第6章-陀螺仪漂移及测试

合集下载

陀螺操作手册

陀螺操作手册
秒钟后被点亮,对于小尺寸陀螺测斜仪,启动按钮按下保持时间为 5 秒钟。 ⑦ 探管电压/电流指示仪表,当开关②置于电压位置时,显示探管供电电压,通常这个电
压在不接电缆时为 45V 左右。它随外接电缆长度(电缆电阻)的增加而升高,最高不会 超过 110V。陀螺不工作时为 110V 左右。当开关②置于电流位置时,显示探管供电电流, 这个电流在测量时为 150mA 左右,陀螺不工作时为 0mA。 ⑧ 高边/磁性按钮,该按钮用于切换高边和磁性工作方式,用于陀螺测量时,为高边和北 向高边工作方式。 ⑨ 锁定控制开关 当开关⑨设置于锁定位置(按下)时,按下启动按钮③可以启动陀螺, 进行测量。当开关⑨设置于关闭位置时,主机停止给探管供电,无法进行测量工作。关 闭陀螺后再启动,时间间隔必须大于 30 秒钟。 ⑩ 外接司钻显示器插座。
并注意上扣过程中,装有陀螺仪的抗压外壳不可有跳动,碰撞; 使用电缆绞车起、下仪器时,每次电缆从静止到运动、或相反,必须缓慢加速或缓慢
减速,加速度应小于 5cm/s²; 定向开窗侧钻过程中,仪器坐键的下放速度不可以过快,应控制在 15 米/分钟以内; 陀螺仪在工作状态下必须静止姿态,禁止晃动陀螺测斜仪探管; 控制测量温度,不要超过规定范围,否则会降低陀螺仪寿命,甚至导致测量失败; 每次开机启动陀螺测斜仪之前,必须保证仪器处于静止状态。陀螺测斜仪运行中的任
3
MDRO-021(Ф38)型陀螺测斜仪操作手册
第三章 仪器各部件说明
一、地面仪器主机(见附图 3-1)
图 3-1 主机控制箱 ① 电源总开关 ② 探管电流/电压指示切换开关 ③ 启动陀螺按钮,在开关⑨置于锁定状态下,用于启动陀螺,并开始测量。 ④ 测量控制开关,用于有线随钻/陀螺(115/230)测斜模式切换。 ⑤ 停止陀螺按钮,在开关⑨置于锁定状态时,按下停止按钮⑤可以让陀螺停止工作。 ⑥ 测量指示灯,在测量控制开关⑨置于锁定位置时,按下启动按钮③,该指示灯闪烁 30

陀螺仪理论及应用

陀螺仪理论及应用

第二节 自由陀螺的视运动及其应用
一、 自由陀螺的视运动
将自由陀螺放在地球的北极,并使转子轴水平, 将自由陀螺放在地球的北极,并使转子轴水平,这时转子轴与 地球极轴互相垂直。 地球极轴互相垂直。站在地球北极上的观察者就会看到陀螺的 自转轴自东向西转动(从上方看H轴顺时针方向旋转),并且 自转轴自东向西转动(从上方看H轴顺时针方向旋转),并且 ), 转动周期与地球自转周期相同,即每24小时旋转一周。 24小时旋转一周 转动周期与地球自转周期相同,即每24小时旋转一周。
陀螺相对动参考系的运动
哈尔滨工程大学自动化学院
刘繁明
前面,我们都是假定陀螺直接安装在惯性基座上,建 前面,我们都是假定陀螺直接安装在惯性基座上, 立了以绕内、外环的转角为广义坐标的运动微分方程, 立了以绕内、外环的转角为广义坐标的运动微分方程,讨 论陀螺在外力矩作用下相对惯性空间的运动规律,但是, 论陀螺在外力矩作用下相对惯性空间的运动规律,但是, 如果计及地球的自转, 如果计及地球的自转,并且考虑实际的陀螺仪总是安装在 运动物体如飞机、舰船上, 运动物体如飞机、舰船上,那么绝对静止的基座是不存在 在这种情况下, 的。在这种情况下,我们就不仅要了解陀螺相对惯性空间 的运动规律, 的运动规律,更重要的是要了解陀螺相对运动基座的运动 规律,进而掌握飞行器、舰船运动的各种参数。 规律,进而掌握飞行器、舰船运动的各种参数。 根据一般运动学原理, 根据一般运动学原理,我们把陀螺相对惯性空间的运 动看成两种运动, 动看成两种运动,即运动基座相对惯性空间的牵连运动和 陀螺相对运动基座的相对运动的合成, 陀螺相对运动基座的相对运动的合成,所以在讨论实际陀 螺的运动时,不仅要考虑陀螺本身的运动情况, 螺的运动时,不仅要考虑陀螺本身的运动情况,还必须要 考虑基座的运动。例如, 考虑基座的运动。例如,当利用安装在载体内的陀螺仪来 测量载体的航向和姿态时, 测量载体的航向和姿态时,就必须考虑载体相对地球的运 以及地球相对惯性空间的运动。 动,以及地球相对惯性空间的运动。

