力学中的数学方法-变分法

变分法

取极值必须满足z 1696年瑞士数学家约翰、贝努里提出的“最速降线问题”,发表于《教师学报》,引起广泛关注。z 1697年该杂志刊登了牛顿、莱布尼兹、洛比达和贝努里兄弟的解法,殊途同归!

z 虽蕴含着天才思想,但还是不能建立起变分法!z 历史安排了大数学家尤拉,1734年解决了更广泛的最速降线问题,但他还不满意。最终他找到了,1736年的论文:

§4.1 变分法基本概念与基本理论历史往事——导致变分法建立的著名问题:

[()](,,)b a J y x F x y y dx ′=∫

d ()0d F F y x y ???=′??z 拉格朗日改进了尤拉证明,非常简洁,1755年告诉了尤

一. 基本概念

变分法就是求泛函极值的方法.变分问题即是求泛函的极值问题.

1. 泛函

变分法研究的对象是泛函,泛函是函数概念的推广.先看一个例题:

考虑著名的最速降线落径问题。如图1 所示,已知A和B为不在同一铅垂线和不同高度的两点,要求找出A、B间的这样一条曲线,当一质点在重力作用下沿这条曲线无摩擦地从A滑到B时,所需的时间T最小.

y x

A

B(x,y)

此时质点的速度是

d 2d s gy t

=从A 滑到B 所需的时间为

d B A t t T t =∫21+[()]d 2B

A y T y x x

gy ′=∫d 2B

A s gy

=∫21+d 2B A y x gy ′=

y ′x T ()y x ()y x [()]T y x 式中代表对求一阶导数.我们称上述的为的泛函,而称为可取的函数类,为泛函的定义域。简单地说,泛函就是函数的函数(不是复合函数的那种含义).

泛函定义:一般来说,设C 是函数的集合,B 是实数或复数的集合如果对于C 的任一元素

()y x 在B 中都有一个元素J 与之对应,所谓泛函不过是更广泛意义下的函数关系罢了!

J ()y x [()]

J J y x =则称为的泛函,记为

泛函通常以积分形式出现,比如上面描述的最速降线

落径问题的式. 更为一般而又典型的泛函定义为

[()](,,)d b

a J y x F x y y x ′=∫

1.2 变分法

对于不同的自变量函数()y x ,与此相应的泛函[()]

J y x 也有不同的数值.找出一个确定的自变量函数()y x ,使泛函[()]J y x 具有极值(极小或极大),这种泛函的极小值与极大值统称为泛函的极值.

变分法:所谓的变分法就是求泛函极值的方法.

引入泛函的概念后,对于上述的最速降线落径问题变[()]J y x 为泛函的极小值问题.

1)泛函自变函数的变分

定义:泛函φ[y(x)],自变函数为y(x),当△y(x)变化无限小时,称为自变函数的变分,表为δy(x) ,δy.

δy是指函数y(x) 和跟它相接近的另一函数y

1(x)的微差

1.3 变分

如果我们将泛函取极值时的函数(或函数曲线)定义为();y x 并定义与函数曲线()y x 邻近的曲线(或略为变形的曲线)作为比较曲线,记为

(,)()()y x y x x εεη=+其中ε是一个小参数;()x η是一个具有二阶导数的任意

选定函数,规定它在一个小范围内变化,这限制主要保证泛函在极值处连续.在研究泛函极值时,通常将()x η固定,而令变化。ε这样规定的好处在于:建立了由参数到泛函[()]J y x 值之间的对应关系,因此泛函[()]J y x 就成为了参数

ε的普通函数.原来泛函的极值问题就成为普通函数对ε的求极值的问题.

ε

()y x 的变分定义为

0(,)|()d y y x d x εδεεηεε

=?==?()d y x δηε

′′=这里,y η′′代表对x 求一阶导数.

d d y y x

δδ′=

即变分和微分可以交换次序.

dy 和δy 的区别

dy : 是针对一条曲线y =y (x ) ,当△x = dx 时函数值增量的线性主部是dy 。

δy :是在x 不变时,针对两条接近的函数曲线y (x )

和y 1(x )的微差δy 。δy 是x 的函数。y =y (x )x

y

o dy δy y 1=y 1(x )△x =dx

Δy

2)泛函的变分

()d b a F F J y y x y y δδδ??′=+′

??∫在极值曲线()y x 附近,泛函[()]J y x 的增量,定义为

[(,)][()]

J J y x J y x εΔ=?依照上述约定,当0ε→时,泛函增量J

Δ的线性主要部分定义为泛函的变分,记为泛函的变分定义为0|d J J εδεε=?=?[()](,,)d b a

J y x F x y y x ′=∫对于泛函

在求一元或多元函数的极值时,微分起了很大的作用;同样在研究泛函极值问题时,变分起着类似微分的作用.因此,通常称泛函极值问题为变分问题;称求泛函极值的方法为变分法.

泛函

函数微分:)

()(x f x x f z ?Δ+=Δx

x x A Δ+Δ=ω)(当Δx →0时,ω→0,则Δz 可

用其线性主部表示其微分。即dx x f dz )(′=[][])()()(x y U x y x y U U ?+=δδ[]y y x y L δβδmax )(+=[])(x y L ——U 增量的线性主部

变分:当max|δy|→0时,βmax →0,则

δU 可用其线性主部表示, 即

[]y

x y L U δδ)(=极值:若

)(x f z =在x 0 处有极值,则有:0)(0=′=x x f 若U [y (x )] 在y 0(x )处有极值,条件:[]0)(=x y U δ——一阶变分为零。

极值:

1.4 泛函的极值

泛函的极值问题,一般来说是比较复杂的.因为它与泛函包含的自变量个数,未知函数的个数以及函数导数的阶数等相关.另外,在求泛函极值时,有的还要加约束条件,且约束条件的类型也有不同,等等.下面我们首先讨论泛函的极值的必要条件.

1) 泛函的极值的必要条件――欧拉-拉格朗日方程

设[()]J y x 的极值问题有解

()

y y x =现在推导这个解所满足的常微分方程,这是用间接法研究泛函极值问题的重要一环.设想这个解有变分()x εη则[()()]J y x x εη+可视为参数ε

的函数()[()()].J y x x εεηΦ=+而当0

ε=时,

()()()y x x y x εη+=[()()]J y x x εη+取极值.

