方程. 解:则题意,设所求圆的方程为圆2 22)()(r b y a x C =-+-: . 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆04242 2 =---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA . (1)当)4,(1a C 时,2 2 2 7)14()2(=-+-a ,或2 2 2 1)14()2(=-+-a (无解),故可得 1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .

直线与圆知识点及经典例题

圆的方程、直线和圆的位置关系 【知识要点】 一、圆的定义:平面内与一定点距离等于定长的点的轨迹称为圆 (一)圆的标准方程这个方程叫做圆的标准方程。 说明: 1 、若圆心在坐标原点上,这时,则圆的方程就是。 2、圆的标准方程的两个基本要素:圆心坐标和半径;圆心和半径分别确定了圆的位置和大小,从而确定了 圆,所以,只要三个量确定了且〉0,圆的方程就给定了。 就是说要确定圆的方程,必须具备三个独立的条件确定,可以根据条件,利用待定系数法来解决。 (二)圆的一般方程 将圆的标准方程, 展开可得。可见,任何一个圆的方程都可以写成: 问题:形如的方程的曲线是不是圆 将方程左边配方得: (1)当〉0时,方程(1 )与标准方程比较,方程表示以为圆心,以为半径的圆。, (3)当v 0时,方程没有实数解,因而它不表示任何图形。 圆的一般方程的定义: 当〉0时,方程称为圆的一般方程? 圆的一般方程的特点: ( 1 )和的系数相同,不等于零; ( 2)没有xy 这样的二次项。 (三)直线与圆的位置关系 1、直线与圆位置关系的种类 ( 1 )相离--- 求距离;(2) 相切--- 求切线;( 3)相交--- 求焦点弦长。 2、直线与圆的位置关系判断方法: 几何方法主要步骤: ( 1)把直线方程化为一般式,利用圆的方程求出圆心和半径 ( 2)利用点到直线的距离公式求圆心到直线的距离 (3)作判断:当d>r时,直线与圆相离;当 d = r时,直线与圆相切;当d0时,直线与圆相交。 【典型例题】 类型一:圆的方程 例 1 求过两点、且圆心在直线上的圆的标准方程并判断点与圆的关系. 变式1:求过两点、且被直线平分的圆的标准方程. 变式2:求过两点、且圆上所有的点均关于直线对称的圆的标准方程. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点与圆的位置关系,只须看点与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为????圆心在上,故????圆的方程为. 又???该圆过、两点.??? 解之得:, 所以所求圆的方程为.解法二:(直接求出圆心坐标和半径) 因为圆过、两点,所以圆心必在线段的垂直平分线上,又因为,故的斜率为1,又的中点为,故的垂直平分线 的方程为:即. 又知圆心在直线上,故圆心坐标为.??半径. 故所求圆的方程为.又点到圆心的距离为

高一数学圆的方程经典例题

典型例题一 例1 圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(22=-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?= d . 如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意. 又123=-=-d r . ∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个. 解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点. 设所求直线为043=++m y x ,则14 3112 2 =++= m d , ∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :. 设圆9)3()3(2 2 1=-+-y x O : 的圆心到直线1l 、2l 的距离为1d 、2d ,则 34 36 343322 1=+-?+?=d ,14 316 34332 2 2=+-?+?= d . ∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个. 说明:对于本题,若不留心,则易发生以下误解:

设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?=d . ∴圆1O 到01143=-+y x 距离为1的点有两个. 显然,上述误解中的d 是圆心到直线01143=-+y x 的距离,r d <,只能说明此直线与圆有两个交点,而不能说明圆上有两点到此直线的距离为1. 到一条直线的距离等于定值的点,在与此直线距离为这个定值的两条平行直线上,因此题中所求的点就是这两条平行直线与圆的公共点.求直线与圆的公共点个数,一般根据圆与直线的位置关系来判断,即根据圆心与直线的距离和半径的大小比较来判断. 典型例题三 例3 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2=++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 124-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为: 23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C

