第6章-陀螺仪漂移及测试
陀螺仪理论及应用

第二节 自由陀螺的视运动及其应用
一、 自由陀螺的视运动
将自由陀螺放在地球的北极,并使转子轴水平, 将自由陀螺放在地球的北极,并使转子轴水平,这时转子轴与 地球极轴互相垂直。 地球极轴互相垂直。站在地球北极上的观察者就会看到陀螺的 自转轴自东向西转动(从上方看H轴顺时针方向旋转),并且 自转轴自东向西转动(从上方看H轴顺时针方向旋转),并且 ), 转动周期与地球自转周期相同,即每24小时旋转一周。 24小时旋转一周 转动周期与地球自转周期相同,即每24小时旋转一周。
陀螺相对动参考系的运动
哈尔滨工程大学自动化学院
刘繁明
前面,我们都是假定陀螺直接安装在惯性基座上,建 前面,我们都是假定陀螺直接安装在惯性基座上, 立了以绕内、外环的转角为广义坐标的运动微分方程, 立了以绕内、外环的转角为广义坐标的运动微分方程,讨 论陀螺在外力矩作用下相对惯性空间的运动规律,但是, 论陀螺在外力矩作用下相对惯性空间的运动规律,但是, 如果计及地球的自转, 如果计及地球的自转,并且考虑实际的陀螺仪总是安装在 运动物体如飞机、舰船上, 运动物体如飞机、舰船上,那么绝对静止的基座是不存在 在这种情况下, 的。在这种情况下,我们就不仅要了解陀螺相对惯性空间 的运动规律, 的运动规律,更重要的是要了解陀螺相对运动基座的运动 规律,进而掌握飞行器、舰船运动的各种参数。 规律,进而掌握飞行器、舰船运动的各种参数。 根据一般运动学原理, 根据一般运动学原理,我们把陀螺相对惯性空间的运 动看成两种运动, 动看成两种运动,即运动基座相对惯性空间的牵连运动和 陀螺相对运动基座的相对运动的合成, 陀螺相对运动基座的相对运动的合成,所以在讨论实际陀 螺的运动时,不仅要考虑陀螺本身的运动情况, 螺的运动时,不仅要考虑陀螺本身的运动情况,还必须要 考虑基座的运动。例如, 考虑基座的运动。例如,当利用安装在载体内的陀螺仪来 测量载体的航向和姿态时, 测量载体的航向和姿态时,就必须考虑载体相对地球的运 以及地球相对惯性空间的运动。 动,以及地球相对惯性空间的运动。
陀螺仪芯片漂移误差-概述说明以及解释

陀螺仪芯片漂移误差-概述说明以及解释1.引言1.1 概述概述陀螺仪芯片是一种常用的传感器,在许多电子设备和导航系统中被广泛应用。
它可以测量物体的角速度,并提供重要的姿态信息。
然而,由于各种因素的干扰和不完美的设计,陀螺仪芯片会存在漂移误差问题。
这种误差会导致陀螺仪芯片输出的姿态信息与实际姿态有一定的偏差,严重影响了其测量精度和可靠性。
本文将对陀螺仪芯片漂移误差进行深入研究,并探讨其对陀螺仪芯片性能的影响。
首先,我们将介绍陀螺仪芯片的工作原理,解释其如何测量角速度和提供姿态信息。
然后,我们将详细定义陀螺仪芯片漂移误差,并分析其产生原因和影响因素。
在正文的第二部分,我们将讨论影响陀螺仪芯片漂移误差的因素。
这些因素包括温度变化、机械振动、电磁干扰等,它们会扰乱陀螺仪芯片的精确测量。
我们将分析每个因素的影响程度和可能的解决方法,以期降低漂移误差并提高陀螺仪芯片的性能。
最后,在结论部分,我们将总结陀螺仪芯片漂移误差的影响和解决方法。
我们将指出陀螺仪芯片漂移误差对导航系统、无人机等应用领域的重要性,并提出一些可能的改进方向,以进一步减少漂移误差,提高其测量精度和可靠性。
通过对陀螺仪芯片漂移误差的深入研究和讨论,本文旨在增加人们对陀螺仪芯片性能的认识,并对相关领域的研究和实践工作提供有益的指导。
我们相信,通过更好地理解和解决陀螺仪芯片漂移误差问题,我们将能够推动相关技术的发展并取得更好的应用效果。