陀螺仪漂移及测试

陀螺仪漂移及测试


KM I Bx /H
ωe cos cosK
2019/12/14
19
§6.4 陀螺测试的力矩反馈法
二 力矩反馈法法中陀螺相对地理坐标系的取向
陀螺相对地理坐标系的位置需借助转台
3.陀螺自转轴沿当地铅垂线方向
z x
ey ecoscosK
ly y
ωd

Mb
mgly H

KM IBx /H
陀螺漂移产生的原因是作用在陀螺上的干扰 力矩根据干扰力矩的性质及其变化规律,干扰力 矩可以分为两类:
• 确定性干扰力矩 有规律、可试验或计算确定,易于 补偿。
• 随机性干扰力矩 无规律性。引起陀螺的随机漂移, 只能用统计方法来估计其概率统计 特性。
2019/12/14
5
§6.2 影响陀螺漂移的主要因素
d ey p
精确定位定向,即陀螺输入轴与转台轴平行,并且要使 转台在地理坐标系中精确定向。 精确地测出转台的转速。
2019/12/14
12
§6.3 陀螺测试的伺服跟踪法
二 伺服跟踪法的测速方法
首先在一段时间间隔内,观测转台相对地球的转角,然后根 据地球自转角速度沿转台方向的分量通过计算求得在这段时 间内地球相对惯性空间的转角
ie ey T
得到在同一时间间隔内转台相对惯性空间的转角
ip ie p
用时间间隔相除,即得到陀螺的漂移角速度
d ip / T ey p
2019/12/14
13
§6.3 陀螺测试的伺服跟踪法
三 伺服跟踪法的转台轴的取向
1. 输入轴在水平面内沿东西方向
1. 摩擦力矩及其引起的漂移 2. 不平衡力矩及其引起的漂移 3. 非等弹性力矩及其引起的漂移

第6章-陀螺仪漂移及测试

第6章-陀螺仪漂移及测试
第六章
陀螺仪的测试与标定
2018/2/25
1
§6.1 陀螺漂移的基本概念
一 自由陀螺的漂移 由于各种原因,在陀螺上往往作用有人们所不 希望的各种干扰力矩,在这些可能是很小的干扰力 矩的作用下,陀螺将产生进动,从而使角动量向量 慢慢偏离原来的方向,我们把这种现象称为陀螺的 漂移。把在干扰力矩作用下陀螺产生的进动角速度 称为陀螺的 陀螺漂移的数学模型
陀螺漂移的物理模型
ωd D0 D y a y Dz a z D yy a Dzz a
2 y 2 z
ax a ay az
Dxy a x a y D yz a y a z Dxz a x a z
一 伺服跟踪法的基本原理
双自由度陀螺的单轴转台测漂
2018/2/25 13
§6.3 陀螺测试的伺服跟踪法
二 伺服跟踪法的测速方法
d ey p
精确定位定向,即陀螺输入轴与转台轴平行,并且要使 转台在地理坐标系中精确定向。 精确地测出转台的转速。
2018/2/25
14
§6.3 陀螺测试的伺服跟踪法
2018/2/25
26
§6.5 陀螺漂移的数学模型
普遍采用的陀螺误差模型
ax a a y az
2 d D0 Dx a x D y a y Dz a z D yy a y Dzz a z2
Dxy a x a y D yz a y a z D xz a x a z (ip ) y
二 伺服跟踪法的测速方法
首先在一段时间间隔内,观测转台相对地球的转角,然后根 据地球自转角速度沿转台方向的分量通过计算求得在这段时 间内地球相对惯性空间的转角