于是原来的泛函极值问题,就化为一个求普通函数

()εΦ的极值问题.由函数取极值的必要条件

0d |0d εε=Φ=即有0|0J εε

=?=

?a) 泛函表示为一个自变量,一个函数及其一阶导数的积分形式[()](,,)b

a J y x F x y y dx

′=∫若考虑两端固定边界的泛函问题:积分是在区域内通过两点1122(,),(,)x y x y 的任意曲线进行的,其中12,x a x b

==

泛函中

y 为(,)()()y x y x x εεη=+0[()()]|d J y x x J εεηδεε

=?+=? [()d ()d ]d b a F F x x x y y ηεηε??′=+′

??∫ []d b a F F y y x y y δδ??′=+′??∫()d b a F F J y y x y y δδδ??′=+′

??∫d d y y x δδ′=()d y x δηε

=()d y x δηε

′′=

积分号下既有y δ,又有y δ′对第二项应用分部积分法

d |[()]d d b b a a F F F J y y x y y x y δδδ???=+?′′

???∫0|0J J d εδεε

=?==?d |[()]d 0d b b a a F F F J y y x y y x y δδδ???=+?=′

′???∫ []d b

a F F J y y x y y δδδ??′=+′??

学习电动力学的数学准备

学习电动力学的数学准备 2012-05-31 11:57:04| 分类:默认分类|举报|字号订阅 知识前提 1.普通物理(主要是电磁学),初等微积分,矢量代数—应很熟悉 2.矢量分析,场论基础—作为本课程的第0章 3.数理方法(程),特殊函数—提到时应该能理解 第0章数学准备 第一节矢量分析与场论基础 在电动力学中应用较多的数学知识是矢量分析与场论基础。因而,我们首先对这两方面的有关内容进行总结归纳.主要是为了应用,而不追求数学上的严格. 一、矢量代数 1.两个矢量的点乘、叉乘 若 则, 的点乘(也称标量积) () ,的叉乘(也称矢量积) ,为, 的夹角 方向:既垂直于,又垂直于,与满足右手螺旋关系。

叉乘的不可交换性 2.三个矢量的混合积 = 几何解释:以为棱的平行六面体的体积 性质:(1)轮换不变性,在点乘号,叉乘号位置不变的情况下,把矢量按顺序轮换,其混合积不变. (2)若只把两个矢量对调,混合积反号。 (3)若矢量位置不变只交换点乘号叉乘号,混合积不变—但必须先做叉乘(用括号保证这个顺序)。 3.三个矢量的叉乘 令 则 同理 故

而 二者都是:把括号外的矢量与离它较远的矢量点乘,再乘以另一矢量所得的项取正号,把括号外的矢量与离它较近的矢量点乘,再乘以另一矢量所得的项取负号。两者取和。("远正近负,再取和") 二、场的概念 在许多科学技术问题中,常常要考虑某种物理量(如温度、密度、电势、力、速度)在空间的分布和变化规律。这是需要引入场的概念。如果在全部空间或部分空间里的每一点,都对应着某个物理量的一个确定的值,就说在这空间里确定了该物理量的一个场。 1.数学上,场是空间时间的函数 时间坐标 空间坐标,构成右手系。 标量场空间的每一个点对应一个标量 矢量场空间的每一个点对应一个矢量 张量场空间的每一个点对应一个张量 2.物理上,描述某一物理客体,具有一定分布规律的物理量 3.记号标量场 矢量场 张量场 4.场中的物理量在各点处的对应值随时间变化的,这个场称为稳定场;否则称为不稳定场。 三、场分析及其微分特征量(矢量微分)

电动力学

《电动力学》课程教学大纲 课程英文名称:Electrodynamics 课程编号:0312033002 课程计划学时:48 学分:3 课程简介: 电动力学的研究对象是电磁场的基本属性, 它的运动规律以及它和带电物质之间的相互作用,本课程在电磁学的基础上系统阐述电磁场的基本理论。另外,本课程还系统地阐述狭义相对论的重要内容,而相对论是现代物理学的重要基础,它与量子论一起对物理学的发展影响深刻,是二十世纪科学与技术飞速发展的基础。本课程是材料物理专业本科的重要专业基础课。 电动力学是物理类有关各专业的一门基础理论课。学电动力学的目的:(1)是使学生系统地掌握电磁运动的基本概念和基本规律,加深对电磁场性质的理解;(2)是使学生获得分析和处理一些问题的基本方法和解决问题的能力,提高逻辑推理和插象思维的能力,为后继课程的学习和独立解决实际问题打下必要的理论基础。 在教学过程中,使用启发式教学,尽量多介绍与该课程相关的前沿科技动态,充分调动和发挥学生的主动性和创新性;提倡学生自学,培养学生的自学能力。 一、课程教学内容及教学基本要求 第一章电磁现象的普遍规律 本章重点:在复习矢量分析、?算符、?算符及其运算法则、δ函数性质的基础上,从电磁场的几个基本实验律(库仑定律,毕奥--萨伐尔定律,电磁感应定律,电荷守恒律) 出发,加上位移电流假定, 总结出电磁场的基本运动规律Maxwell方程组、电荷守恒律和洛仑兹力公式。讨论了介质中的Maxwell方程, 电磁场的能量。本章内容是本课程的基础,必须深刻掌握。 难点:电磁场边值关系,电磁场的能量和能流。 本章学时:10学时 教学形式:讲授 教具:黑板,粉笔 第一节矢量分析和张量;?算符、?算符及其运算规则、δ函数性质 本节要求:理解:矢量分析和张量运算。掌握:?算符、?算符及其运算法则、δ函数性质(重点:考核概率50%)。 1 矢量分析和张量(理解:矢量运算法则,在电动力学中张量是如何引入的;了解:线性各

数学物理方法第八章作业答案

P 175 8.1在0x =的邻区域内,求解下列方程: (1) 2 (1)0x y''xy'y -+-= 解:依题意将方程化为标准形式2 2 10(1) (1) x y''y'y x x + - =-- 2 ()(1) x p x x = -,2 1()(1) q x x =- - 可见0x =是方程的常点. 设方程的级数解为0 ()n n n y x c x ∞ == ∑,则1 1 ()n n n y'x nc x ∞ -== ∑,2 2 ()(1)n n n y''x n n c x ∞ -== -∑ 代入原方程得2 2 2 1 2 2102 2 2 1 (1)(1)0(1)(1)0 n n n n n n n n n n n n n n n n n n n n n n n n n n c x x n n c x x nc x c x n n c x n n c x nc x c x ∞ ∞ ∞ ∞ ---====∞ ∞ ∞ ∞ -====---+- =? -- -+ - =∑∑∑∑∑∑∑∑ 由0 x 项的系数为0有:202012102 c c c c ?-=?= 由1 x 项的系数为0有:311313200 (0)c c c c c ?+-=?=≠ 由2x 项的系数为0有:42224201143212012 24 c c c c c c c ?-?+-=?= = 由3 x 项的系数为0有:533355432300c c c c c ?-?+-=?= 由4x 项的系数为0有:64446403165434010 80 c c c c c c c ?-?+-=?= = 由5 x 项的系数为0有:755577654500c c c c c ?-?+-=?= 由6 x 项的系数为0有:866686025587656056 896 c c c c c c c ?-?+-=?== …… ∴ 方程的级数解为 2 4 6 8 0100000 1115()2 24 80 896 n n n y x c x c c x c x c x c x c x ∞== =++ + + + +???∑