文章结构部分可以简要介绍整篇文章的组织结构和各个章节的主要内容。
具体内容如下:1.2 文章结构本文将主要围绕陀螺仪芯片漂移误差展开讨论,并按以下章节进行组织和阐述:2.1 陀螺仪芯片的工作原理本节将介绍陀螺仪芯片的基本工作原理,包括其内部构造和运作方式等。
通过对陀螺仪芯片工作原理的介绍,读者可以更好地理解漂移误差的产生机制和影响因素。
2.2 陀螺仪芯片漂移误差的定义在本节中,将详细介绍陀螺仪芯片漂移误差的概念和定义。
陀螺仪实验报告

university of science and technology of china 96 jinzhai road, hefei anhui 230026,the people’s republic of china陀螺仪实验实验报告李方勇 pb05210284 sist-05010 周五下午第29组2号2006.10.22 实验题目陀螺仪实验(演示实验)实验目的1、通过测量角加速度确定陀螺仪的转动惯量;2、通过测量陀螺仪的回转频率和进动频率确定陀螺仪的转动惯量;3、观察和研究陀螺仪的进动频率与回转频率与外力矩的关系。
实验仪器①三轴回转仪;②计数光电门;③光电门用直流稳压电源(5伏);④陀螺仪平衡物;⑤数字秒表(1/100秒);⑥底座(2个);⑦支杆(2个);⑧砝码50克+10克(4个);⑨卷尺或直尺。
实验原理1、如图2用重物(砝码)落下的方法来使陀螺仪盘转动,这时陀螺仪盘的角加速度?为:?=d?r/dt=m/ip (1) 式中?r为陀螺仪盘的角速度,ip为陀螺仪盘的转动惯量。
m=f.r为使陀螺仪盘转动的力矩。
由作用和反作用定律,作用力为:f=m(g-a) (2) 式中g为重力加速度,a为轨道加速度(或线加速度)轨道加速度与角加速度的关系为:a=2h/tf2; ?=a/r (3) 式中h为砝码下降的高度,r如图1所示为转轴的半径,tf为下落的时间。
将(2)(3)代入(1)2ip?2mr2t?h2mgr可得: (4)2f测量多组tf和h的值用作图法或最小二乘法拟合数据求出陀螺仪盘的转动惯量。
2、如图3所示安装好陀螺仪,移动平衡物w使陀螺仪ab轴(x轴)在水平位置平衡,用拉线的方法使陀螺仪盘绕x轴转动(尽可能提高转速),此时陀螺仪具有常数的角动量l:l=ip.?r (5) 当在陀螺仪的另一端挂上砝码m(50g)时就会产生一个附加的力矩m*,这将使原来的角动量发生改变:dl/dt=m*=m*gr* (6) 由于附加的力矩m*的方向垂直于原来的角动量的方向,将使角动量l变化dl,由图1可见: dl=ld?这时陀螺仪不会倾倒,在附加的力矩m*的作用下将会发生进动。
陀螺仪漂移及测试

KM I Bx /H
ωe cos cosK
2019/12/14
19
§6.4 陀螺测试的力矩反馈法
二 力矩反馈法法中陀螺相对地理坐标系的取向
陀螺相对地理坐标系的位置需借助转台
3.陀螺自转轴沿当地铅垂线方向
z x
ey ecoscosK
ly y
ωd
Mb
mgly H
KM IBx /H
陀螺漂移产生的原因是作用在陀螺上的干扰 力矩根据干扰力矩的性质及其变化规律,干扰力 矩可以分为两类:
• 确定性干扰力矩 有规律、可试验或计算确定,易于 补偿。
• 随机性干扰力矩 无规律性。引起陀螺的随机漂移, 只能用统计方法来估计其概率统计 特性。
2019/12/14
5
§6.2 影响陀螺漂移的主要因素
d ey p
精确定位定向,即陀螺输入轴与转台轴平行,并且要使 转台在地理坐标系中精确定向。 精确地测出转台的转速。
