石家庄市2015年第一次质检考试数学答案
石家庄市2015届高三复习教学质量检测(一)理科数学

2页3第4页 5第石家庄市2015届高三第一次质量检测数学理科答案一、选择题:1-5CBCDA 6-10DADBC 11-12BA二、填空题:13.24y x =+ 14.1- 15. 16.3602 三、解答题 17.因为c=2,不合题意舍去,所以52c =.....................................10分 18.解(1)设{}n a 的公差为d ,由题意得2(33)3(312)d d +=+,得2d =或0d =(舍),……………………2分所以{}n a 的通项公式为3(1)221n a n n =+-=+……………………4分 (2)2(21)2nnn n b a n ==+123325272(21)2n n S n =+++++………………①…………②……………………6分①-②得123132222222(21)2n n n S n +-=++++-+…………………8分1+12(12)22(21)2122(21)2n n n n n +-=+-+-=---……………………10分∴1(21)22n n S n +=-+……………………12分 19. 解:(1)解:a=6 b=10……………………………2分222222,............2sin sin sin 3cos .............62sin 2494cos 2629100 (85)2c= (92)==∴===+-+-==-+==a bA B A BA aB B b a c b c B ac cc c c 解:分sinA=sin2B=2sinBcosB.........4分分分解得或分23412325272(21)2n n S n +=+++++6……….5分(2)P (Y=0)=632228=C P (Y=1)=282112128=C C P (Y=2)=112212=C …………………11分 5E(P )=.…………………………12分 20(1)分别取PA 和AB 中点M 、N ,连接MN 、ME 、NF ,则=NF ∥12AD ,=ME ∥12AD ,所以=NF ∥ME , ∴四边形MEFN 为平行四边形. -------------2∴EF ,∴EF ∥PAB 平面.(2) 棱PA ⊥底面ABCD ,所以A P ,轴轴,轴,z y x 的正方向,建立以(001),(000),B (1,0P A C D ,,,,,,,,,,1(0222E ,,所以,1(0)22EF =-,,, (0),(100)22AE AB ==,,,,,- ------------6设平面ABE 法向量(,,)n a b c =,0,0,n AE n AB ==所以11022b c a ⎧+=⎪⎨⎪=⎩令1,0,1b a c ===-则 所以(0,1,1)n =-为平面ABE 的一个法向量 -------------8页7第设直线EF 与平面ABE 所成角为α, 于是1sin cos ,2EF n EF n EF nα=<>==.-------------10所以直线EF 与平面ABE 所成角为6π. -------------12 解法2在平面PAD 内作EH ∥PA H 于, 因为侧棱PA ⊥底面ABCD ,所以EH ⊥底面ABCD . -------------6E 为PD 的中点,12EH =,1111224ABFS =⨯⨯= 11111334224E ABF ABF V S EH -==⨯⨯=-------------8设点F 到平面ABE 的距离为h,E ABF F ABE V V --=11122ABES AB AE =⨯⨯=⨯=1133ABFABES EH Sh =,h =-------------10设直线EF 与平面ABE 所成角为α,1sin 2h EF α==,所以直线EF 与平面ABE 所成角为6π. -------------1221.解:(1)设A (0x ,0),B (0,0y ),P (,x y ),由2BP PA =得,00(,)2(,)x y y x x y -=--,即000032()223x x x x xy y y y y⎧=-=⎧⎪⇒⎨⎨-=-⎩⎪=⎩,————————————————————2分 又因为22009x y +=,所以223()(3)92x y +=,化简得:2214x y +=,这就是点P 的轨迹方程。
2015年石家庄市初中毕业班质量检测参考答案

2015年石家庄市初中毕业班质量检测参考答案1-5 ACCBB 6-10 CBCBB 11-15ABAAC 16-20BACBA 21-25CBCBC 26 – 30 BCDBA31-35 ACDAD 36-40 AABCD 41-45 BCAAC 46-50 DBDBD 51-55 BCCDD 56--60 BBAAC 61-65 ACDCB 66. studying 67. copy 68. every word 69. be afraid 70. fast71. if he or she wants to.72. It can bring us(me) to realize what is happening.73. study 74. (Here are) some ways on how to become a better student.75. 考试能帮助你记住(所学的)新知识。
76. parents 77. school 78. lonely 79.read 80. us81. Have you flown a kite?82. Lily decided to fly kites today.83. She saw many people flying kites in the park.84. She ran quickly and her kite flew high.85. How happily she played!86. On March 15th, 2015, Zhang Lei hurt his right leg when he was running after his classmate at school. As a result, he was in hospital for a month. I'm very sorry to hear that. So as a student I think keeping safe in school is very important. First , don't run in the hallway and never fight with others. Second, we should always obey the school rules. Most important of all, we should ask the teachers for help when we are in trouble.Please remember safety must come first.。
2015年河北省石家庄市高考数学一模试卷(理科)

2015年河北省石家庄市高考数学一模试卷(理科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共12小题,共60.0分)1.已知i为虚数单位,则复数=()A.2+iB.2-iC.-1-2iD.-1+2i【答案】C【解析】解:=,故选:C.直接利用复数代数形式的乘除运算化简求值.本题考查了复数代数形式的乘除运算考查了复数的基本概念,是基础题.2.已知集合P={0,1,2},Q={y|y=3x},则P∩Q=()A.{0,1}B.{1,2}C.{0,1,2}D.∅【答案】B【解析】解:Q={y|y=3x}={y|y>0},则P∩Q={1,2},故选:B根据集合的基本运算进行求解即可.本题主要考查集合的基本运算,比较基础.3.已知cosα=k,k∈R,α∈(,π),则sin(π+α)=()A.-B.C.±D.-k【答案】A【解析】解:∵cosα=k,k∈R,α∈(,π),∴sinα==,∴sin(π+α)=-sinα=-.故选:A.由已知及同角三角函数基本关系的运用可求sinα,从而由诱导公式即可得解.本题主要考查了同角三角函数基本关系的运用,运用诱导公式化简求值,属于基本知识的考查.4.下列说法中,不正确的是()A.已知a,b,m∈R,命题“若am2<bm2,则a<b”为真命题B.命题“∃x0∈R,x02-x0>0”的否定是:“∀x∈R,x2-x≤0”C.命题“p或q”为真命题,则命题p和q命题均为真命题D.“x>3”是“x>2”的充分不必要条件【答案】C【解析】解:A.若am2<bm2,利用不等式的性质可得:a<b,因此为真命题;B.命题“∃x0∈R,x02-x0>0”的否定是:“∀x∈R,x2-x≤0”,正确;C.“p或q”为真命题,则命题p和q命题至少有一个为真命题,因此不正确;D.“x>3”⇒“x>2”,反之不成立,因此“x>3”是“x>2”的充分不必要条件,正确.故选:C.A.利用不等式的基本性质即可判断出正误;B.利用命题的否定定义即可判断出正误;C.利用复合命题的真假判定方法即可判断出正误;D.“x>3”⇒“x>2”,反之不成立,即可判断出正误.本题考查了简易逻辑的判定、不等式的基本性质,考查了推理能力,属于基础题.5.设函数f(x)为偶函数,且当x∈[0,2)时,f(x)=2sinx,当x∈[2,+∞)时f(x)=log2x,则=()A. B.1 C.3 D.【答案】D【解析】解:∵函数f(x)为偶函数,∴f(-)=f(),∵当x∈[0,2)时f(x)=2sinx,∴f(x)=2sin=2×=;∵当x∈[2,+∞)时f(x)=log2x,∴f(4)=log24=2,∴=+2,故选D;函数f(x)为偶函数,可得f(-)=f()再将其代入f(x)=2sinx,进行求解,再根据x∈[2,+∞)时f(x)=log2x,求出f(4),从而进行求解;此题主要考查函数值的求解问题,解题的过程中需要注意函数的定义域,是一道基础题;6.执行下面的程序框图,如果输入的依次是1,2,4,8,则输出的S为()A.2B.2C.4D.6【答案】B【解析】解:模拟执行程序框图,可得S=1,i=1满足条件i≤4,S=1,i=2满足条件i≤4,S=,i=3满足条件i≤4,S=2,i=4满足条件i≤4,S=2,i=5不满足条件i≤4,退出循环,输出S的值为2.故选:B.模拟执行程序框图,依次写出每次循环得到的S,i的值,当i=5时,不满足条件i≤4,退出循环,输出S的值为2.本题主要考查了循环结构的程序框图,正确写出每次循环得到的S的值是解题的关键,属于基本知识的考查.7.如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则BB1与平面AB1C1所成的角是()A. B. C. D.【答案】A【解析】解:以B为坐标原点,以与BC垂直的直线为x轴,BC为y轴,建立空间直角坐标系,则A(,1,0),B1(0,0,3),C1(0,2,3),=(-,-1,3),=(0,2,0),=(0,0,3).设平面AB1C1所的一个法向量为=(x,y,z)则即,取z=1,则得=(,0,1),∵cos<,>===,∴BB1与平面AB1C1所成的角的正弦值为,∴BB1与平面AB1C1所成的角为故选A.以B为坐标原点,建立空间直角坐标系,利用与平面AB1C1所的一个法向量的夹角,求出则BB1与平面AB1C1所成的角.本题考查线面角的计算,利用了空间向量的方法.要注意相关点和向量坐标的准确性,及转化时角的相等或互余关系.8.已知O、A、B三地在同一水平面内,A地在O地正东方向2km处,B地在O地正北方向2km处,某测绘队员在A、B之间的直线公路上任选一点C作为测绘点,用测绘仪进行测绘,O地为一磁场,距离其不超过km的范围内会测绘仪等电子仪器形成干扰,使测量结果不准确,则该测绘队员能够得到准确数据的概率是()A.1-B.C.1-D.【答案】A【解析】解:由题意,△AOB是直角三角形,OA=OB=2,所以AB=2,O地为一磁场,距离其不超过km的范围为个圆,与AB相交于C,D两点,作OE⊥AB,则OE=,所以CD=2,所以该测绘队员能够得到准确数据的概率是1-=1-.故选:A.作出图形,以长度为测度,即可求出概率.本题考查利用数学知识解决实际问题,考查概率的计算,正确确定CD是关键.9.已知抛物线y2=2px(p>0)的焦点F恰好是双曲线-=1(a>0,b>0)的一个焦点,两条曲线的交点的连线过点F,则双曲线的离心率为()A. B. C.1+ D.1+【答案】C【解析】解:由题意,∵两条曲线交点的连线过点F∴两条曲线交点为(,p),代入双曲线方程得,又=c代入化简得c4-6a2c2+a4=0∴e4-6e2+1=0∴e2=3+2=(1+)2∴e=+1故选:C.先根据抛物线方程得到焦点坐标和交点坐标,代入双曲线,把=c代入整理得c4-6a2c2+a4=0等式两边同除以a4,得到关于离心率e的方程,进而可求得e.本题考查由圆锥曲线的方程求焦点、考查双曲线的三参数的关系:c2=a2+b2注意与椭圆的区别.10.一个几何体的三视图如图所示,则该几何体的体积是()A.64B.72C.80D.112【答案】B【解析】解:由几何体的三视图可知,该几何体下部为正方体,边长为4,体积为43=64,上部为三棱锥,以正方体上底面为底面,高为3.体积×,故该几何体的体积是64+8=72.故选B.