离心泵的结构
离心泵的结构和工作原理

离心泵的结构和工作原理离心泵是一种流体泵,它基于离心力将液体从入口吸入泵内,经过离心运动,最终从出口处排出。
离心泵的主要工作方式是使用一个旋转的叶轮,通过离心力将液体推向泵的出口。
与其他类型的泵相比,离心泵的结构简单,易于维护和使用,并且在一些特定行业中被广泛应用,如水处理,油田开采,化工和建筑等领域。
下面将对离心泵的结构和工作原理进行详细介绍。
结构离心泵主要由以下几个部分组成:1. 泵轴:泵轴是和泵轴承配对的中心轴,同时也是连接泵壳和电机的组件。
2. 泵壳:泵壳是包裹叶轮和进口的静态部分,根据泵的类型和模型不同,泵壳也有不同的构造设计。
3. 叶轮:叶轮是离心泵的核心组件,其形状和大小取决于泵壳的大小和流量要求。
当叶轮旋转时,离心力会推动液体流向排出口。
4. 前盖和后盖:前盖和后盖是叶轮和泵轴之间的密封件,可以防止液体泄漏。
它们通常位于泵轴的一侧。
5. 轴承:轴承是支撑泵轴的组件,分为前后两个轴承。
前置轴承通常位于前盖与泵轴之间,后置轴承通常位于后盖与泵轴之间。
工作原理当电机启动时,泵轴开始旋转,叶轮随之旋转。
液体通过进口处进入泵壳,进入叶轮,并夹带叶轮的旋转动力。
绕着叶轮旋转的液体产生离心力,液体被推向泵壳的出口处。
在推进液体的时候,离心力会将液体压缩以增加流体压力。
压缩后的液体最终流出泵壳的排放口。
值得注意的是,在使用离心泵的过程中,流量和扬程是最重要的指标。
流量是指泵每单位时间内输送的液体体积,而扬程是指泵能提供的液位高度差。
泵的总扬程等于泵之前的高度差和泵内部的压力差。
总结离心泵是一种常见的机械泵,其结构简单,维护容易,在水处理、油田开采、化工和建筑等领域都有应用。
离心泵的工作原理是基于旋转的叶轮产生的离心力将液体推向泵的出口。
流量和扬程是离心泵运行的两个最重要的指标,对于离心泵的选择和使用至关重要。
离心泵的应用范围很广,适用于各种流体输送场合,如水、废水、油、化工品等。
以下是几个具体的应用场景:1. 水泵系统在自来水厂、工业用水和污水处理等场合,离心泵经常用于输送水或废水。
离心泵的大体构造是由六部份组成的

一、离心泵的大体构造是由六部份组成的离心泵的大体构造是由六部份组成的别离是叶轮,泵体,泵轴,轴承,密封环,填料函。
1、叶轮是离心泵的核心部份,它转速高出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。
叶轮上的内外表面要求滑腻,以减少水流的摩擦损失。
2、泵体也称泵壳,它是水泵的主体。
起到支撑固定作用,并与安装轴承的托架相连接。
3、泵轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递机械能的主要部件。
4、轴承是套在泵轴上支撑泵轴的构件,有转动轴承和滑动轴承两种。
转动轴承利用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发烧,太少又有响声并发烧!滑动轴承利用的是透明油作润滑剂的,加油到油位线。
太多油要沿泵轴渗出而且漂贱,太少轴承又要过热烧坏造成事故!在水泵运行进程中轴承的温度最高在85度一般运行在60度左右,若是高了就要查找原因(是不是有杂质,油质是不是发黑,是不是进水)并及时处置!5、密封环又称减漏环。