2019/12/14
12
§6.3 陀螺测试的伺服跟踪法
二 伺服跟踪法的测速方法
首先在一段时间间隔内,观测转台相对地球的转角,然后根 据地球自转角速度沿转台方向的分量通过计算求得在这段时 间内地球相对惯性空间的转角
ie ey T
得到在同一时间间隔内转台相对惯性空间的转角
ip ie p
用时间间隔相除,即得到陀螺的漂移角速度
d ip / T ey p
2019/12/14
13
§6.3 陀螺测试的伺服跟踪法
三 伺服跟踪法的转台轴的取向
1. 输入轴在水平面内沿东西方向
1. 摩擦力矩及其引起的漂移 2. 不平衡力矩及其引起的漂移 3. 非等弹性力矩及其引起的漂移
光纤陀螺仪测试方法

光纤陀螺仪测试方法1 范围本标准规定了作为姿态控制系统、角位移测量系统和角速度测量系统中敏感器使用的单轴干涉性光纤陀螺仪(以下简称光纤陀螺仪)的性能测试方法。
2 规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注目期的引用文件,其随后所有的修改单(不包含勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
GB 321-1980 优先数和优先系数CB 998 低压电器基本实验方法GJB 585A-1998 惯性技术术语GJB 151 军用设备和分系统电磁发射和敏感度要求3 术语、定义和符号GJB 585A-1998确立的以及下列术语、定义和符号适用于本标准。
3.1 术语和定义3.1.1 干涉型光纤陀螺仪 interferometric fiber optic gyroscope仪萨格奈克(Sagnac)效应为基础,由光纤环圈构成的干涉仪型角速度测量装置。
当绕其光纤环圈等效平面的垂线旋转时,在环圈中以相反方向传输出的两束相干光间产生相位差,其大小正比于该装置相对于惯性空间的旋转角速度,通过检测输出光干涉强度即反映出角速度的变化。
3.1.2 陀螺输入轴 input axis of gyro垂直于光纤环圈等效平面的轴。
当光纤陀螺仪绕该轴有旋转角速度输入时,产生光纤环圈相对于惯性空间输入角速度的输出信号。
3.1.3 标度因数非线性度 scale factor nonlinearity在输入角速度范围内,光纤陀螺仪输出量相对于最小二乘法拟合直线的最大偏差值与最大输出量之比。
3.1.4 零偏稳定性 bias stability当输入角速度为零时,衡量光纤陀螺仪输出量围绕其均值的离散程度。
以规定时间内输出量的标准偏差相应的等效输入角速度表示,也可称为零漂。
3.1.5 零偏重复性 bias repeatability在同样条件下及规定间隔时间内,多次通电过程中,光纤陀螺仪零偏相对其均值的离散程度。
现代导航技术第八章(陀螺仪的测试、标定与补偿)

§8.1 陀螺仪误差测试的基本方法
2、陀螺仪误差测试的种类和方法 (2)速率传递试验 测试方法
在典型的测试中,速率转台的转动速率从零开始,逐级分成 一系列角速率值,同时记录每一级的数据。 旋转速度对于每一级设定的周期上保持常量,使得敏感器的 输出在记录前已处于稳定状态。 施加的角速率在最大和最小的期望值之间递增变化。
23
§8.1 陀螺仪误差测试的基本方法
2、陀螺仪误差测试的种类和方法 (3)温度试验
如:全温范围 下的某型号光 纤陀螺标度因 数漂移特性
24
§8.1 陀螺仪误差测试的基本方法
2、陀螺仪误差测试的种类和方法 (4)摇摆速率转台试验