由几何体的三视图可知,该几何体下部为正方体,边长为4,上部为三棱锥(以正方体上底面为底面),高为3.分别求体积,再相加即可本题考查由三视图求几何体的体积,考查由三视图还原几何体直观图,考查与锥体积公式,本题是一个基础题.11.已知平面图形ABCD为凸四边形(凸四边形即任取平面四边形一边所在的直线,其余各边均在此直线的同侧),且AB=2,BC=4,CD=5,DA=3,则四边形ABCD面积S的最大值为()A. B.2 C.4 D.6【答案】B【解析】解:设AC=x,在△ABC中,由余弦定理可得,x2=22+42-2×2×4cos B=20-16cos B,在△ACD中,由余弦定理可得,x2=32+52-2×3×5cos D=34-30cos D,即有15cos D-8cos B=7,又四边形ABCD面积S=×2×4sin B+×3×5sin D=(8sin B+15sin D),即有8sin B+15sin D=2S,又15cos D-8cos B=7,两式两边平方可得,64+225+240(sin B sin D-cos B cos D)=49+4s2,化简可得,-240cos(B+D)=4S2-240,由于-1≤cos(B+D)<1,即有S≤2.当cos(B+D)=-1即B+D=π时,4S2-240=240,解得S=2.故S的最大值为2.故选B.设AC=x,在△ABC和△ACD中,由余弦定理可得,15cos D-8cos B=7,再由三角形的面积公式可得8sin B+15sin D=2S,两式两边平方结合两角和的余弦公式和余弦函数的值域,即可求得最大值.本题考查三角形的面积公式和余弦定理的运用,同时考查两角和的余弦公式的运用和余弦函数的最值的求法,属于中档题.12.已知函数f(x)=,>,,若关于x的方程f2(x)-bf(x)+c=0(b,c∈R)有8个不同的实数根,则由点(b,c)确定的平面区域的面积为()A. B. C. D.【答案】A【解析】解:根据题意作出f(x)的简图:由图象可得当f(x)∈(0,1]时,有四个不同的x与f(x)对应.再结合题中“方程f2(x)-bf(x)+c=0有8个不同实数解”,可以分解为形如关于k的方程k2-bk+c=0有两个不同的实数根K1、K2,且K1和K2均为大于0且小于等于1的实数.列式如下:><<>,化简得<><<,此不等式组表示的区域如图:则图中阴影部分的面积即为答案,由定积分的知识得S=-×1×1=故选:A题中原方程f2(x)-bf(x)+c=0有8个不同实数解,即要求对应于f(x)=某个常数K,有2个不同的K,再根据函数对应法则,每一个常数可以找到4个x与之对应,就出现了8个不同实数解,故先根据题意作出f(x)的简图,由图可知,只有满足条件的K 在开区间(0,1)时符合题意.再根据一元二次方程根的分布理论可以得出答案.本题考查了函数的图象与一元二次方程根的分布的知识,同时考查定积分等知识,较为综合;采用数形结合的方法解决,使本题变得易于理解.二、填空题(本大题共4小题,共20.0分)13.已知平面向量,的夹角为,||=2,||=1,则|+|= ______ .【答案】【解析】解:∵平面向量,的夹角为,||=2,||=1,∴=||•||cos=2×=-1,∴|+|2=()2=||2+||2+2=4+1-2=3,即|+|=.故答案为:.运用数量积的定义求解得出=||•||cos,结合向量的运算,与模的运算转化:|+|2=()2=||2+||2+2,代入数据求解即可.本题考查了平面向量的数量积的运用,应用求解向量的模,计算简单,属于容易题.14.将甲、乙、丙、丁四名学生分到两个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同的分法的总数为______ .【答案】8【解析】解:∵每个班至少分到一名学生,且甲、乙两名学生不能分到一个班,设两个班为1班和2班,∴分法包括两种情况:两个班分别为1人和3人,两个班各2个人,若两个班分别为1人和3人,则1人只能为甲或乙,单独的1人可以在1班或2班,因此分法为:2×2=4,若两个班各2个人,则为总的分法减去甲乙在同一个班(都在1班或都在2班)的情况,即分法为:-2=4,因此不同的分法的总数为:4+4=8.故答案为:8.分法包括两种情况:两个班分别为1人和3人,两个班各2个人,据此解答.本题考查排列组合的实际应用,考查利用排列组合解决实际问题,是一个基础题,这种题目是排列组合中经常出现的一个问题.15.设过曲线f(x)=-e x-x(e为自然对数的底数)上任意一点处的切线为l1,总存在过曲线g(x)=ax+2cosx上一点处的切线l2,使得l1⊥l2,则实数a的取值范围为______ .【答案】[-1,2]【解析】解:由f(x)=-e x-x,得f′(x)=-e x-1,∵e x+1>1,∴∈(0,1),由g(x)=ax+2cosx,得g′(x)=a-2sinx,又-2sinx∈[-2,2],∴a-2sinx∈[-2+a,2+a],要使过曲线f(x)=-e x-x上任意一点的切线为l1,总存在过曲线g(x)=ax+2cosx上一点处的切线l2,使得l1⊥l2,则,解得-1≤a≤2.即a的取值范围为-1≤a≤2.故答案为:[-1,2].求出函数f(x)=-e x-x的导函数,进一步求得∈(0,1),再求出g(x)的导函数的范围,然后把过曲线f(x)=-e x-x上任意一点的切线为l1,总存在过曲线g(x)=ax+2cosx 上一点处的切线l2,使得l1⊥l2转化为集合间的关系求解.本题考查了利用导数研究过曲线上的某点的切线方程,考查了数学转化思想方法,解答此题的关键是把问题转化为集合间的关系求解,是中档题.16.已知椭圆=1(a>b>0)的两个焦点分别为F1,F2,设P为椭圆上一点,∠F1PF2的外角平分线所在的直线为l,过F1,F2分别作l的垂线,垂足分别为R,S,当P在椭圆上运动时,R,S所形成的图形的面积为______ .【答案】πa2【解析】解:由题意,P是以F1,F2为焦点的椭圆上一点,过焦点F2作∠F1PF2外角平分线的垂线,垂足为S,延长F2S交F1P的延长线于Q,得PQ=PF2,由椭圆的定义知PF1+PF2=2a,故有PF1+PQ=QF1=2a,连接OS,知OS是三角形F1F2Q的中位线,∴OS=a,即点S到原点的距离是定值a,由此知点S的轨迹是以原点为圆心、半径等于a的圆.同理可得,点R的轨迹是以原点为圆心、半径等于a的圆.故点R,S所形成的图形的面积为πa2.延长F2S交F1P的延长线于Q,可证得PQ=PF2,且S是PF2的中点,由此可求得OS的长度是定值,即可求点S的轨迹的几何特征.本题考查求轨迹方程,关键是证出OS是中位线以及利用题设中所给的图形的几何特征求出QF1的长度,进而求出OS的长度,再利用圆的定义得出点M的轨迹是一个圆,属于难题.三、解答题(本大题共8小题,共94.0分)17.设数列{a n}的前n项和为S n,a1=1,a n+1=λS n+1(n∈N*,λ≠-1),且a1、2a2、a3+3为等差数列{b n}的前三项.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)求数列{a n b n}的前n项和.【答案】解:(1)∵a n+1=λS n+1(n∈N*,λ≠-1),∴当n≥2时,a n=λS n-1+1,∴a n+1-a n=λa n,即a n+1=(1+λ)a n,又a1=1,a2=λa1+1=λ+1,∴数列{a n}为以1为首项,公比为λ+1的等比数列,∴a3=(λ+1)2,∵a1、2a2、a3+3为等差数列{b n}的前三项.∴4(λ+1)=1+(λ+1)2+3,整理得(λ-1)2=0,解得λ=1.∴a n=2n-1,b n=1+3(n-1)=3n-2.(2)a n b n=(3n-2)•2n-1,∴数列{a n b n}的前n项和T n=1+4×2+7×22+…+(3n-2)•2n-1,2T n=2+4×22+7×23+…+(3n-5)×2n-1+(3n-2)×2n,∴-T n=1+3×2+3×22+…+3×2n-1-(3n-2)×2n=-(3n-2)×2n=(5-3n)×2n-5,∴T n=(3n-5)×2n+5.【解析】(1)由a n+1=λS n+1(n∈N*,λ≠-1),当n≥2时,a n=λS n-1+1,可得a n+1=(1+λ)a n,利用等比数列的通项公式可得a3,再利用等差数列的通项公式即可得出;(2)利用“错位相减法”、等比数列的前n项和公式即可得出.本题考查了递推式的应用、“错位相减法”、等差数列与等比数列的通项公式及其前n 项和公式,考查了推理能力与计算能力,属于中档题.18.集成电路E由3个不同的电子元件组成,现由于元件老化,三个电子元件能正常工作的概率分别降为,,,且每个电子元件能否正常工作相互独立,若三个电子元件中至少有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所需费用为100元.(Ⅰ)求集成电路E需要维修的概率;(Ⅱ)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需的费用,求X的分布列和期望.【答案】解:(Ⅰ)三个电子元件能正常工作分别记为事件A,B,C,则P(A)=,P(B)=,P(C)=.依题意,集成电路E需要维修有两种情形:①3个元件都不能正常工作,概率为P1=P()=P()P()P()=××=.②3个元件中的2个不能正常工作,概率为P2=P(A)+P(B)+P(C)=++×=.所以,集成电路E需要维修的概率为P1+P2=+=.(Ⅱ)设ξ为维修集成电路的个数,则ξ服从B(2,),而X=100ξ,P(X=100ξ)=P(ξ=k)=••,k=0,1,2.X的分布列为:∴EX=0×+100×+200×=.【解析】(Ⅰ)由条件利用相互独立事件的概率乘法公式求得3个元件都不能正常工作的概率P1的值,3个元件中的2个不能正常工作的概率P2的值,再把P1和P2相加,即得所求.(Ⅱ)设ξ为维修集成电路的个数,则ξ服从B(2,),求得P(X=100ξ)=P(ξ=k)的值,可得X的分布列,从而求得X的期望.本题主要考查相互独立事件的概率乘法公式、互斥事件的概率加法公式,离散型随机变量的分布列,属于中档题.19.如图,在四棱锥P-ABCD中,底面ABCD为梯形,∠ABC=∠BAD=90°,AP=AD=AB=,BC=t,∠PAB=∠PAD=α.(Ⅰ)当t=3时,试在棱PA上确定一个点E,使得PC∥平面BDE,并求出此时的值;(Ⅱ)当α=60°时,若平面PAB⊥平面PCD,求此时棱BC的长.【答案】解:(1)在棱PA上取点E,使得=,-------2连接AC,BD交于点F,因为AD∥BC,所以=,所以=,所以,EF∥PC因为PC⊄平面BDE,EF⊂平面BDE所以PC∥平面BDE-------------4(Ⅱ)取BC上一点G使得BG=,连结DG,则ABGD 为正方形.过P作PO⊥平面ABCD,垂足为O.连结OA,OB,OD,OG.AP=AD=AB,∠PAB=∠PAD=60°,所以△PAB和△PAD都是等边三角形,因此PA=PB=PD,所以OA=OB=OD,即点O为正方形ABGD对角线的交点,---------------7以O坐标原点,分别以,,的方向为x轴,y轴,z轴的正方向建立如图所示的空间直角坐标系O-xyz.则O(0,0,0),P(0,0,1),A(-1,0,0),B(0,1,0),D(0,-1,0),G(1,0,0)设棱BC的长为t,则C(t,1-t,0),=(-1,0,-1),=(0,1,-1),=(t,1-t,-1),=(0,-1,-1)--------------9设平面PAB的法向量为=(x,y,z),则,取=(-1,1,1)-----------10同理平面PCD的法向量=(1-,1,-1)-----------11由=0,解得t=2,即BC的长为2----------------12【解析】(Ⅰ)在棱PA上取点E,使得=,连接AC,BD交于点F,证明EF∥PC,即可证明PC∥平面BDE;(Ⅱ)取BC上一点G使得BG=,连结DG,则ABGD为正方形.过P作PO⊥平面ABCD,垂足为O.连结OA,OB,OD,OG,以O坐标原点,分别以,,的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,求出平面PAB的法向量=(-1,1,1)、同平面PCD的法向量=(1-,1,-1),由=0,解得BC的长.本题主要考查了线面平行的判定定理及性质,考查向量方法的运用,正确建立坐标系,求出平面的法向量是关键.20.在平面直角坐标系x O y中,一动圆经过点(,0)且与直线x=-相切,设该动圆圆心的轨迹为曲线E.(Ⅰ)求曲线E的方程;(Ⅱ)设P是曲线E的动点,点B、C在y轴上,△PBC的内切圆的方程为(x-1)2+y2=1,求△PBC面积的最小值.【答案】解:(Ⅰ)由题意可知圆心到(,0)的距离等于到直线x=-的距离,由抛物线的定义可知,圆心的轨迹方程:y2=2x.(Ⅱ)设P(x0,y0),B(0,b),C(0,c),直线PB的方程为:(y0-b)x-x0y+x0b=0,又圆心(1,0)到PB的距离为1,即=1,整理得:(x0-2)b2+2y0b-x0=0,同理可得:(x0-2)c2+2y0c-x0=0,所以,可知b,c是方程(x0-2)x2+2y0x-x0=0的两根,所以b+c=,bc=,依题意bc<0,即x0>2,则(c-b)2=,因为y02=2x0,所以:|b-c|=||所以S=|b-c|•|x0|=(x0-2)++4≥8当x0=4时上式取得等号,所以△PBC面积最小值为8.