最新直线与方程和圆与方程-知识点总结

第三章 直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0°.因此,倾斜角的取值范围是0180α?≤

数学高考知识点之 直线与圆的方程

数学高考知识点之 直线和圆的方程 考试内容: 直线的倾斜角和斜率,直线方程的点斜式和两点式.直线方程的一般式. 两条直线平行与垂直的条件.两条直线的交角.点到直线的距离. 用二元一次不等式表示平面区域.简单的线性规划问题. 曲线与方程的概念.由已知条件列出曲线方程. 圆的标准方程和一般方程.圆的参数方程. 考试要求: (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法. (6)掌握圆的标准方程和一般方程,了解参数方程的概念。理解圆的参数方程. §07. 直线和圆的方程 知识要点 一、直线方程. 1. 直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是)0(1800παα ≤≤. 注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在. ②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定. 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 特别地,当直线经过两点),0(),0,(b a ,即直线在x 轴,y 轴上的截距分别为)0,0(,≠≠b a b a 时,直线方程是: 1=+b y a x . 注:若232-- =x y 是一直线的方程,则这条直线的方程是232--=x y ,但若)0(23 2≥--=x x y 则不是这条线. 附:直线系:对于直线的斜截式方程b kx y +=,当b k ,均为确定的数值时,它表示一条确定的直线,如果b k ,变化时,对应的直线也会变化.①当b 为定植,k 变化时,它们表示过定点(0,b )的直线束.②当k 为定值,b 变化时,它们表示一组平行直线. 3. ⑴两条直线平行: 1l ∥212k k l =?两条直线平行的条件是:①1l 和2l 是两条不重合的直线. ②在1l 和2l 的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误. (一般的结论是:对于两条直线21,l l ,它们在y 轴上的纵截距是21,b b ,则1l ∥212k k l =?,

高中数学直线与圆的方程知识点总结

高中数学之直线与圆的方程 一、概念理解: 1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°; ③范围:0°≤α<180° 。 2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。 3、斜率与坐标:1 21 22121tan x x y y x x y y k --=--= =α ①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。 4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在) 特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=?k k 。 ②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。 ③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程: ①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(21211 21 121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接 带入即可; ④截距式: 1=+b y a x 将已知截距坐标),0(),0,( b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。 2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可

圆的方程经典题目带答案

圆的方程经典题目 1.求满足下列条件的圆的方程 (1)过点A(5,2)和B(3,-2),且圆心在直线32-=x y 上;(2)圆心在835=-y x 上,且与两坐标轴相切;(3)过ABC ?的三个顶点)5,5()2,2()5,1(C B A 、、---;(4)与y 轴相切,圆心在直线03=-y x 上,且直线 x y =截圆所得弦长为72;(5)过原点,与直线1:=x l 相切,与圆1)2()1(:2 2 =-+-y x C 相外切;(6)以C(1,1)为圆心,截直线2-=x y 所得弦长为22;(7)过直线042:=++y x l 和圆0142:2 2 =+-++y x y x C 的交点,且面积最小的圆的方程. (8)已知圆满足①截y 轴所得弦长为2;②被x 轴分成两段圆弧,其弧长的比为1:3③圆心到直线02:=-y x l 的距离为52.0,求该圆的方程. (9)求经过)3,1()2,4(-B A 两点且在两坐标轴上的四个截距之和是2的圆的方程 2、已知方程0916)41(2)3(24222=++-++-+m y m x m y x 表示一个圆(1)求实数m 的取值范围 (2)求该圆半径r 的取值范围(3)求面积最大的圆的方程(4)求圆心的轨迹方程 1. 已知圆252 2 =+y x , 求下列相应值