叶轮入口与泵壳间的间隙过大会造成泵内高压区的水经其间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。
为了增加回流阻力减少内漏,延缓叶轮和泵壳的所利用寿命,在泵壳内缘和叶轮外援结合处装有密封环,密封的间隙维持在~之间为宜。
6、填料函主要由填料,水封环,填料筒,填料压盖,水封管组成。
填料函的作用主如果为了封锁泵壳与泵轴之间的间隙,不让泵内的水流不流到外面来也不让外面的空气进入到泵内。
始终维持水泵内的真空!当泵轴与填料摩擦产生热量就要靠水封管住水到水封圈内使填料冷却!维持水泵的正常运行。
所以在水泵的运行巡回检查进程中对填料函的检查是特别要注意!在运行600个小时左右就要对填料进行改换。
二、离心泵的过流部件离心泵的过流部件有:吸入室,叶轮,压出室三个部份。
叶轮室是离心泵的核心,也是流部件的核心。
泵通过叶轮对液体的作功,使其能量增加。
叶轮按液体流出的方向分为三类:(1)径流式叶轮(离心式叶轮)液体是沿着与轴线垂直的方向流出叶轮。
离心泵主要结构

离心泵主要结构离心泵是一种常见的工业泵,广泛用于液体输送、循环和循环加压等领域。
离心泵的结构十分复杂,一般由进口、叶轮、出口、轴和液力密封等部分组成。
1. 进口进口是离心泵中的重要组成部分,主要负责将液体引入泵体。
进口一般位于泵体的正面,有时也可以位于泵体的一侧。
进口的形状可以是圆形、方形或八角形等,其大小和形状会根据泵的型号和性能要求进行设计。
2. 叶轮叶轮是离心泵的核心组成部分,它是起泵作用的部件,叶轮设计的好坏直接影响泵的性能。
叶轮的形状和数量也会因泵的型号和性能要求不同而有所变化。
一般情况下,叶轮的数量越多,泵的压力就越高,但流量会相应降低。
叶轮的材料可以是铸铁、铜、铝、不锈钢等,其选材也会因泵的使用环境和介质不同而不同。
3. 出口出口是离心泵中的另一个重要组成部分,它负责将经过叶轮处理的液体从泵体中排出。
出口的形状和大小与进口类似,也会根据泵的型号和工作要求进行设计。
4. 轴轴是连接叶轮和电动机的部件,是泵体的承载结构。
轴的材料通常是硬质合金,其长度和直径也会因泵的型号和工作条件而有所变化。
除此之外,轴还需要具备一定的刚性和强度,以确保泵的正常运转。
5. 液力密封液力密封是用于防止泵体与环境之间泄漏的关键组成部分,它通常被安装在泵体和电机之间。
液力密封的材料通常是硬质合金和陶瓷,其密封效果影响着泵的性能和寿命。
综上所述,离心泵的结构包含进口、叶轮、出口、轴和液力密封等部分。
这些组成部分的设计和选材都会直接影响到泵的性能和使用寿命,同时也要考虑到泵的使用环境和任务需求。
因此,在选购和使用离心泵时,应该根据实际情况进行综合考虑,以确保泵的正常运转和高效工作。
简述离心泵的结构

简述离心泵的结构离心泵是一种常见的流体输送设备,其结构主要由以下几个部分组成:1. 叶轮:叶轮是离心泵的核心部件,它由坚固的轮毂和精心设计的叶片组成。
这些叶片的形状通常是扭曲的,这种设计的目的在于当叶轮旋转时,能够产生强大的离心力。
叶轮的主要功能是将输入的电能或机械能转化为流体流动的动能。
这种动能可以将流体提升到更高的压力水平,从而实现泵送液体的目的。
2. 泵壳:泵壳是离心泵的另一个关键部件,它由吸入室和压出室组成。
吸入室位于叶轮的周围,它引导流体进入叶轮。