【解析】(Ⅰ)运用抛物线的定义,可得轨迹为抛物线,进而得到方程;(Ⅱ)设P(x0,y0),B(0,b),C(0,c),求得直线PB的方程,运用直线和圆相切的条件:d=r,求得b,c的关系,求得△PBC的面积,结合基本不等式,即可得到最小值.本题考查抛物线的定义、方程和性质,主要考查定义法和方程的运用,同时考查直线和圆相切的条件:d=r,考查化简整理的运算能力,属于中档题.21.已知函数f(x)=x2++alnx.(Ⅰ)若f(x)在区间[2,3]上单调递增,求实数a的取值范围;(Ⅱ)设f(x)的导函数f′(x)的图象为曲线C,曲线C上的不同两点A(x1,y1)、B(x2,y2)所在直线的斜率为k,求证:当a≤4时,|k|>1.【答案】解:(1)由,得′.因为f(x)在区间[2,3]上单调递增,所以′≥0在[2,3]上恒成立,即在[2,3]上恒成立,设,则′<,所以g(x)在[2,3]上单调递减,故g(x)max=g(2)=-7,所以a≥-7;(2)对于任意两个不相等的正数x1、x2有>==>>,∴>,而′,∴′′==>,故:′′>,即′′>1,∴当a≤4时,>.【解析】(1)由函数单调性,知其导函数≥0在[2,3]上恒成立,将问题转化为在[2,3]上单调递减即可求得结果;(2)根据题意,将′′写成,利用不等式的性质证明>,所以′′>,即得>.本题考查导数及基本不等式的应用,解题的关键是利用不等式得到函数值的差的绝对值要大于自变量的差的绝对值.22.如图,已知⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为BD中点,连接AG分别交⊙O、BD于点E、F连接CE.(1)求证:AG•EF=CE•GD;(2)求证:.【答案】证明:(1)连接AB,AC,∵AD为⊙M的直径,∴∠ABD=90°,∴AC为⊙O的直径,∴∠CEF=∠AGD,∵∠DFG=∠CFE,∴∠ECF=∠GDF,∵G为弧BD中点,∴∠DAG=∠GDF,∵∠ECB=∠BAG,∴∠DAG=∠ECF,∴△CEF∽△AGD,∴,∴AG•EF=CE•GD(2)由(1)知∠DAG=∠GDF,∠G=∠G,∴△DFG∽△AGD,∴DG2=AG•GF,由(1)知,∴.【解析】(1)要证明AG•EF=CE•GD我们可以分析积等式中四条线段的位置,然后判断它们所在的三角形是否相似,然后将其转化为一个证明三角形相似的问题.(2)由(1)的推理过程,我们易得∠DAG=∠GDF,又由公共角∠G,故△DFG∽△AGD,易得DG2=AG•GF,结合(1)的结论,不难得到要证明的结论.证明三角形相似有三个判定定理:(1)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似(2)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似(3)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似.我们要根据已知条件进行合理的选择,以简化证明过程.23.已知曲线C1的参数方程为(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2.(Ⅰ)分别写出C1的普通方程,C2的直角坐标方程.(Ⅱ)已知M、N分别为曲线C1的上、下顶点,点P为曲线C2上任意一点,求|PM|+|PN|的最大值.【答案】解:(1)因为曲线C1的参数方程为(θ为参数),所以曲线C1的普通方程为,…(2分)由曲线C2的极坐标方程为ρ=2得,曲线C2的普通方程为x2+y2=4;…(4分)(2)法一:由曲线C2:x2+y2=4,可得其参数方程为,所以P点坐标为(2cosα,2sinα),由题意可知M(0,),N(0,).因此|PM|+|PN|==+…(6分)则(|PM|+|PN|)2=14+2.所以当sinα=0时,(|PM|+|PN|)2有最大值28,…(8分)因此|PM|+|PN|的最大值为.…(10分)法二:设P点坐标为(x,y),则x2+y2=4,由题意可知M(0,),N(0,).因此|PM|+|PN|=+=+…(6分)则(|PM|+|PN|)2=14+2.所以当y=0时,(|PM|+|PN|)2有最大值28,…(8分)因此|PM|+|PN|的最大值为.…(10分)【解析】(1)根据题意和平方关系求出曲线C1的普通方程,由ρ2=x2+y2和题意求出C2的直角坐标方程;(2)法一:求出曲线C2参数方程,设P点的参数坐标,求出点M、N的坐标,利用两点间的距离公式求出|PM|+|PN|并化简,再化简(|PM|+|PN|)2,利用正弦函数的最值求出(|PM|+|PN|)2的最值,即可求出|PM|+|PN|的最大值;法二:设P点坐标为(x,y),则x2+y2=4,求出点M、N的坐标,利用两点间的距离公式求出|PM|+|PN|并化简,再化简(|PM|+|PN|)2,再求出(|PM|+|PN|)2的最值,即可求出|PM|+|PN|的最大值.本题考查参数方程、极坐标方程与普通方程的转化,两点间的距离公式,以及求最值问题,考查化简、计算能力.24.已知函数f(x)=的定义域为R.(Ⅰ)求实数m的取值范围.(Ⅱ)若m的最大值为n,当正数a、b满足+=n时,求7a+4b的最小值.【答案】解:(1)∵函数定义域为R,∴|x+1|+|x-3|-m≥0恒成立,设函数g(x)=|x+1|+|x-3|,则m不大于函数g(x)的最小值,又|x+1|+|x-3|≥|(x+1)-(x-3)|=4,即g(x)的最小值为4,∴m≤4.(2)由(1)知n=4,∴7a+4b===,当且仅当a+2b=3a+b,即b=2a=时取等号.∴7a+4b的最小值为.【解析】(1)由函数定义域为R,可得|x+1|+|x-3|-m≥0恒成立,设函数g(x)=|x+1|+|x-3|,利用绝对值不等式的性质求出其最小值即可;(2)由(1)知n=4,变形7a+4b=,利用基本不等式的性质即可得出.本题考查了函数的定义域、绝对值不等式的性质、基本不等式的性质、“乘1法”,考查了推理能力与计算能力,属于中档题.。
2015届石家庄市高三数学(文科)一模试题与参考答案

2015届石家庄市高三数学(文科)一模试题与参考答案2015年,石家庄市高中毕业班进行了第一次模拟考试,以下是文科A卷的答案:一、选择题(A卷)1-5 CCBBA6-10 DBBAC11-12 CD一、选择题(B卷)1-5 DDBBA6-10 CBBAD11-12 DC二、填空题13 314 1 4 2 415 (0,1)16 [-1,2]三、解答题17.(本小题满分12分)解:(1)解法1:由a(n+1)=λS(n+1)+1(n∈N),得a(n)=λS(n-1)+1(n≥2)。
因此,a(n+1)-a(n)=λa(n),即a(n+1)=(λ+1)a(n)(n≥2),λ+1≠0.又a(1)=1,a(2)=λS(1)+1=λ+1,所以数列{a(n)}为以1为首项,公比为λ+1的等比数列,因此a(3)=(λ+1)^2.由a(4)=4(λ+1)=1+(λ+1)+3,整理得λ-2λ+1=0,因此λ=1.所以a(n)=2^(n-1),b(n)=3n-2.解法2:由a(1)=1,a(n+1)=λS(n+1)+1(n∈N),得a(2)=λS(1)+1=λ+1,a(3)=λS(2)+1=λ(λ+1)+1=λ+2λ+1,因此a(4)=4(λ+1)=1+λ+2λ+1+3,整理得λ-2λ+1=0,因此λ=1.所以a(n)=2^(n-1),b(n)=3n-2.2)a(n)b(n)=(3n-2)^2/[(n-1)],因此T(n)=1*1+4*2+7*2+。
+(3n-2)*2n-1.则2T(n)=2+(3n-2)*2^(n-1)+。
+(3n-5)*2^2n-3+(3n-2)*2^2n-1.由①-②得-T(n)=1*1+3*2+3*2+。
+3*2n-2-2*(1-2^(n-1))。
证明一:已知四面体ABCD中,AB=AD=BC=2,CD=2√2,且∠ABC=∠ABD=90°,求证:CD垂直于平面ABD。
首先,根据勾股定理可得:BC=2×AD=2×AB=2×2=4,BD=2.又因为BD²+CD²=BC²,代入数值可得:2²+(2√2)²=4²,即BD垂直于CD。
2015年石家庄高三质检一考试理科数学试卷及答案

石家庄市2015届高三第一次质量检测数学理科答案一、 选择题:1-5CBCDA 6-10DADBC 11-12BA二、填空题:13.24y x =+ 14.1- 15. 16.3602三、解答题17.因为c=2,不合题意舍去,所以52c =.....................................10分18.解(1)设{}n a 的公差为d ,由题意得2(33)3(312)d d +=+,得2d =或0d =(舍),……………………2分所以{}n a 的通项公式为3(1)221n a n n =+-=+……………………4分(2)2(21)2nn n n b a n ==+ 222222,............2sin sin sin 3cos .............62sin 2494cos 2629100.................852c=............92==∴===+-+-==-+==a bA B A B A a B B b a c b c B ac c c c c 解:分sinA=sin2B=2sinBcosB.........4分分分解得或分123325272(21)2n n S n =+++++………………① …………②……………………6分①-②得123132222222(21)2n n n S n +-=++++-+…………………8分1+12(12)22(21)2122(21)2n n n n n +-=+-+-=---……………………10分 ∴1(21)22n n S n +=-+……………………12分19. 解:(1)解:a=6 b=10……………………………2分 ……….5分(2)P (Y=0)=13063240228=C C P (Y=1)=6528240112128=C C C P (Y=2)=13011240212=C C…………………11分 23412325272(21)2n n S n +=+++++35E (P )=.…………………………12分 20(1)分别取PA 和AB 中点M 、N ,连接MN 、ME 、NF,则=NF ∥12AD ,=ME ∥12AD ,所以=NF ∥ME ,∴四边形M E F N为平行四边形.-------------2∴EF MN ∥,又,EF PAB ⊄平面,MN PAB ⊂平面∴EF ∥PAB 平面.- ------------4(2) 由已知得,底面ABCD 为正方形,侧棱PA ⊥底面ABCD ,所以AP AB AD ,,两两垂直.如图所示,以A 为坐标原点,分别以,,为轴轴,轴,z y x 的正方向,建立空间直角坐标系xyz A -,所以(001),(000),B(1,0,0),(110),(010)P A C D ,,,,,,,,,,1111(0),(0)2222E F ,,,,, 所以,11(0)22EF =-,,, 11(0),(100)22AE AB ==,,,,,- ------------6设平面ABE 法向量(,,)n a b c =,0,0,n AE n AB == 所以110220b c a ⎧+=⎪⎨⎪=⎩令1,0,1b a c ===-则 所以(0,1,1)n =-为平面ABE 的一个法向量 -------------8设直线EF 与平面ABE 所成角为α,于是1sin cos ,2EF nEF n EF n α=<>==.-------------10所以直线EF 与平面ABE 所成角为6π. -------------12 解法2:在平面PAD 内作EH ∥PA H 于,因为侧棱PA ⊥底面ABCD ,所以EH ⊥底面ABCD . -------------6 E 为PD 的中点,12EH =,1111224ABF S =⨯⨯= 11111334224E ABF ABF V S EH -==⨯⨯=-------------8 设点F 到平面ABE 的距离为h,E ABF F ABE V V --=1112224ABE S AB AE =⨯⨯=⨯⨯= 1133ABF ABE S EH S h =, 4h =. -------------10 设直线EF 与平面ABE 所成角为α,1sin 2h EF α==,所以直线EF 与平面ABE 所成角为6π. -------------12 21.解:(1)设A (0x ,0),B (0,0y ),P (,x y ),由2BP PA =得,00(,)2(,)x y y x x y -=--,即000032()223x x x x x y y y y y⎧=-=⎧⎪⇒⎨⎨-=-⎩⎪=⎩,————————————————————2分又因为22009x y +=,所以223()(3)92x y +=,化简得:2214x y +=,这就是点P 的轨迹方程。
2015年河北省石家庄市高考数学一模试卷(理科)