激光陀螺的漂移

激光陀螺的漂移

V (r )2 rdr 0
0
a
代入
1 0 V (1 b )V jP 2 a 2 a (1 e ) b a 2 2 a a (1 e )
0 jL
因为ห้องสมุดไป่ตู้

a

1 ,b ,于是,上式可写成 15 a
8S v v v r L
L R
(四)器件介绍
(五)四频差动陀螺的误差事项
对于左、右旋陀螺,考虑到比例因子与零漂项后,有
L L 2 v 2 (v2 v1 ) R R 2 v 2 (v3 v4 )
r L L L 0 L (1 A ) 2 KVA ( ) ( 2 1 ) R (1 AR )0 2 KVAR ( r )R ( ) 3 4
0 0 0 2 v H H
其中
r 2(1 A) ( A A )H 4KV A 2( )( 2 1 )
0 L R
L R A ( A A ) 2 H 2 H
由于行波2和3同是逆时针行波,所以两者相等,即有
( 2 1 ) ( 3 4 )
朗缪尔流零漂及差损零漂项倍增了!
增益介质将受纵向磁场塞曼效应的影响,使得增正、负旋光增益曲线 向相反方向移动 vB 2
1 B B 1 1 ku 2ku 2 B B 2 2 ku 2ku B 3 3 2ku 4 4 B 2ku
2 1.30 z0l02 l (1 2 )(0.15 2 ) 0.26 2 (1 2 ) a a 0 0 j g0 jVPj , ( j 1, 2)

陀螺仪简介及MENS陀螺仪的误差分析

陀螺仪简介及MENS陀螺仪的误差分析

陀螺仪简介及MENS陀螺仪的误差分析什么是陀螺仪早在17世纪,在牛顿生活的年代,对于高速旋转刚体的力学问题已经有了比较深入的研究,奠定了机械框架式陀螺仪的理论基础。