此类试验的目的是确定陀螺仪及其相关电子控制电路对施加 于敏感器输入轴的振荡旋转的频率响应特性 测试设备与速率变换测试中所述的速率转台非常类似。 在该情况下,转台同样安装在合适的基座上以提供稳定性, 并施加各种预先设定频率的角运动。
28
§8.1 陀螺仪误差测试的基本方法
2、陀螺仪误差测试的种类和方法 (7)冲击试验
试验的目的是测量陀螺仪对于施加的冲击 的响应,并确定该敏感器对于施加的极短 周期(一般为毫秒级)的加速度的恢复能力。 敏感器要安装到金属台上,并将该台从给 定的距离上落到一合适形状的铅块上。 在施加冲击过程中且同样在冲击后的一定 时间内记录输出信号。陀螺仪在冲击前后 漂移均值的对比能够表明该陀螺仪特性的 瞬态或永久性变化。
20
§8.1 陀螺仪误差测试的基本方法
2、陀螺仪误差测试的种类和方法 (2)速率传递试验
输出角速率偏差(deg/s)
数据分析
与实际相比的输出偏差曲线
IFOG标度因数测试情况(10℃)
第6章-陀螺仪漂移及测试

陀螺仪的测试与标定
2018/2/25
1
§6.1 陀螺漂移的基本概念
一 自由陀螺的漂移 由于各种原因,在陀螺上往往作用有人们所不 希望的各种干扰力矩,在这些可能是很小的干扰力 矩的作用下,陀螺将产生进动,从而使角动量向量 慢慢偏离原来的方向,我们把这种现象称为陀螺的 漂移。把在干扰力矩作用下陀螺产生的进动角速度 称为陀螺的 陀螺漂移的数学模型
陀螺漂移的物理模型
ωd D0 D y a y Dz a z D yy a Dzz a
2 y 2 z
ax a ay az
Dxy a x a y D yz a y a z Dxz a x a z
一 伺服跟踪法的基本原理
双自由度陀螺的单轴转台测漂
2018/2/25 13
§6.3 陀螺测试的伺服跟踪法
二 伺服跟踪法的测速方法
d ey p
精确定位定向,即陀螺输入轴与转台轴平行,并且要使 转台在地理坐标系中精确定向。 精确地测出转台的转速。
2018/2/25
14
§6.3 陀螺测试的伺服跟踪法
2018/2/25
26
§6.5 陀螺漂移的数学模型
普遍采用的陀螺误差模型
ax a a y az
2 d D0 Dx a x D y a y Dz a z D yy a y Dzz a z2
Dxy a x a y D yz a y a z D xz a x a z (ip ) y
二 伺服跟踪法的测速方法
首先在一段时间间隔内,观测转台相对地球的转角,然后根 据地球自转角速度沿转台方向的分量通过计算求得在这段时 间内地球相对惯性空间的转角
激光陀螺的漂移

V (r )2 rdr 0
0
a
代入
1 0 V (1 b )V jP 2 a 2 a (1 e ) b a 2 2 a a (1 e )
0 jL
因为ห้องสมุดไป่ตู้
a
1 ,b ,于是,上式可写成 15 a
8S v v v r L
L R
(四)器件介绍
(五)四频差动陀螺的误差事项
对于左、右旋陀螺,考虑到比例因子与零漂项后,有
L L 2 v 2 (v2 v1 ) R R 2 v 2 (v3 v4 )
r L L L 0 L (1 A ) 2 KVA ( ) ( 2 1 ) R (1 AR )0 2 KVAR ( r )R ( ) 3 4
0 0 0 2 v H H
其中
r 2(1 A) ( A A )H 4KV A 2( )( 2 1 )
0 L R
L R A ( A A ) 2 H 2 H
由于行波2和3同是逆时针行波,所以两者相等,即有
( 2 1 ) ( 3 4 )
朗缪尔流零漂及差损零漂项倍增了!