2015年河北省石家庄市高考数学一模试卷(理科) 参考答案与试题解析 一、选择题1.已知i 为虚数单位,则复数13i1i-=+( )A .2i +B .2i -C .12i --D .12i -+ 答案:C考点:复数代数形式的乘除运算. 专题:数系的扩充和复数.分析:直接利用复数代数形式的乘除运算化简求值.解答:解:()()()()13i 1i 13i 24i12i 1i 1i 1i 2-----===--++-,故选:C .点评:本题考查了复数代数形式的乘除运算考查了复数的基本概念,是基础题. 2.已知集合{}0,1,2P =,{}3x Q y y ==,则P Q ⋂=( ) A .{}0,1B .{}1,2C .{}0,1,2D .∅答案:B考点:交集及其运算. 专题:集合.分析:根据集合的基本运算进行求解即可.解答:解:{}{}30x Q y y y y ===>,则{}1,2P Q ⋂=, 故选:B点评:本题主要考查集合的基本运算,比较基础.3.已知cos k α=,k ∈R ,π,π2a ⎛⎫∈ ⎪⎝⎭,则()sin π+α=( )A .C .D .k -答案:A考点:同角三角函数基本关系的运用;运用诱导公式化简求值. 专题:三角函数的求值.分析:由已知及同角三角函数基本关系的运用可求sin α,从而由诱导公式即可得解.解答:解:cos k α=,k ∈R ,π,π2α⎛⎫∈ ⎪⎝⎭,sin α∴=()sin π+sin αα∴=-=故选:A .点评:本题主要考查了同角三角函数基本关系的运用,运用诱导公式化简求值,属于基本知识的考查. 4.下列说法中,不正确的是( )A .已知a ,b ,m ∈R ,命题“若22am bm <,则a b <”为真命题B .命题“0x ∃∈R ,2000x x ->”的否定是:“x ∀∈R ,20x x -≤”C .命题“p 或q ”为真命题,则命题p 和q 命题均为真命题D .“3x >”是“2x >”的充分不必要条件 答案:C考点:命题的真假判断与应用. 专题:简易逻辑.分析:A .利用不等式的基本性质即可判断出正误; B .利用命题的否定定义即可判断出正误;C .利用复合命题的真假判定方法即可判断出正误;D .“3x >”⇒“2x >”,反之不成立,即可判断出正误.解答:解:A .若22am bm <,利用不等式的性质可得:a b <,因此为真命题;B .命题“0x ∃∈R ,2000x x ->”的否定是:“x ∀∈R ,20x x -≤”,正确; C .“p 或q ”为真命题,则命题p 和q 命题至少有一个为真命题,因此不正确;D .“3x >”⇒“2x >”,反之不成立,因此“3x >”是“2x >”的充分不必要条件,正确. 故选:C .点评:本题考查了简易逻辑的判定、不等式的基本性质,考查了推理能力,属于基础题.5.设函数()f x 为偶函数,且当[)0,2x ∈时,()2sin f x x =,当[)2,x ∈+∞时()2log f x x =,则()π43f f ⎛⎫-+= ⎪⎝⎭( ) A.2 B .1 C .3 D2=答案:D考点:函数的值. 专题:计算题.分析:函数()f x 为偶函数,可得ππ33f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭再将其代入()2sin f x x =,进行求解,再根据[)2,x ∈+∞时()2log f x x =,求出()4f ,从而进行求解;解答:解:函数()f x 为偶函数, ππ33f f ⎛⎫⎛⎫∴-= ⎪ ⎪⎝⎭⎝⎭,当[)0,2x ∈时()2sin f x x =,()π2sin23f x ∴=== 当[)2,x ∈+∞时()2log f x x =,()24log 42f ∴==,()π423f f ⎛⎫∴-+= ⎪⎝⎭,故选D ;点评:此题主要考查函数值的求解问题,解题的过程中需要注意函数的定义域,是一道基础题; 6.执行下面的程序框图,如果输入的依次是1,2,4,8,则输出的S 为( )A .2B ..4 D .6答案:B考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的S ,i 的值,当5i =时,不满足条件4i ≤,退出循环,输出S的值为解答:解:模拟执行程序框图,可得 1S =,1i =满足条件4i ≤,1S =,2i = 满足条件4i ≤,S =3i = 满足条件4i ≤,2S =,4i = 满足条件4i ≤,S =5i =不满足条件4i ≤,退出循环,输出S的值为 故选:B .点评:本题主要考查了循环结构的程序框图,正确写出每次循环得到的S 的值是解题的关键,属于基本知识的考查. 7.如图,在三棱柱111ABC A B C -中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则1BB 与平面11AB C 所成的角是( )ACBC 1A 1B 1A .π6 B .π4 C .π3 D .π2 答案:A考点:直线与平面所成的角. 专题:计算题. 分析:以B 为坐标原点,建立空间直角坐标系,利用1BB 与平面11AB C 所的一个法向量的夹角,求出则1BB 与平面11AB C 所成的角.解答:解:以B 为坐标原点,以与BC 垂直的直线为x 轴,BC 为y 轴,建立空间直角坐标系,则)1,0A,()10,0,3B ,()10,2,3C,()11,3AB =-,()110,2,0B C =,()10,0,3BB =.设平面11AB C 所的一个法向量为(),,n x y z =则11100AB n B C n ⎧⋅=⎪⎨⋅=⎪⎩即3020y z y ⎧-+=⎪⎨=⎪⎩,取1z =,则得()3,0,1n =,1cos BB <,1131322BB n n BB n⋅>===⨯,1BB ∴与平面11AB C 所成的角的正弦值为12, 1BB ∴与平面11AB C 所成的角为π6故选A .点评:本题考查线面角的计算,利用了空间向量的方法.要注意相关点和向量坐标的准确性,及转化时角的相等或互余关系.8.已知O 、A 、B 三地在同一水平面内,A 地在O 地正东方向2km 处,B 地在O 地正北方向2km 处,某测绘队员在A 、B 之间的直线公路上任选一点C 作为测绘点,用测绘仪进行测绘,O 地为一磁场,的范围内会测绘仪等电子仪器形成干扰,使测量结果不准确,则该测绘队员能够得到准确数据的概率是( )A.1 BC.1- D .12答案:A考点:解三角形的实际应用. 专题:应用题;概率与统计.分析:作出图形,以长度为测度,即可求出概率.解答:解:由题意,AOB △是直角三角形,2OA OB ==,所以AB =,O的范围为14个圆,与AB 相交于C ,D 两点,作OE AB ⊥,则OE =2CD =,所以该测绘队员能够得到准确数据的概率是11=.故选:A .A点评:本题考查利用数学知识解决实际问题,考查概率的计算,正确确定CD 是关键.9.已知抛物线()220y px p =>的焦点F 恰好是双曲线()222210,0x y a b a b-=>>的一个焦点,两条曲线的交点的连线过点F ,则双曲线的离心率为( ) ABC.1 D.1+ 答案:C考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:先根据抛物线方程得到焦点坐标和交点坐标,代入双曲线,把2pc =代入整理得422460c a c a -+=等式两边同除以4a ,得到关于离心率e 的方程,进而可求得e . 解答:解:由题意,两条曲线交点的连线过点F∴两条曲线交点为,2p p ⎛⎫⎪⎝⎭,代入双曲线方程得222241p p a b-=, 又2pc =,代入化简得422460c a c a -+= 42e 6e 10∴-+=(22e 31∴=+1∴ 故选:C .点评:本题考查由圆锥曲线的方程求焦点、考查双曲线的三参数的关系:222c a b =+注意与椭圆的区别.10.一个几何体的三视图如图所示,则该几何体的体积是()正视图侧视图俯视图A .64B .72C .80D .112 答案:B考点:由三视图求面积、体积. 专题:计算题.分析:由几何体的三视图可知,该几何体下部为正方体,边长为4,上部为三棱锥(以正方体上底面为底面),高为3.分别求体积,再相加即可解答:解:由几何体的三视图可知,该几何体下部为正方体,边长为4,体积为3464=,上部为三棱锥,以正方体上底面为底面,高为3.体积21143832⨯⨯⨯=,故该几何体的体积是64872+=. 故选B .点评:本题考查由三视图求几何体的体积,考查由三视图还原几何体直观图,考查与锥体积公式,本题是一个基础题.11.已知平面图形ABCD 为凸四边形(凸四边形即任取平面四边形一边所在的直线,其余各边均在此直线的同侧),且2AB =,4BC =,5CD =,3DA =,则四边形ABCD 面积S 的最大值为( ) A.C.D.答案:B考点:余弦定理;正弦定理.专题:三角函数的图像与性质;解三角形.分析:设AC x =,在ABC △和ACD △中,由余弦定理可得,15cos 8cos 7D B -=,再由三角形的面积公式可得8sin 15sin 2B D S +=,两式两边平方结合两角和的余弦公式和余弦函数的值域,即可求得最大值.解答:解:设AC x =,在ABC △中,由余弦定理可得, 22224224cos 2016cos x B B =+-⨯⨯=-,在ACD △中,由余弦定理可得,22235235cos 3430cos x D D =+-⨯⨯=-, 即有15cos 8cos 7D B -=,又四边形ABCD 面积1124sin 35sin 22S B D =⨯⨯+⨯⨯()18sin 15sin 2B D =+, 即有8sin 15sin 2B D S +=,又15cos 8cos 7D B -=,两式两边平方可得,()264225240sin sin cos cos 494B D B D s ++-=+, 化简可得, ()2240cos 4240B D S -+=-, 由于()1cos 1B D -+≤≤,即有S ≤. 当()cos 1B D +=-即πB D +=时,24240240S -=,解得S =S的最大值为 故选B .点评:本题考查三角形的面积公式和余弦定理的运用,同时考查两角和的余弦公式的运用和余弦函数的最值的求法,属于中档题.12.已知函数()2ln ,041,0x x f x x x x ⎧>⎪=⎨++⎪⎩≤,若关于x 的方程()()()20,f x bf x c b c -+=∈R 有8个不同的实数根,则由点(),b c 确定的平面区域的面积为( )A .16 B .13 C .12 D .23 答案:A考点:分段函数的应用. 专题:函数的性质及应用.分析:题中原方程()()20f x bf x c -+=有8个不同实数解,即要求对应于()f x =某个常数K ,有2个不同的K ,再根据函数对应法则,每一个常数可以找到4个x 与之对应,就出现了8个不同实数解,故先根据题意作出()f x 的简图,由图可知,只有满足条件的K 在开区间()0,1时符合题意.再根据一元二次方程根的分布理论可以得出答案. 解答:解:根据题意作出()f x 的简图:由图象可得当()(]0,1f x ∈时,有四个不同的x 与()f x 对应.再结合题中“方程()()20f x bf x c -+=有8个不同实数解”,可以分解为形如关于k 的方程20k bx c -+=有两个不同的实数根1K 、2K ,且1K 和2K 均为大于0且小于等于1的实数.列式如下:2224001200010b c b b c b c ⎧->⎪⎪<<⎪⎨⎪-⨯+>⎪⎪-+⎩≥,化简得2410002b c b c c b ⎧<⎪⎪⎪-+⎨⎪>⎪<<⎪⎩≥, 此不等式组表示的区域如图:则图中阴影部分的面积即为答案,由定积分的知识得22011111426S b db ⎛⎫=-⨯⨯= ⎪⎝⎭⎰ 故选:A点评:本题考查了函数的图象与一元二次方程根的分布的知识,同时考查定积分等知识,较为综合;采用数形结合的方法解决,使本题变得易于理解. 二、填空题:13.已知平面向量a ,b 的夹角为2π3,2a =,1b =,则a b +=.考点:平面向量数量积的运算. 专题:平面向量及应用.分析:运用数量积的定义求解得出2πcos 3a b a b ⋅=⋅,结合向量的运算,与模的运算转化:()22222a b a ba b a b +=+=++⋅,代入数据求解即可.解答:解:平面向量a ,b 的夹角为2π3,2a =,1b =, 2π1cos=21132a b a b ⎛⎫∴⋅=⋅⨯⨯-=- ⎪⎝⎭, ()222224123a b a ba b a b ∴+=+=++⋅=+-=,即3a b +=.故答案为:点评:本题考查了平面向量的数量积的运用,应用求解向量的模,计算简单,属于容易题.14.将甲、乙、丙、丁四名学生分到两个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同的分法的总数为 . 答案:8考点:计数原理的应用. 专题:计算题.分析:分法包括两种情况:两个班分别为1人和3人,两个班各2个人,据此解答.解答:解:每个班至少分到一名学生,且甲、乙两名学生不能分到一个班,设两个班为1班和2班, ∴分法包括两种情况:两个班分别为1人和3人,两个班各2个人, 若两个班分别为1人和3人,则1人只能为甲或乙,单独的1人可以在1班或2班,因此分法为:224⨯=,若两个班各2个人,则为总的分法减去甲乙在同一个班(都在1班或都在2班)的情况,即分法为:24C 24-=,因此不同的分法的总数为:448+=. 故答案为:8.点评:本题考查排列组合的实际应用,考查利用排列组合解决实际问题,是一个基础题,这种题目是排列组合中经常出现的一个问题.15.