1852年,法国物理学家傅科为了验证地球的自转,制造了最早的傅科陀螺仪,并正式提出了“陀螺”这个术语。

但是,由于当时制造工艺水平低,陀螺仪的误差很大,无法观察、验证地球的自转。

到了19世纪末20世纪初,电动机和滚珠轴承的发明,为制造高性能的陀螺仪提供了有力的物质条件。

同时,航海事业的发展推动陀螺仪进入了实用阶段。

在航海事业蓬勃发展的20世纪初期,德国探险家安休茨想乘潜艇到北极去探险,他于1904年制造出世界上第一个航海陀螺罗经,开辟了陀螺仪表在运动物体上指示方位的道路。

与此同时,德国科学家舒勒创造了“舒勒调谐理论”,这成为陀螺罗经和导航仪器的理论基础。

中国是世界文明发达最早的国家之一,在陀螺技术方面,我国也有很多发明创造。

比如在传统杂技艺术中表演的快速旋转的转碟节目,就是利用了高速旋转的刚体具有稳定性的特性。

在将高速旋转的刚体支承起来的万向架的应用方面,西汉末年,就有人创造了与现在万向支架原理完全相同的“卧褥香炉”。

这种香炉能“环转四周而炉体常平,可置被褥中”。

实际上是把这种香炉放在一个镂空的球内,用两个圆环架起来,利用互相垂直的转轴和香炉本身的质量,在球体做任意滚动时,香炉始终保持平稳,而不会倾洒。

随着航空事业的发展,到了20世纪30年代,航空气动陀螺地平仪、方向仪和转弯仪等已经被制造出来了。

在第二次世界大战末期,陀螺仪作为敏感元件被用于导弹的制导系统中。

特别是20世纪60年代以来,随着科学技术的发展,为了满足现代航空、航海特别是宇宙航行的新要求,相继出现了各种新型陀螺仪。

目前,陀螺仪正朝着超高精度、长寿命、小体积和低成本等方向发展。

那么,究竟什么是陀螺仪呢?传统的陀螺仪定义是:对称平衡的高速旋转刚体(指外力作用下没有形变的物体),用专门的悬挂装置支承起来,使旋转的刚体能绕着与自转轴不相重合(或不相平行)的另一条(或两条)轴转动的专门装置。

动力调谐挠性陀螺仪_光纤陀螺仪的测试及分析_侯煜

动力调谐挠性陀螺仪_光纤陀螺仪的测试及分析_侯煜

平衡的滤波效应引起的漂移系数 ; D(x)xx、D(y)yz为陀螺仪 x、y轴上由转子支承
系统 沿 xz、 yz方 向 不 等 弹 性 引 起 的 漂 移 系 数 ; D(x)yz、D(y)xx为陀螺仪 x、y轴上与 g平方有关的 其它漂移系数 ;gx、gy、gz为重力加速度沿陀螺仪 x、 y、z轴上的分量 ;ωx、ωy为陀螺仪壳体分别绕 x、y轴 相对于惯性空间的角 速度 ;Ex、Ey为陀螺仪 x、y轴 上的随机漂移率 。
B(y)2yω2y +B(y)3yωy3 +B(y)yxdωyωx +B(y)2yzωy2 ωz +B(y)2yxdωy2 ωx +ωdy
(3)
式中 , ωDx、ωDy为沿 x、y轴动态误差总的漂移速率 ;B (x)F、B(y)F为与载体角运动速率无关的漂移项 , 它 与剩余刚度 、陀螺仪零位偏角 、陀螺仪时间常数等有 关 ;B(x)x、B(y)y为与载体角速率一次方有关的项 , 它与陀螺仪的跟踪角速率精度及失 调转速有关 ;B (x)y、 B(x)z、B(y)x、B(y)z为 与 载 体 角速 率 一 次方 有关的项 , 它与陀螺仪惯性主轴与壳体间偏离角有 关 ;B(x)xy、B(x)xz、B(y)yx、B(y)yz为与载体角速率 交叉乘积有关的项 , 它与陀螺仪惯性主轴与壳体间 偏离角及力矩器非线性误差有关 ;B(x)2x、B(y)2y、B (x)3x、 B(y)3y、B(x)2xz、B(y)2yz分 别为 与载 体角 速率 平方 、三次方及交叉乘积有关的项 , 它与陀螺仪跟踪 精度 、失调转速等有关 ;B(x)xyd、B(y)yxd、B(x)2xyd、B (y)2yxd分别为与载体角速率 、角加速率交叉乘积有 关的项 , 它与陀螺仪跟踪角加速率精度有关 。 动态 误差模型系数的测定可在双轴或三轴速率模拟台上 进行 。 1.2.2 力矩反馈法漂移测试 力矩反馈法漂移测 试的原理 (见图 2)。 由于地球自转及外干扰力矩 的影响 , 陀螺仪的信号器将产生相应的输出信号 , 该信号经滤波 、 放大 、 解调 、 校正后 , 直流电流信 号输入到陀螺仪相应的力矩器中 , 力矩器便产生与 输入的直流信号相对应的控制力矩 , 与作用于陀螺 仪上的由地球自转产生的陀螺力矩和外干扰力矩平 衡 。测量力矩器的输入电流 , 并根据力矩器的标度 因数 , 扣除地球自转的影响 , 就可求得外加等效力 矩的数值 。