当叶轮旋转时,流体被加速并引导到压出室。
压出室将经过叶轮加速的流体平滑地引导到泵的出口,使其以合适的速度和压力流出泵体。
3. 轴和轴承:轴是连接电机(或柴油机)和叶轮的关键传动部件,它通常由高强度钢制成。
这种材料可以确保轴在承受高速旋转和传递大量动力的同时,仍能保持其强度和稳定性。
轴承是支持轴的部件,它们通常有滑动轴承和滚动轴承两种形式。
滑动轴承通过润滑油来减少摩擦,而滚动轴承则通过滚动摩擦来减少摩擦。
4. 密封环和轴封:密封环和轴封是用来防止泵内流体泄漏和外部空气进入泵内的装置。
根据使用环境和流体性质的不同,轴封的形式也有所不同,常见的有机械密封、填料密封等。
机械密封通常由一对平行、旋转的密封面组成,可以有效地阻止流体泄漏。
填料密封则通常由一些特殊的材料制成,可以适应各种不同的流体和温度条件。
5. 平衡装置:平衡装置用于平衡叶轮产生的离心力,通常包括平衡盘、平衡环等部件。
这些部件可以减轻泵的振动和噪音,同时提高泵的效率和寿命。
6. 其他附件:离心泵还配备有一些其他的附件,如吸入管、排出管、阀门等,以帮助流体正确地进入和流出泵体。
这些附件的设计和选择取决于特定的应用需求和使用条件。
例如,吸入管的设计需要考虑流体的流速和压力条件,而排出管则需要考虑流体的流量和压力需求。
阀门则可以用来控制流体的流动方向和流量。
以上就是离心泵的基本结构,各种离心泵可能会有一些细微的区别,但大体上都是这样的组成部分。
离心泵的主要结构

离心泵的主要结构
离心泵的主要结构包括以下几个部分:
1. 泵体:离心泵的外壳,通常由铸铁或不锈钢制成。
泵体通常具有进口口和出口口,用于导入和排出液体。
2. 叶轮:也称为转子,是离心泵的核心部件。
它通常由金属制成,具有多个叶片。
当泵运行时,叶轮旋转,产生离心力将液体从进口抽取并推送到出口。
3. 泵轴:连接电动机和叶轮的轴,通常由钢材制成。
它传递驱动力和承受叶轮的旋转力。
4. 机械密封:用于保持泵体与泵轴之间的严密连接,并防止液体泄漏。
常见的机械密封包括填料密封和机械密封。
5. 泵轴承和轴承座:用于支撑泵轴,减少转向时的摩擦和磨损。
6. 进出口管道:用于将液体引入泵体并从泵体排出。
7. 泵站:包括进口和出口阀门,压力表,测流仪等,用于控制和监测泵的运行情况。
这些部件共同构成了离心泵的主要结构,使得离心泵能够有效地抽取液体并将其输送到所需位置。
离心泵的结构组成

离心泵的结构组成
离心泵是一种常见的工业泵,其结构组成主要包括以下几个部分: 1. 泵体:离心泵的主体部分,一般为圆柱形或球形,用于容纳
叶轮和其他零部件。
2. 叶轮:离心泵的关键部件,通常为叶形或叶片形,通过旋转
来将流体吸入并推送出去,其数量和形状根据具体需求而定。
3. 轴:连接电机和叶轮的部分,一般采用钢材或铜材等高强度
材料制造。
4. 机械密封:用于防止泵体和轴之间的液体溢出,通常由可调
密封环、静密封套和动密封套等部分组成。
5. 支撑部件:用于支撑叶轮和轴,保证其在高速旋转时的稳定
性和可靠性。
6. 进出口法兰:用于连接泵体和管道系统,一般采用标准法兰,以便与其他设备配合使用。
综合以上几点,离心泵可分为单级离心泵和多级离心泵两种,单级离心泵又可分为卧式和立式两种,多级离心泵则根据叶轮数量和结构形式不同而分类。