设过曲线()e x f x x =--(e 为自然对数的底数)上任意一点处的切线为1l ,总存在过曲线()2cos g x ax x =+上一点处的切线2l ,使得12l l ⊥,则实数a 的取值范围为 .答案:[]1,2-考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用;不等式的解法及应用;直线与圆.分析:求出函数()e x f x x =--的导函数,进一步求得()10,1e 1x ∈+,再求出()g x 的导函数的范围,然后把过曲线()e xf x x =--上任意一点的切线为1l ,总存在过曲线()2cosg x ax x =+上一点处的切线2l ,使得12l l ⊥转化为集合间的关系求解.解答:解:由()e x f x x =--,得()'e 1x f x =--,e 11x +>,()10,1e 1x∴∈+, 由()2cos g x ax x =+,得()'2sin g x a x =-, 又[]2sin 2,2x -∈-,[]2sin 2,2a x a a ∴-∈-++, 要使过曲线()e x f x x =--上任意一点的切线为1l ,总存在过曲线()2cos g x ax x =+上一点处的切线2l ,使得12l l ⊥, 则2021a a -+⎧⎨+⎩≤≥,解得12a -≤≤. 即a 的取值范围为12a -≤≤. 故答案为: []1,2-.点评:本题考查了利用导数研究过曲线上的某点的切线方程,考查了数学转化思想方法,解答此题的关键是把问题转化为集合间的关系求解,是中档题.16.已知椭圆()222210x y a b a b+=>>的两个焦点分别为1F ,2F ,设P 为椭圆上一点,12F PF ∠的外角平分线所在的直线为l ,过1F ,2F 分别作l 的垂线,垂足分别为R ,S ,当P 在椭圆上运动时,R ,S 所形成的图形的面积为 . 答案:2πa考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:延长2F S 交1F P 的延长线于Q ,可证得2PQ PF =,且S 是2PF 的中点,由此可求得OS 的长度是定值,即可求点S 的轨迹的几何特征.解答:解:由题意,P 是以1F ,2F 为焦点的椭圆上一点,过焦点2F 作12F PF ∠外角平分线的垂线,垂足为S ,延长2F S 交1F P 的延长线于Q ,得2PQ PF =,由椭圆的定义知122PF PF a +=,故有112PF PQ QF a +==, 连接OS ,知OS 是三角形12F F Q 的中位线,OS a ∴=,即点SM 到原点的距离是定值a ,由此知点S 的轨迹是以原点为圆心、半径等于a 的圆. 同理可得,点R 的轨迹是以原点为圆心、半径等于a 的圆. 故点R ,S 所形成的图形的面积为2πa .点评:本题考查求轨迹方程,关键是证出OS 是中位线以及利用题设中所给的图形的几何特征求出1QF 的长度,进而求出OS 的长度,再利用圆的定义得出点M 的轨迹是一个圆,属于难题. 三、解答题:17.设数列{}n a 的前n 项和为n S ,11a =,()11N ,1n n a S n λλ+=+∈≠-*,且1a 、22a 、33a +为等差数列{}n b 的前三项.(Ⅰ)求数列{}n a 、{}n b 的通项公式; (Ⅱ)求数列{}n n a b 的前n 项和. 考点:数列的求和;数列递推式. 专题:等差数列与等比数列.分析:(1)由()11N ,1n n a S n λλ+=+∈≠-*,当2n ≥时,11n n a S λ-=+,可得()11n n a a λ+=+,利用等比数列的通项公式可得3a ,再利用等差数列的通项公式即可得出; (2)利用“错位相减法”、等比数列的前n 项和公式即可得出. 解答:解:(1)()11N ,1n n a S n λλ+=+∈≠-*,∴当2n ≥时,11n n a S λ-=+,1n n n a a a λ+∴-=,即()11n n a a λ+=+,又11a =,2111a a λλ=+=+,∴数列{}n a 为以1为首项,公比为1λ+的等比数列,()231a λ∴=+, 1a 、22a 、33a +为等差数列{}n b 的前三项.()()241113λλ∴+=+++,整理得()210λ-=,解得1λ=. 12n n a -∴=,()13132nb n n =+-=-.(2)()1322n n n a b n -=-⋅,∴数列{}n n a b 的前n 项和()2114272322n n T n -=+⨯+⨯++-⋅, ()()231224272352322n n n T n n -=+⨯+⨯++-⨯+-⨯,()()()()121221132323232213322532521n n nn n n T n n n --⨯-∴-=+⨯+⨯+⨯--⨯=+⨯--⨯=-⨯--()3525n n T n ∴=-⨯+.点评:本题考查了递推式的应用、“错位相减法”、等差数列与等比数列的通项公式及其前n 项和公式,考查了推理能力与计算能力,属于中档题.18.集成电路E 由3个不同的电子元件组成,现由于元件老化,三个电子元件能正常工作的概率分别降为12,12,23,且每个电子元件能否正常工作相互独立,若三个电子元件中至少有2个正常工作,则E 能正常工作,否则就需要维修,且维修集成电路E 所需费用为100元. (Ⅰ)求集成电路E 需要维修的概率; (Ⅱ)若某电子设备共由2个集成电路E 组成,设X 为该电子设备需要维修集成电路所需的费用,求X 的分布列和期望.考点:相互独立事件的概率乘法公式;互斥事件的概率加法公式;离散型随机变量的期望与方差. 专题:概率与统计. 分析:(Ⅰ)由条件利用相互独立事件的概率乘法公式求得3个元件都不能正常工作的概率1P 的值,3个元件中的2个不能正常工作的概率2P 的值,再把1P 和2P 相加,即得所求.(Ⅱ)设ξ为维修集成电路的个数,则ξ服从52,12B ⎛⎫ ⎪⎝⎭,求得()()100P X P k ξξ===的值,可得X 的分布列,从而求得X 的期望.解答:解:(Ⅰ)三个电子元件能正常工作分别记为事件A ,B ,C ,则()12P A =,()12P B =,()23P C =.依题意,集成电路E 需要维修有两种情形:①3个元件都不能正常工作,概率为()()()()1111122312P P ABC P A P B P C ===⨯⨯=. ②3个元件中的2个不能正常工作,概率为()()()211111111212232232233P P ABC P ABC P ABC ++=⨯⨯+⨯⨯+⨯⨯=所以,集成电路E 需要维修的概率为1211512312P P +=+=. (Ⅱ)设ξ为维修集成电路的个数,则ξ服从52,12B ⎛⎫ ⎪⎝⎭,而100X ξ=,()()2257100C 1212k kk P X P k ξξ-⎛⎫⎛⎫====⋅⋅ ⎪ ⎪⎝⎭⎝⎭,0,1,2k =.010*******721443EX ∴=⨯+⨯+⨯=. 点评:本题主要考查相互独立事件的概率乘法公式、互斥事件的概率加法公式,离散型随机变量的分布列,属于中档题.19.如图,在四棱锥P ABCD -中,底面ABCD 为梯形,90ABC BAD ∠=∠=︒,AP AD AB ==BC t =,PAB PAD α∠=∠=.(Ⅰ)当t =PA 上确定一个点E ,使得PC ∥平面BDE ,并求出此时AEEP的值;(Ⅱ)当60α=︒时,若平面PAB ⊥平面PCD ,求此时棱BC 的长.BAPDC考点:向量语言表述面面的垂直、平行关系;直线与平面平行的性质;平面与平面垂直的性质. 专题:综合题;空间位置关系与距离.分析:(Ⅰ)在棱PA 上取点E ,使得13AE EP =,连接AC ,BD 交于点F ,证明EF PC ∥,即可证明PC ∥平面BDE ;(Ⅱ)取BC 上一点G 使得BG =DG ,则ABGD 为正方形.过P 作PO ⊥平面ABCD ,垂足为O .连结OA ,OB ,OD ,OG ,以O 坐标原点,分别以OG ,OB ,OF 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,求出平面PAB 的法向量()π1,1,1=-、同平面PCD 的法向量21,1,1n t ⎛⎫=-- ⎪ ⎪⎝⎭,由0m n ⋅=,解得BC 的长. 解答:解:(1)在棱PA 上取点E ,使得13AE EP =,连接AC ,BD 交于点F ,因为AD BC ∥,所以12AF AD FC BC ==,所以AE AFEP AC=,所以,EF PC ∥ 因为PC ⊄平面BDE ,EF ⊂平面BDE 所以PC ∥平面BDE(Ⅱ)取BC 上一点G 使得BG =DG ,则ABGD 为正方形.过P 作PO ⊥平面ABCD ,垂足为O .连结OA ,OB ,OD ,OG . AP AD AB ==,60PAB PAD ∠=∠=︒,所以PAB △和PAD △都是等边三角形,因此PA PB PD ==, 所以OA OB OD ==,即点O 为正方形ABGD 对角线的交点,以O 坐标原点,分别以OG ,OB ,OP 的方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系O xyz -.则()0,0,0O ,()0,0,1P ,()1,0,0A -,()0,1,0B ,()0,1,0D -,()1,0,0G设棱BC 的长为t ,则,1,0C ⎫⎪⎪⎝⎭, ()1,0,1PA =--,()0,1,1PB =-,2,1,1PC ⎛⎫=- ⎪⎪⎝⎭,()0,1,1PD =--设平面PAB 的法向量为()π,,x y z =,则 00x z y z --=⎧⎨-=⎩,取()π1,1,1=- 同理平面PCD 的法向量21,1,1n ⎛⎫=-- ⎪ ⎪⎝⎭由0m n ⋅=,解得t =BC 的长为点评:本题主要考查了线面平行的判定定理及性质,考查向量方法的运用,正确建立坐标系,求出平面的法向量是关键.20.在平面直角坐标系xOy 中,一动圆经过点1,02⎛⎫⎪⎝⎭且与直线12x =-相切,设该动圆圆心的轨迹为曲线E .(Ⅰ)求曲线E 的方程;(Ⅱ)设P 是曲线E 的动点,点B 、C 在y 轴上,PBC △的内切圆的方程为()2211x y -+=,求PBC △面积的最小值.考点:直线与圆锥曲线的综合问题.专题:直线与圆;圆锥曲线的定义、性质与方程. 分析:(Ⅰ)运用抛物线的定义,可得轨迹为抛物线,进而得到方程;(Ⅱ)设()00,P x y ,()0,B b ,()0,C c ,求得直线PB 的方程,运用直线和圆相切的条件:d r =,求得b ,c 的关系,求得PBC △的面积,结合基本不等式,即可得到最小值.解答:解:(Ⅰ)由题意可知圆心到1,02⎛⎫⎪⎝⎭的距离等于到直线12x =-的距离,由抛物线的定义可知,圆心的轨迹方程:22y x =. (Ⅱ)设()00,P x y ,()0,B b ,()0,C c , 直线PB 的方程为:()0000y b x x y x b --+=, 又圆心()1,0到PB 的距离为11=,整理得:()2000220x b y b x -+-=,同理可得:()2000220x c y c x -+-=,所以,可知b ,c 是方程()2000220x x y x x -+-=的两根,所以0022y b c x -+=-,002x bc x -=-,依题意0bc <,即02x >, 则()()222000204482x y x c b x +--=-,因为2002y x =,所以:0022x b c x -=- 所以()0001424822S b c x x x =-⋅=-++-≥ 当04x =时上式取得等号,所以PBC △面积最小值为8.点评:本题考查抛物线的定义、方程和性质,主要考查定义法和方程的运用,同时考查直线和圆相切的条件:d r =,考查化简整理的运算能力,属于中档题.21.已知函数()22ln f x x a x x=++.(Ⅰ)若()f x 在区间[]2,3上单调递增,求实数a 的取值范围;(Ⅱ)设()f x 的导函数()'f x 的图象为曲线C ,曲线C 上的不同两点()11,A x y 、()22,B x y 所在直线的斜率为k ,求证:当a ≤4时,1k >.考点:利用导数研究函数的单调性;利用导数研究曲线上某点切线方程. 专题:综合题;导数的综合应用.分析:(1)由函数单调性,知其导函数0≥在[]2,3上恒成立,将问题转化为()222g x x x=-在[]2,3上单调递减即可求得结果;(2)根据题意,将()()12''f x f x -写成()121222121222x x ax x x x x x +-⋅+-利用不等式的性质证明()12221212221x x ax x x x ++->,所以()()1212''f x f x x x ->-,即得1k >. 解答:解:(1)由()22ln f x x a x x =++,得()22'2a f x x x x=-+. 因为()f x 在区间[]2,3上单调递增,所以()22'20af x x x x =-+≥在[]2,3上恒成立,即222a x x -≥在[]2,3上恒成立, 设()222g x x x =-,则()22'40g x x x=--<,所以()g x 在[]2,3上单调递减,故()()max 27g x g ==-,所以7a -≥; (2)对于任意两个不相等的正数1x 、2x 有 ()121212122x x x x x x x x ++>+12x x =≥4.5a =>>,()12221212221x x ax x x x +∴+->, 而()22'2a f x x x x=-+, ()()121222112222''22a a f x f x x x x x x x ⎛⎫⎛⎫∴-=-+--+ ⎪ ⎪⎝⎭⎝⎭()12121222121222x x ax x x x x x x x +=-⋅+->-, 故:()()1212''f x f x x x ->-,即()()1212''1f x f x x x ->-,∴当4a ≤时,1k >.