现代数学的特点和现状-丁伟岳

我主要回答同学们的一些问题。这些问题中大部分都是关系现代数学大局的问题,很深刻,也很难回答。这种问题是没有标准答案的,每个人会有不同的答案。我今天讲的是我的个人意见,同学们可以参考,但不一定正确。 1.现代数学的特点和现状 有的同学问:听说现代数学分支非常细,不同分支的人彼此不了解,这样还能出现总揽全局的数学大师吗?此外,数学的复杂是否使它远离“简单性”这个朴素的自然法则? 这是一个很大的问题,提这个问题的同学希望从总体上了解现代数学,这是非常好,非常值得鼓励的。但是要把这个问题说清楚并不容易。确实,现代数学分支繁多。按美国数学会的分类,数学科目可以分成60多个大类,每个大类下面又有几十个子类,总计有3500个以上的子类。肯定没有人能把所有这些分支都了如指掌,甚至于一个分支的专家也很难把分支里的所有数学了解得一清二楚。 但是,真正影响大局的数学却没有那么多。这就像世界上有200多个国家,但是影响全球格局的却只有少数大国。这种影响大局的数学可以叫做“主流数学”。即便在主流数学中也不是所有的问题都是平等的,还有主次之分。因此,如果能抓住主流数学中的主流问题,大体上就可以说是“总揽全局”了。至于说“大师”,他不仅能总揽全局,而且能通过他的工作影响全局。这样的人肯定很少,但也不能说一个没有,这要由历史来做定论。那么,为什么现在出不了牛顿,欧拉,高斯,黎曼这样的大师了呢?这有两个原因。首先,时势造英雄;不是每个时代都会出旷世英雄的。其次,即便是这样的英雄,他的历史地位也要经过历史的考验,并不是在当时就能确立的。 那么哪些是主流数学呢?回顾历史,现代基础数学从17世纪开始发源,经过18-19世纪的大发展和20世纪的完善,现代数学的基础部分,包括代数和数论,几何与拓扑,分析学的所有主要分支,我们叫这些为经典分支,都进入了成熟期。所谓成熟是指,理论已经十分完善,而内在的发展动力则减弱了。因此,基础数学的单独分支的自身发展已不再是主流。取而代之的是综合与交叉,集多个分支的方法来解决以前无法解决的重要问题。费尔马猜想和庞加莱猜想相继被证明就是最好的例证。在我看来,现代数学的另一个特点是应用数学的兴起,随着现代科学技术的迅速发展各个方面对数学的需求日益增长,推动了应用数学的崛起,它正成长为数学中一个不可忽视的主流。 从重要问题的来源看,基础数学内部一些最主要的问题是来自数论,拓扑以及几何,例如克莱研究所的7大问题中4个是关于纯数学的,两个来自数论(黎曼猜想,BSD猜想),一个拓扑(庞加莱猜想),一个代数几何(Hodge猜想)。[另外3个多少与应用有关:Navior-Stokes方程(流体力学),P-NP问题(计算复杂性),Yang-Mills理论(理论物理)。] 近年来,理论物理对基础数学的影响越来越大,这是值得注意的。 数学的复杂性不在于它的分支繁多,而在于它的深度和难度越来越大。世界既有简单的一面,又有复杂的一面。科学家的任务是把复杂的东西分析和解剖,化繁为简,找出对

电动力学知识点总结及试题

洛仑兹力密度< f=/?+^x§ 三.内容提要: 1. 电磁场的基本实捡定律, (1)库仑定律* 二、知识体躺 库仑定理'脸订警壬 电童■应定体毎事孑―半丄@?抜/尸n 涡険电场假设 介质的极化焕律,0=#“ V*fi = p ▽4遁 at 仪鲁电涛fit 设 比真#伐尔定律,s= 介 M?4tM 律: ft^~a Co n Vxff = J + — a 能童守恒定律 缢性介JR 能*??> 能淹密度: S^ExH

対可个点电荷e 空间块点的场强爭丁各点电佔单越力在时徃该点场强的伕城和, (2)毕臭一萨伐尔定律(电沱决崔感场的实於疋律) (3)电耐应定律 £& -

其中: 几 1址介质中普适的41底场钛木方用.适用于任盘介丿鼠 2当14=0=0.过渡到真 空怙况: -aff at +?e —J dt v 7 5=0 2o£o 3当N N 时.回到挣场惜况: 扭方=0 £b ?恣=J 妙 F 护云=0 I 有12个未知塑.6个独立方秤,求解时必须给出二与M, 2与?的关系。 介时: 3、介贯中的电恿性廣方程 若为却铁雄介质 I 、电哦场较弱时"与丘&与臣 b 与2万与"均呈线性关系. 向同性均匀介质, P= Q=岭耳 9 9 2、导体中的欧姆定律 在存电源时?电源内部亠八海?)?直?为怖电力的等效场, 4. 洛伦兹力公式 II 7xfl = O 7xH=/ Q ?D 0p 7ft =

电动力学知识点归纳

《电动力学》知识点归纳 一、试题结构 总共四个大题: 1.单选题('210?):主要考察基本概念、基本原理和基本公式, 及对它们的理解。 2.填空题('210?):主要考察基本概念和基本公式。 3.简答题 ('35?):主要考察对基本理论的掌握和基本公式物理意 义的理解。 4. 证明题 (''78+)和计算题(''''7689+++):考察能进行简单 的计算和对基本常用的方程和原理进行证明。例如:证明泊松方程、电磁场的边界条件、亥姆霍兹方程、长度收缩公式等等;计算磁感强度、电场强度、能流密度、能量密度、波的穿透深度、波导的截止频率、空间一点的电势、矢势、以及相对论方面的内容等等。 二、知识点归纳 知识点1:一般情况下,电磁场的基本方程为:??? ? ? ????=??=??+??=????- =??.0;;B D J t D H t B E ρ(此为麦克斯韦方程组);在没有电荷和电流分布(的情形0,0==J ρ)的自由空间(或均匀 介质)的电磁场方程为:??? ? ? ?? ? ?=??=????=????-=??.0;0;B D t D H t B E (齐次的麦克斯韦方程组)