除了以上部件外,离心泵还可根据具体应用场合而增加其他部件,如冷却器、加热器、降噪器等。
- 1 -。
离心泵的结构

第二节离心泵的结构任何离心泵均由吸入机构、导流机构、过流、密封、平衡、支承及辅助机构等部件组成。
其中吸机构和导流机构组成泵壳部分;过流部件的轴、叶轮、轴套以及其它大部分套装轴上的零件组成了泵的转子部分,另外平衡轴向力的机构和机械密封组件等也装在轴上。
一、泵壳1.泵壳的作用1)将液体均匀地导入叶轮,并收集从叶轮高速流出的液体,送入下一叶轮或导向出口。
2)实现能量的转换,变动能为压力能。
2.泵壳的形式(1)蜗形泵壳通过螺线形流道(如图1-11)使液流平缓地降低流速,以使大部分动能转为压能,同时起导向作用。
(2)有导轮的分段泵壳用于分段式多级泵。
液流通过靠近叶轮外缘的导轮(如图1-12)改变流向。
导轮的流道入口应尽量保持使液流方向与叶轮甩出方向一致,以避免因冲击而引起的能量损失,但工况改变时,有时还是不可避免的。
液体流经导轮同样起降速增压和导向作用。
(3)两种泵壳特点的比较蜗形泵一般多用于单级泵及水平中开式的多级泵;而具有导轮的分段泵壳则都在多级泵。
两种泵壳特点比较见表1-3。
泵壳的材质取决于输送介质的温度、压力和介质的腐蚀性。
表1-3 两种泵壳特点比较二、转子部分转子是一组合部件。
它由轴、叶轮、轴套等组成,是产生离心力和能量的旋转主体。
密封部件、平衡装置等也都套装在轴上,是离心泵的关键部分。
1.叶轮叶轮是离心泵的主要零件。
叶轮主要由轮盖、叶片、轮毂等组成(图1-13)。
在前后轮盖与叶片之间形成流道,叶轮在轴的带动下旋转,产生离心力,液体由叶轮中心轴进入,由外缘排出,完成液体的吸入与排出。
叶轮的形式按进水方式可分为单吸和又吸两种。
2.转轴转轴的作用是传递原动机的动力及带动叶轮旋转,并支承轴上各零部件的重量。
3.轴套轴套套装在轴上,一般是圆柱形。
轴套有两种:一种是装在叶轮与叶轮之间,主要起固定叶轮的作用;另一种是装有轴两头密封处,防止轴磨损,起保护轴的作用。
4.轴与叶轮的装配方法轴与叶轮的装配方法有两种:一是悬臂式,把叶轮固定在轴的一端,并通过键或叶轮与轴的螺纹连接来传递扭矩。
医学课件离心泵结构和原理

恒位油杯的作用是使轴承箱体 内的润滑油位保持恒定。
恒位油杯的结构简图如右所示, 斜面的位置对恒位油杯非常关键, 由此形成的工作油位点是正常工 作状态时的油位。有的恒位油杯 没有专门的气孔,但都要保证斜 面以上部位与大气自由相通。
3. 离心泵结构
3.5.4 恒位油杯原理
下图为恒位油杯正常工作状态, 理论设计上工作油位点和设计油位 是相同的,恒位油杯内初始油量一 般保持在整个油杯的2/3处。恒位油 杯内液面高于轴承箱体内液面并能 保持一定高度的液位,是由于连通 器的原理,油杯内气体压力小于外 界大气压力。
3. 离心泵结构 3.4 轴封
由于泵轴转动而泵壳固定不动,在轴和泵壳的接触处必 然有一定间隙。为避免泵内高压液体沿间隙漏出,或防止外 界空气从相反方向进入泵内,必须设置轴封装置。
轴封装置主要防止泵中的液体泄漏和空气进入泵中,以 达到密封和防止进气引起泵气蚀的目的。
轴封的形式:即带有骨架的橡胶密封、填料密封和机械密 封。目前最主要采用机械密封和干气密封两种形式。