陀螺定向方法和精度评定解析

陀螺定向方法和精度评定解析

陀螺逆转点法定向及精度评定摘要隧道或井巷工程测量导线布设的形式因受巷道形状的制约,若单纯采用改变导线布设形式或提高测角次数与精度等方法,往往难以满足工程施工对于测量的精度要求。

陀螺经纬仪是测量井下导线边方位角、提高测量精度的重要仪器。

尤其是在贯通测量中陀螺经纬仪的应用非常广泛。

贯通测量是一项十分重要的测量工作,必须严格按照设计要求进行。

巷道贯通后,其接合处的偏差不能超过一定限度,否则就会给采矿工程带来不利影响,甚至造成很大的损失。

本文对陀螺经纬仪工作原理介绍,以及陀螺经纬仪在贯通测量中的精度评定。

陀螺经纬仪在不同领域的贯通测量工作中运用实例的分析,总结出在贯通测量导线加测陀螺定向边的最佳位置。

关键词:陀螺定向,贯通测量,陀螺经纬仪,精度评定ABSTRACTTunnel or shaft engineering measurement wires for the form of roadway, if simple shape by changing arrangement forms or improve wires and precision Angle measurement methods, and often difficult to satisfy the measurement accuracy for engineering construction. Gyro theodolite is measured in wire edge Angle, improve the measuring precision instruments. Especially in the measurement of the photoelectric theodolite gyro breakthrough is used extensively. Through measurement is a very important measurement work, must strictly according to the design requirements. The roadway expedite, its joint deviation cannot exceed a certain limit, otherwise they will be detrimental to the mining project, and even cause great losses. This paper introduces working principle of gyro theodolite, as well as the breakthrough in the measurement of the gyro theodolite accuracy assess. Gyro theodolite in different fieldsof the measurement of the examples, this paper leads in breakthrough measurement on the edge of the directional gyro adds the best position.Key words: directional gyro; through measurement; gyro theodolite; Accuracy Assessment目录1 绪论 (1)1.1陀螺定向的研究现状 (1)1.2研究陀螺定向的目的 (1)1.3陀螺定向的应用领域及发展趋势 (2)2 陀螺经纬仪定向测量原理与方法 (3)2.1陀螺经纬仪的类型与结构 (3)2.1.1 陀螺经纬仪定向的优点及应用领域 (3)2.1.2 陀螺经纬仪的基本结构 (3)2.1.3 陀螺经纬仪的类型 (4)2.2陀螺经纬仪定向的基本步骤 (5)2.3跟踪逆转点法测定陀螺方位角的作业过程 (7)2.3.1 陀螺仪悬带零位观测 (7)2.3.2 粗略定向 (8)2.3.3 精密定向 (9)3 陀螺定向的误差分析 (13)3.1陀螺定向的误差来源 (13)3.2陀螺定向在贯通测量中的精度评定 (14)3.2.1 陀螺方位角一次测定中误差 (14)3..2.2 一次定向中误差 (14)3.3陀螺定向在贯通测量中导线的平差 (15)3.3.1 具有两条陀螺定向边导线的平差 (15)3.3.2 具有三条陀螺定向边导线的平差 (17)4 陀螺定向在贯通测量中的应用实例分析 (20)4.1陀螺定向在道路贯通测量中的应用实例分析 (20)4.1.1 工程概况 (20)4.1.2 陀螺定向技术 (20)4.1.3 精度评定 (22)4.1.4 工程分析 (23)4.2陀螺定向在矿山贯通测量中的应用实例分析 (24)4.2.1 工程概况 (24)4.2.2 陀螺定向技术 (24)4.2.3 精度评定 (26)4.2.4 工程分析 (27)4.3陀螺定向在水利贯通测量中的应用实例分析 (27)4.3.1项目概况 (27)4.3.2 陀螺定向技术 (28)4.3.3 陀螺定向精度评定 (29)4.3.4 坐标解算及成果对比分析 (30)4.3.5 工程分析 (35)5 结论 (38)参考文献 (39)致谢...................................................... 错误!未定义书签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一 伺服跟踪法的基本原理
2020/8/3
10
§6.3 陀螺测试的伺服跟踪法
一 伺服跟踪法的基本原理
单自由度陀螺的单轴转台测漂
2020/8/3
11
§6.3 陀螺测试的伺服跟踪法
一 伺服跟踪法的基本原理
双自由度陀螺的单轴转台测漂
2020/8/3
12
§6.3 陀螺测试的伺服跟踪法
二 伺服跟踪法的测速方法
陀螺相对地理坐标系的位置需借助转台
1.陀螺输入轴沿当地前垂线方向
y
ly
x
ey e sin
o lz
d
Mb
mglz H
K M I Bx / H esin
z
2020/8/3
20
§6.4 陀螺测试的力矩反馈法
二 力矩反馈法法中陀螺相对地理坐标系的取向
陀螺相对地理坐标系的位置需借助转台
2.陀螺输出轴沿当地铅垂线方向
x N
yK ly
lz
ey e coscosK
z
d
Mb H
KM I Bx /H
ωe cos cosK
2020/8/3
21
§6.4 陀螺测试的力矩反馈法
二 力矩反馈法法中陀螺相对地理坐标系的取向
陀螺相对地理坐标系的位置需借助转台
3.陀螺自转轴沿当地铅垂线方向
z x
ey e coscosK
ly y
1. 摩擦力矩及其引起的漂移 2. 不平衡力矩及其引起的漂移 3. 非等弹性力矩及其引起的漂移
2020/8/3
8
§6.3 陀螺测试的伺服跟踪法
一 伺服跟踪法的基本原理