知识点2:位移电流及与传导电流的区别。 答:我们知道恒定电流是闭合的: ()恒定电流.0=??J 在交变情况下,电流分布由电荷守恒定律制约,它一般不再闭合。一般说来,在非恒定情况下,由电荷守恒定律有 .0≠??-=??t J ρ 现在我们考虑电流激发磁场的规律:()@.0J B μ=?? 取两边散度,由于 0≡????B ,因此上式只有当0=??J 时才能成立。在非恒定情形下,一般有 0≠??J ,因而()@式与电荷守恒定律发生矛盾。由于电荷守恒定律是精确的普 遍规律,故应修改()@式使服从普遍的电荷守恒定律的要求。 把()@式推广的一个方案是假设存在一个称为位移电流的物理量D J ,它和电流 J 合起来构成闭合的量 ()()*,0=+??D J J 并假设位移电流D J 与电流J 一样产 生磁效应,即把()@修改为 ()D J J B +=??0μ。此式两边的散度都等于零,因而理论上就不再有矛盾。由电荷守恒定律 .0=??+ ??t J ρ电荷密度ρ与电场散度有关系式 .0 ερ =??E 两式合起来得:.00=??? ? ? ??+??t E J ε与()*式比较可得D J 的一个可能表示式 .0 t E J D ??=ε 位移电流与传导电流有何区别: 位移电流本质上并不是电荷的流动,而是电场的变化。它说明,与磁场的变化会感应产生电场一样,电场的变化也必会感应产生磁场。而传导电流实际上是电荷的流动而产生的。 知识点3:电荷守恒定律的积分式和微分式,及恒定电流的连续性方程。 答:电荷守恒定律的积分式和微分式分别为:0 =??+????-=???t J dV t ds J S V ρρ 恒定电流的连续性方程为:0=??J

现代数学的发展趋势.doc

第四章现代数学的发展趋势 一、现代数学的发展趋势内容概括 与古典数学相比,现代数学的发展从思想方法的角度看具有一些新的特征,本章内容通过数学的统一性、数学在自然科学和社会科学中的广泛应用、数学机械化的产生与发展及其意义、计算机促进计算数学的发展、计算机促进数学中新学科的发展这些方面来认识和理解现代数学的发展趋势。 下面从以下几个方面来分析: ● 数学的统一性 ● 数学应用的广泛性 ● 计算机与数学发展 1.数学的统一性 所谓统一性,就是部分与部分、部分与整体之间的协调一致。客观世界具有统一性,数学作为描述客观世界的语言必然也具有统一性。 数学的统一性是客观世界统一性的反映,是数学中各个分支固有的内在联系的体现。它表现为数学的各个分支相互渗透和相互结合的趋势。 ● 数学的统一性发展的三个阶段 (1)数学从经验积累到严格的演绎体系建立,其特征逐步明显,在中世纪时,从研究对象和方法来看,初等数学有了一定的统一性。特别是17世纪解析几何的诞生,使数学中的代数与几何统一起来,说明统一性是数学的特征。生了变革,结果是数学分支愈来愈多,数学表现的更加多样化。因此,需要重新认识数学的统一性。为此,数学家们作了很多努力,到20世纪30年代,法国的布尔巴基(Bourbaki)学派提出,利用数学内在联系和公理化方法从数学各个分支中提炼出各种数学结构。他们认为数学的发展无非是各种结构的建立和发展,“数学好比一座大城市。城市中心有些巨大的建筑物,就好比是一个个已经建成的数学理论体系。城市的郊区正在不断地并且多少有点杂乱无章地向外伸展,他们就好像是一些尚未发育成型的正在成长着的数学新分支。与此同时,市中心又在时时重建,每次都是根据构思更加清晰的计划和更加合理的布局,在拆毁掉旧的迷宫似的断街小巷的同时,将修筑起新的更直、更宽、更加方便的林荫大道通向四方,……。” (2)布尔巴基学派在集合论的基础上建立了三个基本结构(即代数结构、序结构和拓扑结构),然后根据不同的条件,由这三个基本结构交叉产生新的结构,如分析结构、布尔代数结构等等。他们认为整个数学或大部分数学都可以按照结构的不同而加以分类,用数学结构能统一整个数学,各个数学分支只是数学结构由简单到复杂,由一般向特殊发展的产物。数学的不同分支是由这些不同的结构组成的,而这些结构之间的错综复杂的联系又把所有的分支连成一个有机整体。因此可以说,布尔巴基学派用数学结构显示了数学的统一性。 (3)20世纪下半叶,数学已经发展成一个庞大的理论体系,数学分工愈来愈细,分支愈来愈多,分支之间的联系愈来愈不明显,但是,数学学科的统一化趋势也在不断加强,主要体现在数学的不同分支领域的数学思想和数学方法相互融合,导致了一系列重大发现以及数学内部新的综合交叉学科的不断兴起:例如微分拓扑学的建立、发展;整体微分几何研究的突破;代数几何领域的进展;多复变函数理论以及其他数学分支的突破和发展都有密切的联系。

力学中的数学方法-张量-2

2. Kronecker δ 符号
一、 Kronecker 符号定义为:
?1, i = j δ ij = ? ?0, i ≠ j
δ ij 可确 其中 i,j 为自由指标,取遍1,2,3;因此, 定一单位矩阵:
?δ 11 δ 12 δ 13 ? ?1 0 0? ?δ ? = ?0 1 0 ? δ δ 22 23 ? ? ? ? 21 ? ?0 0 1 ? ? ?δ 31 δ 32 δ 33 ? ? ?
1

二、
δ ij 的性质
2

三、例题
例题1: 若
e1 , e 2 , e 3
是相互垂直的单位矢量,则
ei ? e j = δ i j
e i ? e i = e1 ? e1 + e 2 ? e 2 + e 3 ? e 3 = 3
δ i i = δ 11 + δ 22 + δ 33 = 3
ei ? ei = δ i i
3

注意:
δ i j与δ ii不同
是一个数值,即
δ ii δi j
例题2:
δ ii = 3
的作用:1)换指标;2)选择求和。
Ai → Ak
δ k i Ai = δ k k Ak = Ak
思路:把要被替换的指标 i 变成哑标,哑标能用任意字 母,因此可用变换后的字母 k 表示
4

例题3:
Tk j → Ti j
δ i kTk j = δ i iTij = Tij
特别地,
δ i kδ k j = δ ij , δ i kδ k jδ jm = δ i m
5