(1)过)4,3(-的切线方程(2)过)7,5(的切线方程、切线长;切点弦方程、切点弦长 (3)以)2,1(为中点的弦的方程 (4)过)2,1(的弦的中点轨迹方程 (5)斜率为3的弦的中点的轨迹方程 2. 已知圆 062 2 =+-++m y x y x 与直线032=-+y x 相交于Q P 、两点,O 为坐标原点,若OQ OP ⊥,求实数m 的值. 3、已知直线b x y l +=:与曲线21:x y C -=有两个公共点,求b 的取值范围 4、一束光线通过点)18,25(M 射到x 轴上,被反射到圆25)7(:2 2 =-+y x C 上.求: (1)通过圆心的反射线方程,(2)在x 轴上反射点A 的活动范围. 5、圆03422 2 =-+++y x y x 上到直线0=++m y x 的距离为2的点的个数情况 已知两圆01010:2 2 1=--+y x y x O 和04026:2 2 2=--++y x y x O (1)判断两圆的位置关系 (2)求它们的公共弦所在的方程 (3)求公共弦长 (4)求公共弦为直径的圆的方程. 题型五、最值问题 思路1:几何意义 思路2:参数方程 思路3、换元法 思路4、函数思想 1. 实数y x ,满足012462 2 =+--+y x y x (1)求 x y 的最小值 (2)求2 2y x ++32-y 的最值;(3)求y x 2-的最值(4)|143|-+y x 的最值 2. 圆25)2()1(:2 2=-+-y x C 与)(047)1()12(:R m m y m x m l ∈=--+++.(1)证明:不论m 取什么实数直线l 与圆C 恒相交(2)求直线l 被圆C 截得最短弦长及此时的直线方程 3、平面上有A (1,0),B (-1,0)两点,已知圆的方程为()()2 2 2342x y -+-=.⑴在圆上求一点1P 使△AB 1P 面积最大并求出此面积;⑵求使2 2 AP BP +取得最小值时的点P 的坐标. 4、已知P 是0843:=++y x l 上的动点,PB PA ,是圆01222 2 =+--+y x y x 的两条切线,A 、B 是切点, C 是圆心,那么四边形PACB 的面积的最小值为 5、已知圆的方程为0862 2=--+y x y x .设该圆过点(3,5)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为_________ 6、已知圆的方程为0862 2=--+y x y x .设该圆过点(3,5)的互相垂直的弦分别为AC 和BD ,则四边形ABCD 的面积为_________

直线和圆的方程知识点总结讲课稿

直线和圆的方程知识 点总结

一、直线方程. 1. 直线的倾斜角 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 3. ⑴两条直线平行: 1l 推论:如果两条直线21,l l 的倾斜角为21,αα则1l ∥212αα=?l . ⑵两条直线垂直: 两条直线垂直的条件:①设两条直线1l 和2l 的斜率分别为1k 和2k ,则有12121-=?⊥k k l l 4. 直线的交角: 5. 过两直线? ??=++=++0:0:22221111C y B x A l C y B x A l 的交点的直线系方程λλ(0)(222111=+++++C y B x A C y B x A 为参数,0222=++C y B x A 不包括在内) 6. 点到直线的距离: ⑴点到直线的距离公式:设点),(00y x P ,直线P C By Ax l ,0:=++到l 的距离为d ,则有2200B A C By Ax d +++= . 注: 1. 两点P 1(x 1,y 1)、P 2(x 2,y 2)的距离公式:21221221)()(||y y x x P P -+-=. 2. 定比分点坐标分式。若点P(x,y)分有向线段1212 PP PP PP λλ=u u u r u u u r 所成的比为即,其中P 1(x 1,y 1),P 2(x 2,y 2).则 λλλλ++=++=1,121 21y y y x x x 特例,中点坐标公式;重要结论,三角形重心坐标公式。 3. 直线的倾斜角(0°≤α<180°)、斜率:αtan =k 4. 过两点1212222111),(),,(x x y y k y x P y x P --=的直线的斜率公式:. 12()x x ≠