点评:本题考查导数及基本不等式的应用,解题的关键是利用不等式得到函数值的差的绝对值要大于自变量的差的绝对值.四、请考生在第22-24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲] 22.如图,已知O 和M 相交于A 、B 两点,AD 为M 的直径,直线BD 交O 于点C ,点G 为BD 中点,连接AG 分别交O 、BD 于点E 、F 连接CE . (1)求证:AG EF CE GD ⋅=⋅;(2)求证:22GF EF AG CE =.考点:圆的切线的性质定理的证明;与圆有关的比例线段. 专题:证明题;压轴题. 分析:(1)要证明AG EF CE GD ⋅=⋅我们可以分析积等式中四条线段的位置,然后判断它们所在的三角形是否相似,然后将其转化为一个证明三角形相似的问题.(2)由(1)的推理过程,我们易得DAG GDF ∠=∠,又由公共角G ∠,故DFG AGD △∽△,易得2DG AG GF =⋅,结合(1)的结论,不难得到要证明的结论. 解答: 证明:(1)连接AB ,AC ,AD 为M 的直径,90ABD ∴∠=︒,AC ∴为O 的直径,CEF AGD ∴∠=∠, DFG CFE ∠=∠,ECF GDF ∴∠=∠, G 为弧BD 中点,DAG GDF ∴∠=∠, ECB BAG ∠=∠,DAG ECF ∴∠=∠,CEF AGD ∴△∽△, CE AGEF GD∴=,AG EF CE GD ∴⋅=⋅ (2)由(1)知DAG GDF ∠=∠,G G ∠=∠,DFG AGD ∴△∽△,2DG AG GF ∴=⋅,由(1)知2222EF GD CE AG =,22GF EF AG CE ∴=. 点评:证明三角形相似有三个判定定理:(1)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似(2)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似(3)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似.我们要根据已知条件进行合理的选择,以简化证明过程.四、请考生在第22-24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]23.已知曲线1C 的参数方程为2cosx y θθ=⎧⎪⎨=⎪⎩(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2ρ=.(Ⅰ)分别写出1C 的普通方程,2C 的直角坐标方程.(Ⅱ)已知M 、N 分别为曲线1C 的上、下顶点,点P 为曲线2C 上任意一点,求PM PN +的最大值. 考点:参数方程化成普通方程. 专题:坐标系和参数方程. 分析:(1)根据题意和平方关系求出曲线1C 的普通方程,由222x y ρ=+和题意求出2C 的直角坐标方程;(2)方法一:求出曲线2C 参数方程,设P 点的参数坐标,求出点M 、N 的坐标,利用两点间的距离公式求出PM PN +并化简,再化简()2PM PN +,利用正弦函数的最值求出()2PM PN +的最值,即可求出PM PN +的最大值;方法二:设P 点坐标为(),x y ,则224x y +=,求出点M 、N 的坐标,利用两点间的距离公式求出PM PN +并化简,再化简()2PM PN +,再求出()2PM PN +的最值,即可求出PM PN +的最大值.解答:解:(1)因为曲线1C 的参数方程为2cosx y θθ=⎧⎪⎨=⎪⎩(θ为参数),所以曲线1C 的普通方程为22143x y +=,…由曲线2C 的极坐标方程为2ρ=得, 曲线2C 的普通方程为224x y +=;…(2)方法一:由曲线222:4C x y +=,可得其参数方程为2cos 2sin x y αα=⎧⎨=⎩,所以P 点坐标为()2cos ,2sin αα,由题意可知(0,M ,(0,N .因此PM PN +==则()214PM PN +=+ 所以当sin 0α=时,()2PM PN +有最大值28,因此PM PN +的最大值为方法二:设P 点坐标为(),x y ,则224x y +=,由题意可知(0,M ,(0,N .因此PM PN +=则()214PM PN +=+ 所以当0y =时,()2PM PN +有最大值28,因此PM PN +的最大值为点评:本题考查参数方程、极坐标方程与普通方程的转化,两点间的距离公式,以及求最值问题,考查化简、计算能力.四、请考生在第22-24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-5:不等式选讲]24.已知函数()f x =R .(Ⅰ)求实数m 的取值范围.(Ⅱ)若m 的最大值为n ,当正数a 、b 满足2132n a b a b+=++时,求74a b +的最小值.考点:基本不等式;函数的定义域及其求法. 专题:不等式的解法及应用. 分析:(1)由函数定义域为R ,可得130x x m ++--≥恒成立,设函数()13g x x x =++-,利用绝对值不等式的性质求出其最小值即可;(2)由(1)知4n =,变形()12174622432a b a b a b a b a b ⎛⎫+=++++ ⎪++⎝⎭,利用基本不等式的性质即可得出. 解答:解:(1)函数定义域为R ,130x x m ∴++--≥恒成立, 设函数()13g x x x =++-,则m 不大于函数()g x 的最小值,又()()13134x x x x ++-+--=≥,即()g x 的最小值为4,m ∴≤4. (2)由(1)知4n =,()()()23221211746225432423a b a b a b a b a b a b a b a b a b ++⎛⎫⎛⎫∴+=++++=++ ⎪ ⎪++++⎝⎭⎝⎭195244⎛+⨯= ⎝≥, 当且仅当23a b a b +=+,即3210b a ==时取等号. 74a b ∴+的最小值为94. 点评:本题考查了函数的定义域、绝对值不等式的性质、基本不等式的性质、“乘1法”,考查了推理能力与计算能力,属于中档题.。
河北省石家庄市2015届高三毕业班教学质量检测(一)数学(理)试题

石家庄市2015届高三复习教学质量检测(一)高三数学(理科)(时间120分钟,满分150分)一、选择题(每小题5分,共60分) 1.复数21i i =- A .1i + B .1i - C .1i - D .12i -2.已知集合2{|230}A x x x =--≤,{0,1,2,3,4}B =,则AB =A .{1,2,3}B .{0,1,2,3}C .{1,0,1,2,3}-D .{0,1,2}3.已知向量(2,6)=--a ,||=b ,10⋅=-a b ,则向量a 与b 的夹角为 A .150︒ B .30-︒ C .120︒ D .60-︒4.已知双曲线2221()4x y a R a -=∈的右焦点与抛物线212y x =的焦点重合,则该双曲线的离心率为A .35 B C D 5.设()f x 是定义在R 上的周期为3的函数,当[2,1)x ∈-时,242,20(),,01x x f x x x ⎧--≤≤=⎨<<⎩,则5()2f =A .1-B .1C .12D .0 6.设a 、b 表示不同的直线,α、β、γ表示不同的平面,则下列命题中正确的是 A .若a α⊥且a b ⊥,则//b α B .若γα⊥且γβ⊥,则//αβ C .若//a α且//a β,则//αβ D .若//γα且//γβ,则//αβ7.已知函数3()sin 34(,)f x a x bx a R b R =++∈∈,'()f x 为()f x 的导函数,则(2014)(2014)'(2015)'(2015)f f f f +-+--=A .8B .2014C .2015D .08.为了得到函数3cos 2y x =的图象,只需把函数3sin(2)6y x π=+的图象上所有的点A .向右平行移动3π个单位长度 B .向右平行移动6π个单位长度 C .向左平行移动3π个单位长度 D .向左平行移动6π个单位长度9.阅读如下程序框图,运行相应的程序,则程序运行后输出的结果为A .7B .9C .10D .11 10.二项式71(2)x x+的展开式中31x的系数是 A .42 B .168 C .84 D .2111.某几何体的三视图如右图,若该几何体的所有顶点都在一个球面上,则该球面的表面积为A .4πB .283π C .443π D .20π侧视图俯视图正视图12.设函数()2(,x f x e x a a R e =+-∈为自然对数的底数),若曲线sin y x =上存在点00(,)x y ,使得00(())f f y y =,则a 的取值范围是A .1[1,1]e e --++B .[1,1]e +C .[,1]e e +D .[1,]e二、填空题(每题5分,共20分) 13.曲线23(xy ee =+为自然对数的底数)在0x =处的切线方程为_____.14.实数,x y 满足402200,0x y x y x y +-≤⎧⎪-+≥⎨⎪≥≥⎩,则x y -的最小值为_____.15.已知圆22:1C x y +=,过第一象限内一点(,)P a b 作圆C 的两条切线,切点分别为A B 、,若60APB ∠=︒,则a b +的最大值为_____.16.观察右图的三角形数阵,依此规律,则第61行的第2个数是_____.... ... ... ...11 27 40 40 27 119 18 22 18 97 11 11 75 6 53 31三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤).17.(本小题满分10分)在ABC ∆中,角A 、B 、C 的对边长分别为a 、b 、c ,且3a =,2b =,2A B =,求c o s B 和c 的值.18.(本小题满分12分)已知{}n a 为公差不为0的等差数列,13a =,且1a 、4a 、13a 成等比数列. (I )求数列{}n a 的通项公式;(II )若2nn n b a =,求数列{}n b 的前n 项和.19.(本小题满分12分)某学校为了解学生身体发育情况,随机从高一年级中抽取40人作样本,测量出他们的身高(单位:cm ),身高分组区间及人数见下表:2148ba[175,180][170,175)[165,170)[160,165)[155,160)人数分组(I )求a 、b 的值并根据题目补全频率分布直方图;(II )在所抽取的40人中任意选取两人,设Y 为身高不低于170cm 的人数,求Y 的分布列及期望.20.(本小题满分12分)如图所示,在四棱锥P ABCD -中,底面ABCD 为正方形,侧棱PA ⊥底面ABCD ,1PA AD ==,E 、F 分别为PD 、AC 的中点.(I )求证://EF 平面PAB ;(II )求直线EF 与平面ABE 所成角的大小.21.(本小题满分12分)定长为3的线段AB 的两个端点A 、B 分别在x 轴、y 轴上滑动,动点P 满足2BP PA =. (I )求点P 的的轨迹曲线C 的的方程;(II )若过点(1,0)的直线与曲线C 交于M 、N 两点,求OM ON ⋅的最大值.22.(本小题满分12分)已知函数2()ln ,f x x x ax a R =+-∈. (I )若3a =,求()f x 的单调区间;(II )若()f x 有两个极值点1x 、2x ,记过点11(,())A x f x ,22(,())B x f x 的直线的斜率为k ,问是否存在a ,使22ak a =-?若存在,求出a 的值;若不存在,请说明理由. 石家庄市2015届高三第一次质量检测数学理科答案一、选择题:1-5CBCDA 6-10DADBC 11-12BA 二、填空题:13.24y x =+ 14.1- 15.3602 三、解答题 17.因为c=2,不合题意舍去,所以52c =.....................................10分 18.解(1)设{}n a 的公差为d ,由题意得2(33)3(312)d d +=+,得2d =或0d =(舍),……………………2分所以{}n a 的通项公式为3(1)221n a n n =+-=+……………………4分 (2)2(21)2n n n n b a n ==+123325272(21)2n n S n =+++++………………①…………②……………………6分222222,............2sin sin sin 3cos .............62sin 2494cos 2629100 (85)2c= (92)==∴===+-+-==-+==a bA B A BA aB B b a c b c B ac cc c c 解:分sinA=sin2B=2sinBcosB.........4分分分解得或分23412325272(21)2n n S n +=+++++①-②得123132222222(21)2n n n S n +-=++++-+…………………8分1+12(12)22(21)2122(21)2n n n n n +-=+-+-=---……………………10分 ∴1(21)22n n S n +=-+……………………12分19. 