数学物理方法第二次作业答案

第七章 数学物理定解问题 1.研究均匀杆的纵振动。已知0=x 端是自由的,则该端的边界条件为 __。 2.研究细杆的热传导,若细杆的0=x 端保持绝热,则该端的边界条件为 。 3.弹性杆原长为l ,一端固定,另一端被拉离平衡位置b 而静止,放手任其振动,将其平衡位置选在x 轴上,则其边界条件为 00,0x x l u u ==== 。 4.一根长为l 的均匀弦,两端0x =和x l =固定,弦中张力为0T 。在x h =点,以横向力0F 拉弦,达到稳定后放手任其振动,该定解问题的边界条件为___ f (0)=0,f (l )=0; _____。 5、下列方程是波动方程的是 D 。 A 2tt xx u a u f =+; B 2 t xx u a u f =+; C 2t xx u a u =; D 2tt x u a u =。 6、泛定方程20tt xx u a u -=要构成定解问题,则应有的初始条件个数为 B 。 A 1个; B 2个; C 3个; D 4个。 7.“一根长为l 两端固定的弦,用手把它的中 点朝横向拨开距离h ,(如图〈1〉所示)然后放 手任其振动。”该物理问题的初始条件为( D )。 A .?????∈-∈==] ,2[),(2]2,0[,2l l x x l l h l x x l h u o t B .???? ?====00 t t t u h u C .h u t ==0 D .???????=?????∈-∈===0 ] ,2[),(2]2,0[,200t t t u l l x x l l h l x x l h u 8.“线密度为ρ,长为l 的均匀弦,两端固定,开始时静止,后由于在点)0(00l x x <<受谐变力t F ωsin 0的作用而振动。”则该定解问题为( B )。 A .?????===<<-=-===0 ,0,0)0(,)(sin 0000 2 t l x x xx tt u u u l x x x t F u a u ρ δω u x h 2 /l 0 u 图〈1〉

力学中的数学方法-变分法

变分法

取极值必须满足z 1696年瑞士数学家约翰、贝努里提出的“最速降线问题”,发表于《教师学报》,引起广泛关注。z 1697年该杂志刊登了牛顿、莱布尼兹、洛比达和贝努里兄弟的解法,殊途同归! z 虽蕴含着天才思想,但还是不能建立起变分法!z 历史安排了大数学家尤拉,1734年解决了更广泛的最速降线问题,但他还不满意。最终他找到了,1736年的论文: §4.1 变分法基本概念与基本理论历史往事——导致变分法建立的著名问题: [()](,,)b a J y x F x y y dx ′=∫ d ()0d F F y x y ???=′??z 拉格朗日改进了尤拉证明,非常简洁,1755年告诉了尤

一. 基本概念 变分法就是求泛函极值的方法.变分问题即是求泛函的极值问题. 1. 泛函 变分法研究的对象是泛函,泛函是函数概念的推广.先看一个例题:

考虑著名的最速降线落径问题。如图1 所示,已知A和B为不在同一铅垂线和不同高度的两点,要求找出A、B间的这样一条曲线,当一质点在重力作用下沿这条曲线无摩擦地从A滑到B时,所需的时间T最小. y x A B(x,y)

此时质点的速度是 d 2d s gy t =从A 滑到B 所需的时间为 d B A t t T t =∫21+[()]d 2B A y T y x x gy ′=∫d 2B A s gy =∫21+d 2B A y x gy ′= ∫

y ′x T ()y x ()y x [()]T y x 式中代表对求一阶导数.我们称上述的为的泛函,而称为可取的函数类,为泛函的定义域。简单地说,泛函就是函数的函数(不是复合函数的那种含义). 泛函定义:一般来说,设C 是函数的集合,B 是实数或复数的集合如果对于C 的任一元素 ()y x 在B 中都有一个元素J 与之对应,所谓泛函不过是更广泛意义下的函数关系罢了! J ()y x [()] J J y x =则称为的泛函,记为

数学物理方法第08章习题

第八章 习题答案 8.1-1 证明递推公式: (1)()()()x l x x x l l l P P P 1=' -'- (2)()()()()x l x x x l l l P 1P P 1+=' -'+ (3)()()()()x l x x l l l P 12P P 11+=' -'-+ 证明:基本递推公式 ()()()()()x l x l x x l l l l 11P 1P P 12+-++=+ ① ()()()()x x x x x l l l l ' -'+'=-+P 2P P P 11 ② (1)将①式对x 求导后可得: ()()()()()()()x l x l x l x x l l l l l '++'=++'++-11P 1P P 12P 12 ③ 由③-()?+1l ②可得 (目的:消去()x l ' +1P ) ()()()()()()x l x l x x l l l l P 1P 12P 12+-++'+ ()()()()()x l x x l x l l l l '++'+-'=--P 12P 1P 11 整理可得:()()()x l x x x l l l P P P 1=' -'- (2)将()()()x l x x x l l l P P P 1=' -'-乘以l 得: ()()()x l x l x lx l l l P P P 21=' -'- ④ 由③-④得 (目的:消去()x l ' -1P ) ()()()()()()x l x l x x l l l l '+=++'++12P 1P 1P 1 整理可得:()()()()x l x x x l l l P 1P P 1+=' -'+ (3)由2×③-()12+l ×②可得: (目的:消去()x l ' P ) ()()()()()()x l x l x l l l l '++'+++-+11P 12P 12P 24 ()()()()()x l x l x l l l l P 12P 22P 211++' ++'+- 整理可得:()()()()x l x x l l l P 12P P 11+=' -'-+

电动力学重点知识总结期末复习必备

电动力学重点知识总结期 末复习必备 Final approval draft on November 22, 2020

一 1.静电场的基本方程 #微分形式: 积分形式: 物理意义:反映电荷激发电场及电场内部联系的规律性 物理图像:电荷是电场的源,静电场是有源无旋场 2.静磁场的基本方程 #微分形式 积分形式 反映静磁场为无源有旋场,磁力线总闭合。它的激发源仍然是运动的电荷。 注意:静电场可单独存在,稳恒电流磁场不能单独存在(永磁体磁场可以单独存在,且没有宏观静电场)。 #电荷守恒实验定律: #稳恒电流: , *#3.真空中的麦克斯韦方程组 0,E E ρε??=? ?=()0 1 0L S V Q E dl E dS x dV ρεε'' ?=?= = ? ? ? , 0J t ρ ???+=?00 L S B dl I B d S μ?=?=? ?, 00B J B μ??=??=,0J ??=2 1 (-)0n J J ?=

揭示了电磁场内部的矛盾和运动,即电荷激发电场,时变电磁场相互激发。微分形式反映点与点之间场的联系,积分方程反映场的局域特性。 * 真空中位移电流 ,实质上是电场的变化率 *#4.介质中的麦克斯韦方程组 1)介质中普适的电磁场基本方程,可用于任意介质,当 ,回到真 空情况。 2)12个未知量,6个独立方程,求解必须给出 与 , 与 的关 系。 #)边值关系一般表达式 2)理想介质边值关系表达式 6.电磁场能量守恒公式 t D J t D ρ?B E =- ??H =+?=??B =0==P M H B E D ) (00M H B P E D +=+=με()()????? ? ?=-?=-?=-?=-?α σ 12121212?0?0)(?)(?H H n E E n B B n D D n ()()????? ? ?=-?=-?=-?=-?0 ?0?0) (?0 )(?12121212H H n E E n B B n D D n D E J t ε?=?