高中数学圆的方程典型例题及详细解答

新课标高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

高考数学复习直线与圆的位置关系

7.6 直线与圆的位置关系 ●知识梳理 直线和圆 1.直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系. ①Δ>0,直线和圆相交. ②Δ=0,直线和圆相切. ③Δ<0,直线和圆相离. 方法二是几何的观点,即把圆心到直线的距离d 和半径R 的大小加以比较. ①d <R ,直线和圆相交. ②d =R ,直线和圆相切. ③d >R ,直线和圆相离. 2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k 或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况. 3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题. ●点击双基 1.设m >0,则直线2(x +y )+1+m =0与圆x 2+y 2=m 的位置关系为 A.相切 B.相交 C.相切或相离 D.相交或相切 解析:圆心到直线的距离为d = 2 1m +,圆半径为m . ∵d -r =21m +-m =21(m -2m +1)=2 1(m -1)2≥0, ∴直线与圆的位置关系是相切或相离. 答案:C 2.圆x 2+y 2-4x +4y +6=0截直线x -y -5=0所得的弦长等于 A.6 B.2 25 C.1 D.5 解析:圆心到直线的距离为 22,半径为2,弦长为222)22()2(-=6. 答案:A 3.圆x 2+y 2-4x =0在点P (1,3)处的切线方程为 A.x +3y -2=0 B.x +3y -4=0 C.x -3y +4=0 D.x -3y +2=0 解法一: x 2+y 2-4x =0

圆方程知识点总结典型例题

圆与方程 1. 圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-. 特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+. 2. 点与圆的位置关系: (1). 设点到圆心的距离为d ,圆半径为r : a.点在圆内 d <r ; b.点在圆上 d=r ; c.点在圆外 d >r (2). 给定点),(00y x M 及圆222)()(:r b y a x C =-+-. ①M 在圆C 内22020)()(r b y a x <-+-? ②M 在圆C 上22020)()r b y a x =-+-? ( ③M 在圆C 外22020)()(r b y a x >-+-? (3)涉及最值: ① 圆外一点B ,圆上一动点P ,讨论PB 的最值 min PB BN BC r ==- max PB BM BC r ==+ ② 圆内一点A ,圆上一动点P ,讨论PA 的最值 min PA AN r AC ==- max PA AM r AC ==+ 思考:过此A 点作最短的弦(此弦垂直AC ) 3. 圆的一般方程:022=++++F Ey Dx y x .

(1) 当042 2 >-+F E D 时,方程表示一个圆,其中圆心??? ??--2,2 E D C ,半径2 422F E D r -+= . (2) 当0422=-+F E D 时,方程表示一个点??? ??-- 2,2 E D . (3) 当0422<-+ F E D 时,方程不表示任何图形. 注:方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且 0422φAF E D -+. 4. 直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+- 圆心到直线的距离2 2 B A C Bb Aa d +++= 1)无交点直线与圆相离??>r d ; 2)只有一个交点直线与圆相切??=r d ; 3)有两个交点直线与圆相交???时,直线与圆有2个交点,,直线与圆相交; (2)当0=?时,直线与圆只有1个交点,直线与圆相切; (3)当0

直线与圆及其方程高考真题分类解析

直线与圆及其方程高考真题分类解析(文科全国卷)一、高考考点梳理 (一)、直线的倾斜角与斜率 1.直线的倾斜角 ①定义:在平面直角坐标系中,对于一条与x轴相交的直线L,把x轴(正方向)按逆时针方向绕着交点旋转到和直线L重合所成的角,叫作直线L的倾斜角,当直线L和x轴平行时,它的倾斜角为0. ②范围:直线倾斜角的取值范围是[0,π). 2.直线的斜率 ①定义:一条直线的倾斜角α的正切值叫作这条直线的斜率。斜率常用小写字母k表示,即k=tanα,倾斜角是90°的直线斜率不存在. ②过两点的直线的斜率公式 经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为:k=y 2 -y1 x 2 -x1 . (二) 、直线方程的五种形式 (三) 、两条直线的平行与垂直 1.两条直线平行:对于两条不重合的直线l1,l2,其斜率分别为k1,k2, 则有l1∥l2?k1=k2. 特别地,当直线l1,l2的斜率都不存在时,l1与l2也平行. 2.两条直线垂直:如果两条直线l1,l2斜率都存在,设为k1,k2,则l1⊥l2?k1·k2=-1. 特别地,当一条直线斜率为零,另一条直线斜率