体、内外圈滚道及保持器)之间并非都是纯滚动的。由于在 外负荷作用下零件产生弹性变形,除个别点外,接触面上均 有相对滑动。滚动轴承各元件接触面积小,单位面积压力往 往很大,如果润滑不良,元件很容易胶合,或因摩擦升温过 高,引起滚动体回火,使轴承失效,所以轴承时刻都要处于 油膜的涂覆之中。
轴承润滑通常用油槽或油雾进行润滑,为了保证滚动体和 滚道接触面间形成一定厚度的油膜,采用中黏度的涡轮油 (国际标准化组织68级)较适宜。在油槽润滑中,轴承部分浸 在油中,油浸润高度以没过轴承底的50%为宜。如果超过50 %,过量的油涡流会使油温上升,油温升高会加速润滑荆的 氧化,从而降低润滑性能;如果低于50%,则油对轴承的冲 洗作用降低,润滑效果不好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
叶轮的材料,主要是根据所输送液体的化学
性质、杂质及在离心力作用下的强度来确定。 清水离心泵叶轮用铸铁或铸钢制造,输送具有 较强腐蚀性的液体时,可用青铜、不锈钢、陶 瓷、耐酸硅铁及塑料等制造。叶轮的制造方法 有翻砂铸造、精密铸造、焊接、模压等,其尺 寸、形状和制造精度对泵的性能影响很大。
图11—5 弹性圈柱销联轴器
4.蜗壳
• 蜗壳又称为泵壳,它是指叶轮出口到下一 级叶轮人口或到泵的出口管之间的、截面 积逐渐增大的螺旋形流道。它使液体从叶 轮流出后其流速平稳地降低,同时使大部 分动能转变为静压能。因其出口为扩散管 状,所以还能把从叶轮流出来的液体收集 起来送往排出管。当蜗壳具有能量转换作 用时,蜗壳内液体的压力是沿途增大的, 这就会对叶轮产生一个径向的不平衡力。
位置正常运转。它一端通过联轴器与电动机轴相连,另一端支 承着叶轮作旋转运动,轴上装有轴承、轴向密封等零部件。 泵轴属阶梯轴类零件,一般情况下为一整体。但在防腐泵中, 由于不锈钢的价格较高,有时采用组合件。接触介质的部分用 不锈钢,安装轴承及联轴器的部分用优质碳素结构钢,不锈钢 与碳钢之间可以采用承插连接或过盈配合连接。由于泵轴用于 传递动力,且高速旋转,在输送清水等无腐蚀性介质的泵中, 一般用45#钢制造,并且进行调质处理。在输送盐溶液等弱腐蚀 性介质的泵中,泵轴材料用40Cr,且调质处理。在防腐蚀泵中, 即输送酸、碱等强腐蚀性介质的泵中,泵轴材质一般为 1Crl8Ni9或1Crl8Ni9Ti等不锈钢。
模块十一 离心泵的检修
单元一 单元二 单元三 单元四 单元五
概述 D型多级离心泵的检修 单级离心泵的检修 圆筒形锅炉给水泵的检修 凝结水泵的检修
图5—10 分 段式多级离 心泵
1.吸入口 2.叶轮 3.导叶 4.双平衡鼓
装置 5.轴端密封 6.排出口 7.拉紧螺栓 8.回水管 9.压出室
单元一 概述
(1)闭式叶轮叶轮的两侧均有盖板,盖板间有4—6个 叶片,如图 (a)所示。闭式叶轮效率较高,应用 最广,适用于输送不含固体颗粒及纤维的清洁液 体。闭式叶轮有单吸和双吸两种类型。双吸叶轮 图7所示.适用于大流量泵,其抗汽蚀性能较好。
(2)半开式叶轮只有后盖板,如图6 (b)所示。它适 用于输送易于沉淀或含固体悬浮物的液体,其效 率介于开式和闭式叶轮之间。适用于输送黏稠及 含有固体颗粒的液体。离心泵叶片多为后弯式, 其叶片数一般为6-12片,常见的为6-8片。对输 送含有杂质的开式叶轮,其叶片数一般为2-4片。 叶片的厚度为3-6mm。
图8 双蜗壳室