结构力学中必须掌握的弯矩图

文档通用封面模板 本页面为作品封面,下载文档后可自 精吕文档 由编辑删除! 1

各种结构弯矩图的绘制及图例: 一、方法步骤 1、确定支反力的大小和方向(一般情况心算即可计算出支反力) ●悬臂式刚架不必先求支反力; ●简支式刚架取整体为分离体求反力; ●求三铰式刚架的水平反力以中间铰C的某一边为分离体; ●对于主从结构的复杂式刚架,注意“先从后主”的计算顺序; ●对于复杂的组合结构,注意寻找求出支反力的突破口。 2、对于悬臂式刚架,从自由端开始,按照分段叠加法,逐段求作M图(M图画在受拉一侧);对于其它形式的刚架,从支座端开始,按照分段叠加法,逐段求作M图(M图画在受拉一侧)。 2

3 二、 观察检验M 图的正确性 1、观察各个关键点和梁段的M 图特点是否相符 ●铰心的弯矩一定为零; ●集中力偶作用点的弯矩有突变,突变值与集中力偶相等; ●集中力作用点的弯矩有折角; ●均布荷载作用段的M 图是抛物线,其凹凸方向与荷载方向要符合“弓箭法则”; 2、结构中的链杆(二力杆)没有弯矩; 3、结构中所有结点的杆端弯矩必须符合平衡特点。 表1 简单载荷下基本梁的剪力图与弯矩图 梁的简图 剪力Fs 图 弯矩M 图 1 l a F s F F l a F l a l -+ - F l a l a ) (-+ M

4 2 l e M s F l M e + M e M + 3 l a e M s F l M e + M e M l a l -e M l a + - 4 l q s F + -2 ql 2 ql M 8 2ql + 2 l 5 l q a s F + -l a l qa 2) 2(-l qa 22 M 2 228)2(l a l qa -+ l a l qa 2) (2 -l a l a 2)2(- 6 l q s F + -3 0l q 6 0l q M 3 920l q + 3 )33(l -

理论力学三大类问题的基本求解方法

理论力学三大类问题的基本求解方法 2009-12 1 求解静力平衡问题的基本方法(平面问题为重点) (1)选取研究对象,进行受力分析,并画受力图。 一般针对所求,先对整体进行初步的受力分析,若所求未知量小于或等于独立平衡方程的个数,则只研究整体即可;反之,若所求未知量个数大于独立平衡方程的个数,则必须取分离体进行受力分析。可以采取整体+分离体的解决方案,也可采取分离体+分离体的解决方案;另外,若所求的未知量有系统内力,也必须取分离体研究,以暴露出所要求的内力;画受力图注意将各力画在原始的作用点处,分布力原样画出,待列方程计算时,再作简化处理。再有,注意二力杆的判别,及摩擦力方向的判定。 (2)列平衡方程求解。 首先根据受力图,判断是何种力系的平衡问题。再针对所求用尽可能少的平衡方程得出所求。 (3)结果校核——利用多余的平衡方程校核所得的结果。对用符号表示的结果,可采用量纲分析的方法进行校核。 2 求解运动学问题的基本方法(以平面运动为重点) 首先正确判断问题类型,尤其注意正确区分点的合成运动问题与刚体平面运动问题。判断的依据是,点的合成运动的问题中,运动机构的不同构件之间有相对滑动。而刚体平面运动理论用来分析同一平面运动刚体上两个不同点间的速度和加速度的关系。此时,运动机构的不同构件之间有相对转动,却无相对滑动。另外,注意点的合成运动与刚体平面运动的综合问题。 2.1 点的运动学问题——注意在一般位置建立点的运动方程; 2.2 点的合成运动问题 (1)首先是机构中各构件的运动分析; (2)再针对所求,正确选择动点、动系和定系。注意动点相对于动系和定系都要有相对运动,即动点、动系、定系要分属于不同的构件。同时,尽可能使动点的相对轨迹清楚易判断;求解加速度时,尽量将动系固连在平动的物体上,避免求科氏加速度; (3)分析三种运动及其相应的三种速度和加速度,正确画出速度矢量图或加速度矢量图。注意速度合成的平行四边形关系; (4)利用速度或加速度合成定理进行求解。注意速度和加速度是矢量,除计算大小外,还要标明方向。而平面问题中,角速度和角加速度是标量,除大小外,还需注明转向。另外,进行加速度合成时,当点的运动轨迹是已知曲线时,一般将加速度沿切线和法线方向分解;而当点的运动轨迹是未知曲线时,亦可将加速度沿x和y轴方向分解; 2.3 刚体平面运动问题 (1)首先是机构中各构件的运动分析(平动、转动或平面运动);

量子力学中要用到的数学知识大汇总

第一章矩阵 1.1矩阵的由来、定义和运算方法 1.矩阵的由来 2.矩阵的定义 3.矩阵的相等 4.矩阵的加减法 5.矩阵和数的乘法 6.矩阵和矩阵的乘法 7.转置矩阵 8.零矩阵 9.矩阵的分块 1.2行矩阵和列矩阵 1.行矩阵和列矩阵 2.行矢和列矢 3.Dirac符号 4.矢量的标积和矢量的正交 5.矢量的长度或模 6.右矢与左矢的乘积 1.3方阵 1.方阵和对角阵 2.三对角阵 3.单位矩阵和纯量矩阵 4.Hermite矩阵 5.方阵的行列式,奇异和非奇异方阵 6.方阵的迹 7.方阵之逆 8.酉阵和正交阵 9.酉阵的性质 10.准对角方阵 11.下三角阵和上三角阵 12.对称方阵的平方根 13.正定方阵 14.Jordan块和Jordan标准型 1.4行列式求值和矩阵求逆 1.行列式的展开 https://www.360docs.net/doc/457332185.html,place展开定理 3.三角阵的行列式 4.行列式的初等变换及其性质 5.利用三角化求行列式的值 6.对称正定方阵的平方根 7.平方根法求对称正定方阵的行列之值 8.平方根法求方阵之逆 9.解方程组法求方阵之逆 10.伴随矩阵