增益介质将受纵向磁场塞曼效应的影响,使得增正、负旋光增益曲线 向相反方向移动 vB 2
1 B B 1 1 ku 2ku 2 B B 2 2 ku 2ku B 3 3 2ku 4 4 B 2ku
2 1.30 z0l02 l (1 2 )(0.15 2 ) 0.26 2 (1 2 ) a a 0 0 j g0 jVPj , ( j 1, 2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精确定位定向。即陀螺输入轴与转台轴平行,并且要使 转台在地理坐标系中精确定向。 精确测速。精确地测出转台的转速。
2020/4/2
13
§6.3 陀螺测试的伺服跟踪法
二 伺服跟踪法的测速方法
首先在一段时间间隔内,观测转台相对地球的转角,然后根 据地球自转角速度沿转台轴向的分量,通过计算求得在这段 时间内地球相对惯性空间的转角:
2020/4/2
2
§6.1 陀螺漂移的基本概念
一 自由陀螺的漂移
ωd M b / H
自由陀螺存在漂移实际上是说明工程实际中的陀 螺仪与陀螺仪模型之间的差别,这种差别的表现就 是干扰力矩的存在,干扰力矩破坏了陀螺仪的定轴 性,使陀螺仪的角动量向量在惯性空间中发生了变 化,包括其大小和方向。
2020/4/2
ax
a
ay
az
陀螺漂移的纯数学模型:
2020/4/2
6
§6.2 影响陀螺漂移的主要因素
对于确定性干扰力矩,根据其与加速度的分为:
• 与加速度无关的干扰力矩。例如弹性力矩、电磁力矩等。 • 与加速度成比例的干扰力矩。例如由于陀螺质量偏心引起 的干扰力矩。 • 与加速度平方成比例的干扰力矩。例如由非等弹性引起的 干扰力矩。
2020/4/2
3
§6.1 陀螺漂移的基本概念
二 单自由度浮子陀螺的漂移
当沿着陀螺输入轴的角速度等于什么数值时,才能使一个
闭环系统中实际使用的陀螺仪的信号器输出信号为零。这个角
速度的大小称为单自由度浮子陀螺的漂移角速度。
2020/4/2
4
§6.1 陀螺漂移的基本概念
三 双自由度浮子陀螺的漂移
漂移角速度:
d
2 dx
力矩反馈法测定漂移速度只须备有足够分辨率和精 度的电流记录装置,就能测出陀螺的瞬时漂移。对力矩 器刻度因数的稳定性和线性度有很高的要求。
2020/4/2
17
§6.4 陀螺测试的力矩反馈法
一 力矩反馈法法的原理
单自由度陀螺的力矩反馈法测漂
2020/4/2
18
§6.4 陀螺测试的力矩反馈法
一 力矩反馈法法的原理
第六章 陀螺仪的测试与标定
2020/4/2
1
§6.1 陀螺漂移的基本概念
一 自由陀螺的漂移
由于各种原因,在陀螺上往往作用有人们所不希 望的各种干扰力矩,在这些可能是很小的干扰力矩 的作用下,陀螺将产生进动,从而使角动量向量慢 慢偏离原来的方向,我们把这种现象称为陀螺的漂 移。把在干扰力矩作用下陀螺产生的进动角速度称 为陀螺的漂移角速度或角速率。
2 dy
2020/4/2
5
§6.2 影响陀螺漂移的主要因素
陀螺漂移产生的原因是作用在陀螺上的干扰 力矩根据干扰力矩的性质及其变化规律,干扰力 矩可以分为两类:
• 确定性干扰力矩 有规律、可试验或计算确定,易于 补偿。
• 随机性干扰力矩 无规律性。引起陀螺的随机漂移, 只能用统计方法来估计其概率统计 特性。
d e sin p