不存在时,两条直线也垂直. (四) 、两条直线的交点坐标 1.直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组???A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0 的解一一对应. (1).相交?方程组有唯一解,交点坐标就是方程组的解; (2).平行?方程组无解; (3).重合?方程组有无数个解. (五) 、距离公式 1. 两点间的距离公式 平面上任意两点A (x 1,y 1),B (x 2,y 2)间的距离公式为|AB |=(x 2-x 1)2+(y 2-y 1)2 2.点到直线的距离公式: 平面上任意一点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C | A 2+ B 2 . 3.两条平行直线间的距离公式 :一般地,两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离 。 (六) 、线段的中点坐标公式 若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ), 则? ????x =x 1 +x 2 2,y =y 1 +y 2 2, (七) 、圆的定义和圆的方程

知识梳理圆的方程(基础)

圆的方程 【考纲要求】 1.掌握圆的标准方程的特点,能根据所给有关圆心、半径的具体条件准确地写出圆的标准方程, 2.能运用圆的标准方程正确地求出其圆心和半径,解决一些简单的实际问题,并会推导圆的标准方程. 3.掌握圆的一般方程的特点,能将圆的一般方程化为圆的标准方程从而求出圆心的坐标和半径; 4.能用待定系数法,由已知条件导出圆的方程. 【知识网络】 【考点梳理】 【高清课堂:圆的方程405440 知识要点】 考点一:圆的标准方程 222()()x a y b r -+-=,其中()a b ,为圆心,r 为半径. 要点诠释:(1)如果圆心在坐标原点,这时00a b ==,,圆的方程就是222 x y r +=.有关图形特征与方程的转化:如:圆心在x 轴上:b=0;圆与y 轴相切时:||a r =;圆与x 轴相切时:||b r =;与坐标轴相切时:||||a b r ==;过原点:2 2 2 a b r +=. (2)圆的标准方程2 2 2 ()()x a y b r -+-=?圆心为()a b ,,半径为r ,它显现了圆的几何特点. (3)标准方程的优点在于明确指出了圆心和半径.由圆的标准方程可知,确定一个圆的方程,只需要a 、b 、r 这三个独立参数,因此,求圆的标准方程常用定义法和待定系数法. 考点二:圆的一般方程 当2 2 40D E F +->时,方程22 0x y Dx Ey F ++++=叫做圆的一般方程.,22D E ?? - - ?? ? 为圆心,. 圆的方程 圆的一般方程 简单应用 圆的标准方程 点与圆的关系

要点诠释:由方程2 2 0x y Dx Ey F ++++=得22 224224D E D E F x y +-? ???+++= ? ?? ??? (1)当22 40D E F +-=时,方程只有实数解,22D E x y =- =-.它表示一个点(,)22 D E --. (2)当2 2 40D E F +-<时,方程没有实数解,因而它不表示任何图形. (3)当22 40D E F +->时,可以看出方程表示以,2 2D E ?? -- ???. 考点三:点和圆的位置关系 如果圆的标准方程为222()()x a y b r -+-=,圆心为()C a b ,,半径为r ,则有 (1)若点()00M x y ,在圆上()()2 2 2 00||CM r x a y b r ?=?-+-= (2)若点()00M x y ,在圆外()()2 2 2 00||CM r x a y b r ?>?-+-> (3)若点()00M x y ,在圆内()()2 2 2 00||CM r x a y b r ?

相关文档
最新文档