11.伴随矩阵法求方阵之逆 1.5线性代数方程组求解 1.线性代数方程组的矩阵表示 2.用Cramer法则求解线性代数方程组 3.Gauss消元法解线性代数方程组 4.平方根法解线性代数方程组 1.6本征值和本征矢量的计算 1.主阵的本征方程、本征值和本征矢量 2.GayleyHamilton定理及其应用 3.本征矢量的主定理 4.Hermite方阵的对角化——计算本征值和本征矢量的Jacobi法1.7线性变换 1.线性变换的矩阵表示 2.矢量的酉变换 3.相似变换 4.等价矩阵 5.二次型 6.标准型 7.方阵的对角化 参考文献 习题 第二章量子力学基础 2.1波动和微粒的矛盾统一 1.从经典力学到量子力学 2.光的波粒二象性 3.驻波的波动方程 4.电子和其它实物的波动性——de Broglie关系式 5.de Broglie波的实验根据 6.de Broglie波的统计意义 7.态叠加原理 8.动量的几率——以动量为自变量的波函数 2.2量子力学基本方程——Schrdinger方程 1.Schrdinger方程第一式 2.Schrdinger方程第一式的算符表示 3.Schrdinger方程第二式 4.波函数的物理意义 5.力学量的平均值(由坐标波函数计算) 6.力学量的平均值(由动量波函数计算) 2.3算符 1.算符的加法和乘法 2.算符的对易 3.算符的平方 4.线性算符 5.本征函数、本征值和本征方程

浅谈对现代数学的理解

浅淡对现代数学的理解 摘要:数学作为一门基础学科,是各学科领域进行科学研究工作不可或缺的知识。随着工程技术日新月异的发展,对数学的要求愈来愈高,现代数学的观点、方法已渗透到工程技术的各个领域,要求工程技术人员不仅具备经典的数学知识和处理问题的方法,还要求了解现代数学的内容和方法。通过课程学习,大致了解现代数学基础的知识体系,发展历史。本文在课程学习基础上总结了现代数学思想方法的发展过程、研究现状以及未来发展趋势。 关键词:现代数学;特点;趋势 1 现代数学是的发展历史 纵观数学的历史发展,可以清楚的划分为初等数学、高等数学和现代数学三个阶段。从古代到十七世纪初为初等数学阶段;从十七世纪初到十九世纪末为高等数学阶段;从十九世纪末开始,数学进入了现代数学阶段。 按照传统的、经典的说法,数学是研究“显示世界的数量关系和空间形式”的科学[1,2],或者简单地说,是研究数和形的科学。然而作为数学对象的数和形,在三个阶段里是很不相同的。在初等数学阶段,“数”是常量,“形”是孤立的、简单的几何形体。初等数学分别研究常量见的代数运算和几何形体内部以及相互间的对应关系,形成了代数和几何两大领域。 高等数学以笛卡尔(R. Descartes)建立解析几何(1637)为起点,17世纪89年代微积分的建立是这一阶段最显赫的成就和标志。在高等数学阶段,数是变量,形是曲线和曲面,高等数学研究它们之间各种函数和变换关系。这时数和形紧密的联系在起来,但大体上还是个成系统的。由于发轫与微积分的方向数学的兴起和发展,数学形成为代数、几何和分析三大领域。 现代数学阶段以康托尔(G. Cantor)建立集合论(1874)为起点。正如数学家陈省身所说:“康托尔的集合论,独创新意,高瞻远瞩,为数学立了基础。”[3]29世纪以后,用公理化体系和结构观点来通观数学,成为现代数学的明显标志,现代数学阶段的研究对象是一般的集合、各种空间和流形。它们都能用集合和映射的概念统一起来,已很难区分哪些是属于数的范畴,哪些属于形的范畴了。 二.现代数学思想 现代数学作为数学发展的新阶段,它必然在数学的固有特点(抽象性、精确可靠性、广泛应用性等)方面有所发展,这些特点相互间又是彼此联系的。 1. 高度的抽象和统一 抽象性是数学这门科学的一个最基本、最显著的特点。而现代数学更加充分、更加积极主动的发挥着这一特点。现代数学的研究对象、研究内容和研究方法,都呈现出高度的抽象和统一。 所谓抽象和统一,就是把不同对象中共同的、本质的东西抽象出来,作为高一层次的对象加以研究,从而把原来许多不同的对象统一起来,求得共同的本质的规律。一个最简单的例子就是各种算术应用问题可以用代数统一起来,掌握算术的最好的方法就是学会代数。 抽象和统一是一个完整概念的两个方面。为了统一必须抽象,有了抽象就能统一,并且还扩大了范围。集合概念是对数学所研究的各种对象的抽象概括。把一般的集合作为现代数学的研究对象,这就能把数学的个不同领域统一起来,并极大地扩大了数学的范围。例如流形是三位空间中的曲线、曲面

电动力学中麦克斯韦方程组的整理及讨论

电动力学中麦克斯韦方程组的整理及讨论 引言 大学中有关电动力学的学习,都离不开一个重要的方程--------麦克斯韦方程组。麦克斯韦方程作为电磁场中核心定律引导我们更好的学习电动力学,并更好的从电磁场的角度来分析光学的相关知识。更深一步的掌握麦克斯韦方程组,有助于我们学科的学习,为了更好的归纳,以下就从它的历史背景,公式推导,静电场,静磁场,电磁场等几个方面论述麦克斯韦方程组的重要应用。b5E2RGbCAP 一、历史背景 伟大的数学家麦克斯韦和物理学家法拉第历史性的拥抱,麦克斯韦将法拉第实验得到电磁场存在的理论,用数学公式完美的表现出来,这就是伟大的麦克斯韦方程组。p1EanqFDPw 1845年,关于电磁现象的三个最基本的实验定律:库仑定律<1785年),安培—毕奥—萨伐尔定律<1820年),法拉第定律<1831-1845年)已被总结出来,法拉第的“电力线”和“磁力线”概念已发展成“电磁场概念”。1855年至1865年,麦克斯韦基于以上理论,把数学的分析方法引进电磁学的研究领域,由此导致麦克斯韦电磁理论的诞生。DXDiTa9E3d 二、真空中麦克斯韦方程的推导 麦克斯韦方程之所以能够出现,是因为他在恒定场的基础上提出两个假设,他们分别是有法拉第电磁感应定律,认为变化的磁场可