解:(1)解:a=6 b=10……………………………2分……….5分(2)P (Y=0)=13063240228=C CP (Y=1)=6528240112128=C C C P (Y=2)=13011240212=C C35E (P )=.…………………………12分20(1)分别取PA 和AB 中点M 、N ,连接MN 、ME 、NF ,则=NF ∥12AD ,=ME ∥12AD ,所以=NF ∥ME ,∴四边形M E F N为平行四边形.-------------2∴EF MN ∥,又,EF PAB ⊄平面,MN PAB ⊂平面∴EF ∥PAB 平面.- ------------4(2) 由已知得,底面ABCD 为正方形,侧棱PA ⊥底面ABCD ,所以AP AB AD ,,两两垂直.如图所示,以A 为坐标原点,分别以AP AD AB ,,为轴轴,轴,z y x 的正方向,建立空间直角坐标系xyz A -,所以(001),(000),B (1P A C D ,,,,,,,,,,1111(0),(0)2222E F ,,,,,所以,11(0)22EF =-,,, 11(0),(100)22AE AB ==,,,,,- ------------6设平面ABE 法向量(,,)n a b c =,0,0,n AE n AB ==所以11022b c a ⎧+=⎪⎨⎪=⎩令1,0,1b a c ===-则 所以(0,1,1)n =-为平面ABE 的一个法向量 -------------8 设直线EF 与平面ABE 所成角为α, 于是1sin cos ,2EF n EF n EF nα=<>==.-------------10所以直线EF 与平面ABE 所成角为6π. -------------12 解法2:在平面PAD 内作EH ∥PA H 于, 因为侧棱PA ⊥底面ABCD ,所以EH ⊥底面ABCD . -------------6E 为PD 的中点,12EH =,1111224ABFS =⨯⨯= 11111334224E ABF ABF V S EH -==⨯⨯=-------------8 设点F 到平面ABE 的距离为h,E ABF F ABE V V --=11122ABESAB AE =⨯⨯=⨯= 1133ABFABESEH Sh =,4h =. -------------10设直线EF 与平面ABE 所成角为α,1sin 2h EF α==,所以直线EF 与平面ABE 所成角为6π. -------------1221.解:(1)设A (0x ,0),B (0,0y ),P (,x y ),由2BP PA =得,00(,)2(,)x y y x x y -=--,即000032()223x x x x x y y y y y⎧=-=⎧⎪⇒⎨⎨-=-⎩⎪=⎩,————————————————————2分 又因为22009x y +=,所以223()(3)92x y +=,化简得:2214x y +=,这就是点P 的轨迹方程。
河北省石家庄市2015届高三数学一模试卷(文科) Word版含解析

河北省石家庄市2015届高考数学一模试卷(文科) 一、选择题(共12小题,每小题5分,满分60分) 1.已知i为虚数单位,则复数=( ) A.2+i B.2﹣i C.﹣1﹣2i D.﹣1+2i 2.已知集合P={0,1,2},Q={y|y=3x},则P∩Q=( ) A.{0,1,2} B.{0,1} C.{1,2} D.? 3.命题p:若sinx>siny,则x>y;命题q:x2+y2≥2xy,下列命题为假命题的是( ) A.p或q B.p且q C.q D.¬p 4.设函数f(x)为偶函数,当x∈(0,+∞)时,f(x)=log2x,则f(﹣)=( ) A.﹣B.C.2 D.﹣2 5.已知cosα=k,k∈R,α∈(,π),则sin(π+α)=( ) A.﹣B.C.±D.﹣k 6.函数f(x)=tanωx(ω>0)的图象的相邻两支截直线y=2所得线段长为,则f()的值是( ) A.﹣B.C.1 D. 7.执行下面的程序框图,如果输入的依次是1,2,4,8,则输出的S为( ) A.2 B.2 C.4 D.6 8.在棱长为3的正方体ABCD﹣A1B1C1D1中,P在线段BD1上,且,M为线段B1C1上的动点,则三棱锥M﹣PBC的体积为( ) A.1 B. C.D.与M点的位置有关 9.已知O、A、B三地在同一水平面内,A地在O地正东方向2km处,B地在O地正北方向2km 处,某测绘队员在A、B之间的直线公路上任选一点C作为测绘点,用测绘仪进行测绘,O地为一磁场,距离其不超过km的范围内会测绘仪等电子仪器形成干扰,使测量结果不准确,则该测绘队员能够得到准确数据的概率是( ) A.1﹣B.C.1﹣D. 10.已知抛物线y2=2px(p>0)的焦点F恰好是双曲线﹣=1(a>0,b>0)的一个焦点,两条曲线的交点的连线过点F,则双曲线的离心率为( ) A.B.C.1+ D.1+ 11.一个几何体的三视图如图所示,则该几何体的体积是( ) A.64 B.72 C.80 D.112 12.已知函数f(x)=,若关于x的方程f2(x)﹣bf(x)+c=0(b,c∈R)有8个不同的实数根,则b+c的取值范围为( ) A.(﹣∞,3)B.(0,3] C.[0,3] D.(0,3) 二、填空题(共4小题,每小题5分,满分20分) 13.已知平面向量,的夹角为,||=2,||=1,则|+|=__________. 14.已知等差数列{an}是递增数列,Sn是{an}的前n项和,若a2,a4是方程x2﹣6x+5=0的两个根,则S6的值为__________. 15.若不等式组表示的区域为一个锐角三角形及其内部,则实数k的范围是__________. 16.设过曲线f(x)=﹣ex﹣x(e为自然对数的底数)上任意一点处的切线为l1,总存在过曲线g(x)=ax+2cosx上一点处的切线l2,使得l1⊥l2,则实数a的取值范围为__________. 三、解答题(共8小题,满分70分) 17.设数列{an}的前n项和为Sn,a1=1,an+1=λSn+1(n∈N*,λ≠﹣1),且a1、2a2、a3+3为等差数列{bn}的前三项. (Ⅰ)求数列{an}、{bn}的通项公式; (Ⅱ)求数列{anbn}的前n项和. 18.某商店计划每天购进某商品若干件,商店每销售一件该商品可获利润50元,若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利润30元 (1)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式 (2)商店记录了50天该商品的日需求量n(单位:件)整理得表: 日需求量 8 9 10 11 12 频数9 11 15 10 5 若商店一天购进10件该商品,以50天记录的各需求量发生的概率,求当天的利润在区间[400,500]的概率. 19.如图,在四棱锥P﹣ABCD中,底面ABCD为梯形,∠ABC=∠BAD=90°,BC=2,AP=AD=AB=,∠PAB=∠PAD=α. (1)试在棱PA上确定一个点E,使得PC∥平面BDE,并求出此时的值; (2)当α=60°时,求证:CD⊥平面PBD. 20.在平面直角坐标系xOy中,以动圆经过点(1,0)且与直线x=﹣1相切,若该动圆圆心的轨迹为曲线E. (1)求曲线E的方程; (2)已知点A(5,0),倾斜角为的直线l与线段OA相交(不经过点O或点A)且与曲线E 交于M、N两点,求△AMN面积的最大值,及此时直线l的方程. 21.已知函数f(x)=2(a+1)lnx﹣ax,g(x)=x2﹣x. (1)若函数f(x)在定义域内为单调函数,求实数a的取值范围; (2)证明:若﹣1<a<7,则对于任意x1、x2∈(1,+∞),x1≠x2,有>﹣1. 22.如图,已知⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为BD中点,连接AG分别交⊙O、BD于点E、F连接CE. (1)求证:AG?EF=CE?GD; (2)求证:. 23.已知曲线C1的参数方程为(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2. (Ⅰ)分别写出C1的普通方程,C2的直角坐标方程. (Ⅱ)已知M、N分别为曲线C1的上、下顶点,点P为曲线C2上任意一点,求|PM|+|PN|的最大值. 24.已知函数f(x)=的定义域为R. (Ⅰ)求实数m的取值范围. (Ⅱ)若m的最大值为n,当正数a、b满足+=n时,求7a+4b的最小值. 河北省石家庄市2015届高考数学一模试卷(文科) 一、选择题(共12小题,每小题5分,满分60分) 1.已知i为虚数单位,则复数=( ) A.2+i B.2﹣i C.﹣1﹣2i D.﹣1+2i 考点:复数代数形式的乘除运算. 专题:数系的扩充和复数. 分析:直接利用复数代数形式的乘除运算化简求值. 解答:解:=, 故选:C. 点评:本题考查了复数代数形式的乘除运算考查了复数的基本概念,是基础题. 2.已知集合P={0,1,2},Q={y|y=3x},则P∩Q=( ) A.{0,1,2} B.{0,1} C.{1,2} D.? 考点:交集及其运算. 专题:集合. 分析:求出Q中y的范围确定出Q,找出P与Q的交集即可. 解答:解:∵集合P={0,1,2},Q={y|y=3x}={y|y>0}, ∴P∩Q={1,2}, 故选:C. 点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键. 3.命题p:若sinx>siny,则x>y;命题q:x2+y2≥2xy,下列命题为假命题的是( ) A.p或q B.p且q C.q D.¬p 考点:复合命题的真假. 专题:三角函数的图像与性质;简易逻辑. 分析:根据正弦函数的图象即可判断出sinx>siny时,不一定得到x>y,所以说命题p 是假命题,而根据基本不等式即可判断出命题q为真命题,然后根据¬p,p或q,p且q的真假和p,q真假的关系即可找出正确选项. 解答:解:x=,y=π,满足sinx>siny,但x<y; ∴命题p是假命题; x2+y2≥2xy,这是基本不等式; ∴命题q是真命题; ∴p或q为真命题,p且q为假命题,q是真命题,¬p是真命题; ∴是假命题的是B. 故选B. 点评:考查正弦函数的图象,能够取特殊角以说明命题p是假命题,熟悉基本不等式:a2+b2≥2ab,a=b时取“=”,以及¬p,p或q,p且q的真假和p,q真假的关系. 4.设函数f(x)为偶函数,当x∈(0,+∞)时,f(x)=log2x,则f(﹣)=( ) A.﹣B.C.2 D.﹣2 考点:函数奇偶性的性质;函数的值. 专题:函数的性质及应用. 分析:根据f(x)为偶函数,以及x>0时f(x)的解析式即可得到f(﹣)=. 解答:解:f(x)为偶函数; ∴f()=f() 又x>0时,f(x)=log2x; ∴=; 即f(﹣)=. 故选B. 点评:考查偶函数的定义:f(﹣x)=f(x),以及对数的运算. 5.已知cosα=k,k∈R,α∈(,π),则sin(π+α)=( ) A.﹣B.C.±D.﹣k 考点:同角三角函数基本关系的运用;运用诱导公式化简求值. 专题:三角函数的求值. 分析:由已知及同角三角函数基本关系的运用可求sinα,从而由诱导公式即可得解. 解答:解:∵cosα=k,k∈R,α∈(,π), ∴sinα==, ∴sin(π+α)=﹣sinα=﹣. 故选:A. 点评:本题主要考查了同角三角函数基本关系的运用,运用诱导公式化简求值,属于基本知识的考查. 6.函数f(x)=tanωx(ω>0)的图象的相邻两支截直线y=2所得线段长为,则f()的值是( ) A.﹣B.C.1 D. 考点:正切函数的图象. 专题:三角函数的图像与性质. 分析:根据条件求出函数的周期和ω,即可得到结论. 解答:解:∵f(x)=tanωx(ω>0)的图象的相邻两支截直线y=2所得线段长为, ∴函数的周期T=, 即=,则ω=2,则f(x)=tan2x 则f()=tan(2×)=tan=, 故选:D 点评:本题主要考查三角函数值的求解,根据条件求出函数的周期和ω是解决本题的关键. 7.执行下面的程序框图,如果输入的依次是1,2,4,8,则输出的S为( ) A.2 B.2 C.4 D.6 考点:程序框图. 专题:图表型;算法和程序框图. 分析:模拟执行程序框图,依次写出每次循环得到的S,i的值,当i=5时,不满足条件i ≤4,退出循环,输出S的值为2. 解答:解:模拟执行程序框图,可得 S=1,i=1 满足条件i≤4,S=1,i=2 满足条件i≤4,S=,i=3 满足条件i≤4,S=2,i=4 满足条件i≤4,S=2,i=5 不满足条件i≤4,退出循环,输出S的值为2. 故选:B. 点评:本题主要考查了循环结构的程序框图,正确写出每次循环得到的S的值是解题的关键,属于基本知识的考查. 8.在棱长为3的正方体ABCD﹣A1B1C1D1中,P在线段BD1上,且,M为线段B1C1上的动点,则三棱锥M﹣PBC的体积为( ) A.1 B. C.D.