陀螺转子 号


前置放大器
解调
校正
转台 驱动电机
角度输出 时基
记录 功放
d ey p
2020/8/3
9
§6.3 陀螺测试的伺服跟踪法
陀螺漂移产生的原因是作用在陀螺上的干扰 力矩根据干扰力矩的性质及其变化规律,干扰力 矩可以分为两类:
• 确定性干扰力矩 有规律、可试验或计算确定,易于 补偿。
• 随机性干扰力矩 无规律性。引起陀螺的随机漂移, 只能用统计方法来估计其概率统计 特性。
2020/8/3
6
§6.2 影响陀螺漂移的主要因素
2020/8/3
2
§6.1 陀螺漂移的基本概念
一 自由陀螺的漂移
ωd M b / H
自由陀螺存在漂移实际上是说明工程实际中的 陀螺仪与陀螺仪模型之间的差别,这种差别的表 现就是干扰力矩的存在,干扰力矩破坏了陀螺仪 的定轴性,使陀螺仪的角动量向量在惯性空间中 发生了变化,包括其大小和方向。
2020/8/3
对伺服状态的双自由
度陀螺而言,其内环轴
外环轴
和外环轴分别既是IA又
是OA,都有信号器和力
矩器,且交叉连接,构
成两个闭环回路。这样,
就可以用两个力矩器的
加矩电流
电流分别表示沿两根轴
内环轴
的漂移角速度。假定陀
加矩电流
螺在工作过程中力矩轴
是正交的,总漂移角速 度为:
d
2 dx
2 dy6.2 影响陀螺漂移的主要因素
力矩反馈法采用的是力矩平衡的静力学方法,因 此必须测量系统稳定时各个参数的数值,对系统的稳 定性如何判定有较高的要求。
力矩反馈法测定漂移速度只须备有足够分辨力和 精度电流记录装置就能测出陀螺的瞬时漂移。当然对 力矩器刻度因子的稳定性和线性度有很高的要求。
2020/8/3
17
§6.4 陀螺测试的力矩反馈法
ωd
Mb
mgly H
KM IBx /H
ωe cos cosK
2020/8/3
22
§6.5 陀螺漂移的数学模型
所谓陀螺漂移的数学模型,就是指描述陀螺 漂移变化规律的数学表达式。在建立正确的数 学模型的基础上,陀螺漂移测试和数据处理的 目的就在于确定数学模型中的各个参数的大小 及其稳定性,分析这些参数与物理因素之间的 关系,从而找到改进陀螺性能的方向和途径, 并为陀螺的使用提供误差补偿数据。
ie ey T
得到在同一时间间隔内转台相对惯性空间的转角
ip ie p
用时间间隔相除,即得到陀螺的漂移角速度
d ip / T ey p
2020/8/3
14
§6.3 陀螺测试的伺服跟踪法
三 伺服跟踪法的转台轴的取向
1. 输入轴在水平面内沿东西方向