• 为了消除此不平衡的径向力,对高扬程的泵常采用 双蜗壳室,如图8所示,使用两段蜗壳以互相抵消对 叶轮所产生的径向力。
• 蜗壳的优点是制造方便,高效区宽,车削叶轮后泵 的效率变化较小。缺点是蜗壳形状不对称,在使用 单蜗壳时作用在转子径向的压力不均匀,易使轴弯 曲,所以在多级泵中只是首段和尾段采用蜗壳而在 中段采用导轮装置。 蜗壳的材质一般为铸铁。防腐 泵的蜗壳为不锈钢或其他防腐材料,例如塑料玻璃 钢等。多级泵由于压力较大,对材质强度要求较高, 其蜗壳一般用铸钢制造。
1.吸入室和压出室 2.导叶 • ㈢密封装置 • ㈣轴承 • ㈤ 轴向推力平衡装置
1.吸入室和压出室
图11-6 吸入室
(a)锥形管 (b)圆环形 (c)半螺旋形
图11-7 压出室
(a)环形 (b)螺旋形
2.导叶
图11-8 径向式导叶
1—首级叶轮 2—正导叶 3—过渡区 4—反导叶 5—次级叶轮
轴套的作用是保护泵轴,使填料与泵轴的摩擦转变为填料与轴套的摩擦,所 以轴套是离心泵的易磨损件。轴套表面一般也可以进行渗碳、渗氮、镀铬、 喷涂等处理方法,表面粗糙造度要求一般要达到Ra3.2μm—Ra0.8μm。可以 降低摩擦系数,提高使用寿命。
.
水
泵
联
轴
器
图11—3 凸缘联轴器
图11—4 齿轮联轴器 1、2—甲乙侧外齿半联轴器 3、4—甲乙侧带内齿的外壳 5—连接螺栓
一、离心泵的结构
• ㈠离心泵的转动部件
1.叶轮 2.轴 3.联轴器
• ㈡离心泵的静止部件 • ㈢密封装置 • ㈣轴承 • ㈤ 轴向推力平衡装置
1.叶轮
• 使水能量增加的唯一 部件。 叶轮按结构 可以分为闭式(图a)、 半开式(图b)和开式 (图c)。
离心式水泵叶轮结构 1—前盖板 2—后盖板 3—叶片 4—轮毂
水轮机叶轮图
2.轴
• 作用:传递扭矩。 • 材质:
中小型泵:大多采用优质碳素钢制造的等直径轴; 大型高压泵:采用特种合金钢(如沉淀硬化钢、镍铬合金钢)
锻造的阶梯轴
• 叶轮在轴上的固定
周向固定:采用键 轴向固定:采用轴套及挡套。同时轴套还可以保护轴在运行
中不致磨损和腐蚀。
2.泵轴 离心泵的泵轴的主要作用是传递动力,支承叶轮保持在工作
5.导轮
• 导轮又称导叶轮,它是一个固定不动的圆盘,位于叶 轮的外缘、泵壳的内侧,正面有包在叶轮外缘的正向 导叶,背面有将液体引向下一级叶轮入口的反向导叶, 其结构如图9所示。液体从叶轮甩出后,平缓地进入导 轮,沿正向导叶继续向外流动,速度逐渐下降,静压 能不断提高。液体经导轮背面反向导叶时被引向下一 级叶轮。导轮有径向式、流道式和扭曲式三种,其中 扭曲式已逐渐被淘汰。导轮上的导叶数一般为4-8片, 导叶的入口角一般为80一160度,叶轮与导叶间的径向 单侧间隙约为lmm。若间隙太大,效率变低;间隙太小, 则会引起振动和噪声。导轮与蜗壳相比,其外形尺寸 小,采用导轮的分段式多级离心泵的泵壳容易制造, 能量转换的效率也较高,但安装检修不如蜗壳式方便。
•另外,当泵实际工况与 设计工况偏离时,液体流 出叶轮时的运动轨迹与导 轮叶片形状不一致,使液 体对导叶的入口边产生冲 击,使泵的效率下降。所 以,采用导轮装置的离心 泵,扬程和效率曲线均比 蜗壳泵的陡。由于导轮的 几何形状较为复杂,所以 一般用铸铁铸造而成。
单元一 概述
一、离心泵的结构
• ㈠离心泵的转动部件 • ㈡离心泵的静止部件