以激发电场;麦克斯韦位移电流假设,认为变化的电场可以激发磁场。RTCrpUDGiT 所以麦克斯韦利用库伦定律,高斯定理和相应的数学公式推出了电场的高斯定理的微分式<1)。利用安培环路定理,毕奥—萨伐尔定律推导出微分式<3)。利用了法拉第电磁感应定律和静电场方程推出了微分式<2)。最后利用麦克斯韦的位移电流假说和电荷守恒定律推导出了微分式<4)。5PCzVD7HxA 三、介质中的麦克斯韦方程组 介质中的电容率和磁导率不再是和而是改成和,并在此我们确定了两个物理量,分别是极化强度适量和磁化强度适量。他们各自产生了极化电流和磁化电流,他们之间的关系式由微分形式表示为和。根据以上关系式,并根据电荷守恒和诱导电流< 极化电荷和磁化电流)分别得到电位移矢量和磁场强度。并得到两个线性关系和。这样就把真空中的麦克斯韦方程组推广到介质中,下面<5)到<8)就是介质中的麦克斯韦方程组。jLBHrnAILg 对以上各式进行物理分析,就能确切麦克斯韦方程组的物理含义。其中<5)式说明电荷是产生电场的场源;<6)式说明了变化的磁场可以激发涡旋电场;<7)式说明了磁场是无源场;<8)式表明变化的电场和电流可以激发涡旋磁场。xHAQX74J0X <2 ) <1 ) <3 ) <4 ) <6 ) <5 ) <7 ) <8 )

电动力学重点知识总结

一 1.静电场的基本方程 #微分形式: 积分形式: 物理意义:反映电荷激发电场及电场内部联系的规律性 物理图像:电荷是电场的源,静电场是有源无旋场 2.静磁场的基本方程 #微分形式 积分形式 反映静磁场为无源有旋场,磁力线总闭合。它的激发源仍然是运动的电荷。 注意:静电场可单独存在,稳恒电流磁场不能单独存在(永磁体磁场可以单独存在,且没有宏观静电场)。 #电荷守恒实验定律: #稳恒电流: , *#3.真空中的麦克斯韦方程组 0, E E ρ ε??=??= r r ()00 1 0L S V Q E dl E dS x dV ρεε'' ?= ?== ? ? ? r r r r r 蜒 , 0 J t ρ ???+=?r 00 L S B dl I B d S μ?=?=??r r u v u v 蜒, 00 B J B μ??=??=u v u v u v ,0J ??=r 21(-)0 n J J ?=r u u r u u r

揭示了电磁场内部的矛盾和运动,即电荷激发电场,时变电磁场相互激发。微分形式反映点与点之间场的联系,积分方程反映场的局域特性。 *真空中位移电流 ,实质上是电场的变化率 *#4.介质中的麦克斯韦方程组 1)介质中普适的电磁场基本方程,可用于任意介质,当 ,回到真空情况。 2)12个未知量,6个独立方程,求解必须给出 与 , 与 的关系。 #)边值关系一般表达式 2)理想介质边值关系表达式 6.电磁场能量守恒公式 0==P M ρ ρH ρB ρE ρD ρ ) (00M H B P E D ρρρρ ρρ+=+=με()()????? ? ?=-?=-?=-?=-?α σ ???????ρ?12121212?0?0)(?)(?H H n E E n B B n D D n ()()????? ? ?=-?=-?=-?=-?0 ?0?0) (?0 )(?12121212H H n E E n B B n D D n ??????ρ?0 D E J t ε?=?r r

论动体的电动力学(双语)

论动体的电动力学 爱因斯坦 大家知道,麦克斯韦电动力学——象现在通常为人们所理解的那样——应用到运动的物体上时,就要引起一些不对称,而这种不对称似乎不是现象所固有的。比如设想一个磁体同一个导体之间的电动力的相互作用。在这里,可观察到的现象只同导休和磁体的相对运动有关,可是按照通常的看法,这两个物体之中,究竟是这个在运动,还是那个在运动,却是截然不同的两回事。如果是磁体在运动,导体静止着,那么在磁体附近就会出现一个具有一定能量的电场,它在导体各部分所在的地方产生一股电流。但是如果磁体是静止的,而导体在运动,那么磁体附近就没有电场,可是在导体中却有一电动势,这种电动势本身虽然并不相当于能量,但是它——假定这里所考虑的两种情况中的相对运动是相等的——却会引起电流,这种电流的大小和路线都同前一情况中由电力所产生的一样。 堵如此类的例子,以及企图证实地球相对于“光煤质”运动的实验的失败,引起了这样一种猜想:绝对静止这概念,不仅在力学中,而且在电动力学中也不符合现象的特性,倒是应当认为,凡是对力学方程适用的一切坐标系,对于上述电动力学和光学的定律也一样适用,对于第一级微量来说,这是已经证明了的。我们要把这个猜想(它的内容以后就称之为“相对性原理”)提升为公设,并且还要引进另一条在表面上看来同它不相容的公设:光在空虚空间里总是以一确定的速度C 传播着,这速度同发射体的运动状态无关。由这两条公设,根据静体的麦克斯韦理论,就足以得到一个简单而又不自相矛盾的动体电动力学。“光以太”的引用将被证明是多余的,因为按照这里所要阐明的见解,既不需要引进一个共有特殊性质的“绝对静止的空间”,也不需要给发生电磁过程的空虚实间中的每个点规定一个速度矢量。 这里所要闸明的理论——象其他各种电动力学一样——是以刚体的运动学为根据的,因为任何这种理论所讲的,都是关于刚体(坐标系)、时钟和电磁过程之间的关系。对这种情况考虑不足,就是动体电动力学目前所必须克服的那些困难的根源。 一运动学部分 §1、同时性的定义 设有一个牛顿力学方程在其中有效的坐标系。为丁使我们的陈述比较严谨,并且便于将这坐标系同以后要引进来的别的坐标系在字面上加以区别,我们叫它“静系”。 如果一个质点相对于这个坐标系是静止的,那么它相对于后者的位置就能够用刚性的量杆按照欧儿里得几何的方法来定出,并且能用笛卡儿坐标来表示。 如果我们要描述一个质点的运动,我们就以时间的函数来给出它的坐标值。现在我们必须记住,这样的数学描述,只有在我们十分清楚地懂得“时间”在这里指的是什么之后才有物理意义。我们应当考虑到:凡是时间在里面起作用的我们的一切判断,总是关于同时的事件的判断。比如我说,“那列火车7点钟到达这里”,这大概是说:“我的表的短针指到7 同火车的到达是同时的事件。” 也许有人认为,用“我的表的短针的位置”来代替“时间”,也许就有可能克服由于定义“时间”而带来的一切困难。事实上,如果问题只是在于为这只

相关文档
最新文档