d p
2. 输入轴与地球自转轴平行
d e p
一 力矩反馈法法的原理
力矩器
IA
信号器
OA
记录 装 置 加矩电流
SA 放大器
单自由度陀螺的力矩反馈法测漂
2020/8/3
18
§6.4 陀螺测试的力矩反馈法
一 力矩反馈法法的原理
双自由度陀螺的力矩反馈法测漂
2020/8/3
19
§6.4 陀螺测试的力矩反馈法
二 力矩反馈法法中陀螺相对地理坐标系的取向
d ey p
精确定位定向,即陀螺输入轴与转台轴平行,并且要使 转台在地理坐标系中精确定向。 精确地测出转台的转速。
2020/8/3
13
§6.3 陀螺测试的伺服跟踪法
二 伺服跟踪法的测速方法
首先在一段时间间隔内,观测转台相对地球的转角,然后根 据地球自转角速度沿转台方向的分量通过计算求得在这段时 间内地球相对惯性空间的转角
3. 输入轴沿当地垂线方向
d e sin p
2020/8/3
15
§6.4 陀螺测试的力矩反馈法
一 力矩反馈法法的原理



陀螺转子 号


前置放大器
解调
记录器
K M I Bx iy H M b
d
Mb H
KM I Bx
/H
iy
2020/8/3
16
§6.4 陀螺测试的力矩反馈法
一 力矩反馈法法的原理
第六章 陀螺仪的测试与标定
2020/8/3
1
§6.1 陀螺漂移的基本概念
一 自由陀螺的漂移
由于各种原因,在陀螺上往往作用有人们所不希 望的各种干扰力矩,在这些可能是很小的干扰力矩 的作用下,陀螺将产生进动,从而使角动量向量慢 慢偏离原来的方向,我们把这种现象称为陀螺的漂 移。把在干扰力矩作用下陀螺产生的进动角速度称 为陀螺的漂移角速度或角速率。
对于确定性干扰力矩,根据其与加速度的分为:
•与加速度无关的干扰力矩,例如弹性力矩、电磁力矩等。 • 与加速度成比例的干扰力矩,例如由于陀螺质量偏心引起 的干扰力矩。 •与加速度平方成比例的干扰力矩,例如由非等弹性引起的 干扰力矩。
2020/8/3
7
§6.2 影响陀螺漂移的主要因素
干扰力矩的分类及其所产生的陀螺漂移
3
§6.1 陀螺漂移的基本概念
二 单自由度浮子陀螺的漂移
力矩器
IA
信号器
OA
SA
放大器
当沿着陀螺输入轴的角速度等于什么数值时,才能使一个 闭环系统中实际使用的陀螺仪的信号传感器输出信号为零。这 个角速度的大小称为单自由度浮子陀螺的漂移角速度。
2020/8/3
4
§6.1 陀螺漂移的基本概念
三 双自由度浮子陀螺的漂移
相关文档
最新文档