2020/4/2
15
§6.4 陀螺测试的力矩反馈法
一 力矩反馈法法的原理
K M I Bx iy H M b
d
Mb H
KM I Bx
/H
iy
2020/4/2
16
§6.4 陀螺测试的力矩反馈法
一 力矩反馈法法的原理
力矩反馈法采用的是力矩平衡的静力学方法。因 此,必须测量系统稳定时各个参数的数值,对系统的 稳定性如何判定有较高的要求。
陀螺相对地理坐标系的位置需借助转台
3.陀螺自转轴沿当地铅垂线方向
z x
ey e coscosK
ly y
ωd
Mb
mgly H
KM IBx /H
ωe cos cosK
2020/4/2
22
§6.5 陀螺漂移的数学模型
陀螺漂移的数学模型:描述陀螺漂移变化 规律的数学表达式。
在建立正确模型的基础上,陀螺漂移测试和数据处 理的目的就在于确定数学模型中的各个参数的大小及其 稳定性,分析这些参数与物理因素之间的关系,从而找 到改进陀螺性能的方向和途径,并为陀螺的使用提供误 差补偿数据。
一 伺服跟踪法的基本原理
2020/4/2
10
§6.3 陀螺测试的伺服跟踪法
一 伺服跟踪法的基本原理
单自由度陀螺的单轴转台测漂
2020/4/2
11
§6.3 陀螺测试的伺服跟踪法
一 伺服跟踪法的基本原理
双自由度陀螺的单轴转台测漂
2020/4/2
12
§6.3 陀螺测试的伺服跟踪法
二 伺服跟踪法的测速方法
双自由度陀螺的力矩反馈法测漂
2020/4/2
19
§6.4 陀螺测试的力矩反馈法
二 力矩反馈法法中陀螺相对地理坐标系的取向
陀螺相对地理坐标系的位置需借助转台
1.陀螺输入轴沿当地前垂线方向
y
ly
x
ey e sin
o lz
d
Mb
mglz H
K M I Bx / H esin
z
2020/4/2
ie ey T
同一时间间隔内转台相对惯性空间的转角:
ip ie p
陀螺的漂移角速度:
d ip / T ey p
2020/4/2
14
§6.3 陀螺测试的伺服跟踪法
三 伺服跟踪法的转台轴的取向
1. 输入轴在水平面内沿东西方向
d p
2. 输入轴与地球自转轴平行
d e p
3. 输入轴沿当地垂线方向
7
§6.2 影响陀螺漂移的主要因素
干扰力矩的分类及其所产生的陀螺漂移
1. 摩擦力矩及其引起的漂移 2. 不平衡力矩及其引起的漂移 3. 非等弹性力矩及其引起的漂移
2020/4/2
8
§6.3 陀螺测试的伺服跟踪法
一 伺服跟踪法的基本原理
d ey p
2020/4/2
9
§6.3 陀螺测试的伺服跟踪法
20
§6.4 陀螺测试的力矩反馈法
二 力矩反馈法法中陀螺相对地理坐标系的取向
陀螺相对地理坐标系的位置需借助转台
2.陀螺输出轴沿当地铅垂线方向
x N
yK ly
lz
ey e coscosK
z
d
Mb H
KM I Bx /H
ωe cos cosK§6.4 陀螺测试的力矩反馈法
二 力矩反馈法法中陀螺相对地理坐标系的取向
2020/4/2
23
§6.5 陀螺漂移的数学模型
漂移角速度包括三个部分,即与加速度无关的分量、 正比于加速度的分量和正比于加速度平方的分量:
ωd cn c1( a ) c2( a2 )
一般说:漂移角速度包括与比力无关的分量,正比 于比力的分量和正比于比力平方的分量。
2020/4/2
24
§6.5 陀螺漂移的数学模型