与M点的位置有关 考点:棱柱、棱锥、棱台的体积. 专题:空间位置关系与距离. 分析:如图所示,连接BC1,取=,可得PN∥D1C1,=1,由于D1C1⊥平面BCC1B1,可得PN ⊥平面BCC1B1,利用三棱锥M﹣PBC的体积=V三棱锥P﹣BCM=即可得出. 解答:解:如图所示,连接BC1,取=, 则PN∥D1C1,,PN=1, ∵D1C1⊥平面BCC1B1, ∴PN⊥平面BCC1B1, 即PN是三棱锥P﹣BCM的高. ∴V三棱锥M﹣PBC=V三棱锥P﹣BCM===. 故选:B. 点评:本题考查了正方体的性质、线面垂直的判定与性质定理、三角形中平行线分线段成比例定理的逆定理、三棱锥的体积计算公式,考查了推理能力与计算能力,属于中档题. 9.已知O、A、B三地在同一水平面内,A地在O地正东方向2km处,B地在O地正北方向2km 处,某测绘队员在A、B之间的直线公路上任选一点C作为测绘点,用测绘仪进行测绘,O地为一磁场,距离其不超过km的范围内会测绘仪等电子仪器形成干扰,使测量结果不准确,则该测绘队员能够得到准确数据的概率是( ) A.1﹣B.C.1﹣D. 考点:解三角形的实际应用. 专题:应用题;概率与统计. 分析:作出图形,以长度为测度,即可求出概率. 解答:解:由题意,△AOB是直角三角形,OA=OB=2,所以AB=2, O地为一磁场,距离其不超过km的范围为个圆,与AB相交于C,D两点,作OE⊥AB,则OE=,所以CD=2,所以该测绘队员能够得到准确数据的概率是1﹣=1﹣. 故选:A. 点评:本题考查利用数学知识解决实际问题,考查概率的计算,正确确定CD是关键. 10.已知抛物线y2=2px(p>0)的焦点F恰好是双曲线﹣=1(a>0,b>0)的一个焦点,两条曲线的交点的连线过点F,则双曲线的离心率为( ) A.B.C.1+ D.1+ 考点:双曲线的简单性质. 专题:计算题;圆锥曲线的定义、性质与方程. 分析:先根据抛物线方程得到焦点坐标和交点坐标,代入双曲线,把=c代入整理得c4﹣6a2c2+a4=0等式两边同除以a4,得到关于离心率e的方程,进而可求得e. 解答:解:由题意,∵两条曲线交点的连线过点F ∴两条曲线交点为(,p), 代入双曲线方程得, 又=c 代入化简得 c4﹣6a2c2+a4=0 ∴e4﹣6e2+1=0 ∴e2=3+2=(1+)2 ∴e=+1 故选:C. 点评:本题考查由圆锥曲线的方程求焦点、考查双曲线的三参数的关系:c2=a2+b2注意与椭圆的区别. 11.一个几何体的三视图如图所示,则该几何体的体积是( ) A.64 B.72 C.80 D.112 考点:由三视图求面积、体积. 专题:计算题. 分析:由几何体的三视图可知,该几何体下部为正方体,边长为4,上部为三棱锥(以正方体上底面为底面),高为3.分别求体积,再相加即可 解答:解:由几何体的三视图可知,该几何体下部为正方体,边长为4,体积为43=64 上部为三棱锥,以正方体上底面为底面,高为3.体积× 故该几何体的体积是64+8=72 故选B 点评:本题考查由三视图求几何体的体积,考查由三视图还原几何体直观图,考查与锥体积公式,本题是一个基础题. 12.已知函数f(x)=,若关于x的方程f2(x)﹣bf(x)+c=0(b,c∈R)有8个不同的实数根,则b+c的取值范围为( ) A.(﹣∞,3)B.(0,3] C.[0,3] D.(0,3) 考点:分段函数的应用. 专题:综合题;函数的性质及应用. 分析:题中原方程f2(x)﹣bf(x)+c=0有8个不同实数解,即要求对应于f(x)=某个常数K,有2个不同的K,再根据函数对应法则,每一个常数可以找到4个x与之对应,就出现了8个不同实数解,故先根据题意作出f(x)的简图,由图可知,只有满足条件的K在开区间(0,1)时符合题意.再根据一元二次方程根的分布理论可以得出答案. 解答:解:根据题意作出f(x)的简图: 由图象可得当f(x)∈(0,1]时,有四个不同的x与f(x)对应.再结合题中“方程f2(x)﹣bf(x)+c=0有8个不同实数解”, 可以分解为形如关于k的方程k2﹣bk+c=0有两个不同的实数根K1、K2,且K1和K2均为大于0且小于等于1的实数. 列式如下:,化简得, 此不等式组表示的区域如图: 令z=b+c,则z=b+c在(2,1)处z=3,在(0,0)处z=0, 所以b+c的取值范围为(0,3), 故选:D. 点评:本题考查了函数的图象与一元二次方程根的分布的知识,同时考查线性规划等知识,较为综合;采用数形结合的方法解决,使本题变得易于理解. 二、填空题(共4小题,每小题5分,满分20分) 13.已知平面向量,的夹角为,||=2,||=1,则|+|=. 考点:平面向量数量积的运算. 专题:平面向量及应用. 分析:运用数量积的定义求解得出=||?||cos,结合向量的运算,与模的运算转化:|+|2=()2=||2+||2+2,代入数据求解即可. 解答:解:∵平面向量,的夹角为,||=2,||=1, ∴=||?||cos=2×=﹣1, ∴|+|2=()2=||2+||2+2=4+1﹣2=3, 即|+|=. 故答案为:. 点评:本题考查了平面向量的数量积的运用,应用求解向量的模,计算简单,属于容易题. 14.已知等差数列{an}是递增数列,Sn是{an}的前n项和,若a2,a4是方程x2﹣6x+5=0的两个根,则S6的值为24. 考点:等差数列的性质. 专题:等差数列与等比数列. 分析:由一元二次方程的根与系数关系求得a2,a4,进一步求出公差和首项,则答案可求. 解答:解:由a2,a4是方程x2﹣6x+5=0的两个根,得 ,由已知得a4>a2,∴解得a2=1,a4=5, ∴d=, 则a1=a2﹣d=1﹣2=﹣1, ∴. 故答案为:24. 点评:本题考查了一元二次方程的根与系数关系,考查了等差数列的通项公式和前n项和,是基础的计算题. 15.若不等式组表示的区域为一个锐角三角形及其内部,则实数k的范围是(0,1). 考点:简单线性规划. 专题:计算题;作图题;不等式的解法及应用. 分析:由题意作出其平面区域,求出k的临界值,从而结合图象写出实数k的取值范围. 解答:解:由题意作出其平面区域, 当直线y=kx+3与AB重合时,k=0,是直角三角形, 当直线y=kx+3与AD重合时,k=1,是直角三角形; 故若区域为一个锐角三角形及其内部, 则0<k<1; 故答案为:(0,1). 点评:本题考查了简单线性规划,作图要细致认真,利用临界值求取值范围,属于中档题. 16.设过曲线f(x)=﹣ex﹣x(e为自然对数的底数)上任意一点处的切线为l1,总存在过曲线g(x)=ax+2cosx上一点处的切线l2,使得l1⊥l2,则实数a的取值范围为[﹣1,2]. 考点:利用导数研究曲线上某点切线方程. 专题:导数的概念及应用;不等式的解法及应用;直线与圆. 分析:求出函数f(x)=﹣ex﹣x的导函数,进一步求得∈(0,1),再求出g(x)的导函数的范围,然后把过曲线f(x)=﹣ex﹣x上任意一点的切线为l1,总存在过曲线g(x)=ax+2cosx 上一点处的切线l2,使得l1⊥l2转化为集合间的关系求解. 解答:解:由f(x)=﹣ex﹣x,得f′(x)=﹣ex﹣1, ∵ex+1>1,∴∈(0,1), 由g(x)=ax+2cosx,得g′(x)=a﹣2sinx, 又﹣2sinx∈[﹣2,2], ∴a﹣2sinx∈[﹣2+a,2+a], 要使过曲线f(x)=﹣ex﹣x上任意一点的切线为l1, 总存在过曲线g(x)=ax+2cosx上一点处的切线l2,使得l1⊥l2, 则,解得﹣1≤a≤2. 即a的取值范围为﹣1≤a≤2. 故答案为:[﹣1,2]. 点评:本题考查了利用导数研究过曲线上的某点的切线方程,考查了数学转化思想方法,解答此题的关键是把问题转化为集合间的关系求解,是中档题. 三、解答题(共8小题,满分70分) 17.设数列{an}的前n项和为Sn,a1=1,an+1=λSn+1(n∈N*,λ≠﹣1),且a1、2a2、a3+3为等差数列{bn}的前三项. (Ⅰ)求数列{an}、{bn}的通项公式; (Ⅱ)求数列{anbn}的前n项和. 考点:数列的求和;数列递推式. 专题:等差数列与等比数列. 分析:(1)由an+1=λSn+1(n∈N*,λ≠﹣1),当n≥2时,an=λSn﹣1+1,可得an+1=(1+λ)an,利用等比数列的通项公式可得a3,再利用等差数列的通项公式即可得出; (2)利用“错位相减法”、等比数列的前n项和公式即可得出. 解答:解:(1)∵an+1=λSn+1(n∈N*,λ≠﹣1),∴当n≥2时,an=λSn﹣1+1, ∴an+1﹣an=λan,即an+1=(1+λ)an, 又a1=1,a2=λa1+1=λ+1, ∴数列{an}为以1为首项,公比为λ+1的等比数列, ∴a3=(λ+1)2, ∵a1、2a2、a3+3为等差数列{bn}的前三项. ∴4(λ+1)=1+(λ+1)2+3, 整理得(λ﹣1)2=0,解得λ=1. ∴an=2n﹣1,bn=1+3(n﹣1)=3n﹣2. (2)anbn=(3n﹣2)?2n﹣1, ∴数列{anbn}的前n项和Tn=1+4×2+7×22+…+(3n﹣2)?2n﹣1, 2Tn=2+4×22+7×23+…+(3n﹣5)×2n﹣1+(3n﹣2)×2n, ∴﹣Tn=1+3×2+3×22+…+3×2n﹣1﹣(3n﹣2)×2n=﹣(3n﹣2)×2n=(5﹣3n)×2n﹣5, ∴Tn=(3n﹣5)×2n+5. 点评:本题考查了递推式的应用、“错位相减法”、等差数列与等比数列的通项公式及其前n 项和公式,考查了推理能力与计算能力,属于中档题. 18.某商店计划每天购进某商品若干件,商店每销售一件该商品可获利润50元,若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利润30元 (1)若商店一天购进该商品10件,求当天的利润y(单位:元)关于当天需求量n(单位:件,n∈N)的函数解析式 (2)商店记录了50天该商品的日需求量n(单位:件)整理得表: 日需求量 8 9 10 11 12 频数9 11 15 10 5 若商店一天购进10件该商品,以50天记录的各需求量发生的概率,求当天的利润在区间[400,500]的概率. 考点:列举法计算基本事件数及事件发生的概率;频率分布表. 专题:概率与统计. 分析:(1)根据题意分段求解得出当1≤n≤10时,y利润,当n>10时,y利润, (2)运用表格的数据求解:频数9天,380;频数11天,440;频数9,500;频数5,560,得出当天的利润在区间[400,500]有20天,即可求解概率. 解答:解:(1)当1≤n≤10时,y利润=50n+(10﹣n)×(﹣10)=60n﹣100, 当n>10时,y利润=50×10+(10﹣n)×30=800﹣30n, 所以函数解析式y利润=, (2)∵日需求量为8,频数9天,利润为50×8﹣10×2=380, 日需求量为9,频数11天,利润为50×9﹣10×=440, 日需求量为10,频数9,利润为50×10=500, 日需求量为12,频数5,利润为50×10+30×2=560, ∴当天的利润在区间[400,500]有11+9=20天, 故当天的利润在区间[400,500]的概率为=. 点评:本题考查了运用概率知识求解实际问题的利润问题,仔细阅读题意,得出有用的数据,理清关系,正确代入数据即可. 19.如图,在四棱锥P﹣ABCD中,底面ABCD为梯形,∠ABC=∠BAD=90°,BC=2,AP=AD=AB=,∠PAB=∠PAD=α. (1)试在棱PA上确定一个点E,使得PC∥平面BDE,并求出此时的值; (2)当α=60°时,求证:CD⊥平面PBD. 考点:直线与平面垂直的判定;直线与平面平行的判定. 专题:空间位置关系与距离. 分析:(1)连接AC,BD,相交于O,过O作OE∥PC,与PA交于E,如图1,则PC∥平面BDE; (2)当α=60°时,△PAD和△PAB都是等边三角形,PB=PD,过A作AF⊥BD,则F为BD 的中点, 利用勾股定理可以判断线线垂直,进一步判断线面垂直. 解答:解:(1)连接AC,BD,相交于O,过O作OE∥PC,与PA交于E,如图1,则PC ∥平面BDE, 此时AE:EP=AO:OC=AD:BC=:=1:2; (2)当α=60°时,△PAD和△PAB都是等边三角形,PB=PD, 过A作AF⊥BD,则F为BD的中点, 所以PF⊥BD,BD=2,所以AF=PF=BD=1,所以PF2+AF2=PA2,所以PF⊥AF, 所以PF⊥平面ABCD, 所以PF⊥CD, 过D作DH⊥BC,则DH=AB=,HC=,所以CD=2,所以CD2+BD2=BC2,所以CD⊥BD, BD∩PF=F, 所以CD⊥平面PBD. 点评:本题考查了线面平行的判定以及线面垂直的判定定理和性质定理的运用;关键是适当作辅助线,将问题转化为线线关系解答. 20.在平面直角坐标系xOy中,以动圆经过点(1,0)且与直线x=﹣1相切,若该动圆圆心的轨迹为曲线E. (1)求曲线E的方程; (2)已知点A(5,0),倾斜角为的直线l与线段OA相交(不经过点O或点A)且与曲线E 交于M、N两点,求△AMN面积的最大值,及此时直线l的方程. 考点:直线与圆锥曲线的综合问题. 专题:圆锥曲线中的最值与范围问题. 分析:(1)由抛物线的定义求得抛物线方程. (2)直线和圆锥曲线联立方程组,构造关于m的函数,利用导数求得最大值. 解答:解:(1)由题意得圆心到(1,0)的距离等于直线x=﹣1的距离,由抛物线的定义可知,圆心的轨迹方程为:y2=4x. (2)由题意,可设l的方程为y=x﹣m,其中,0<m<5. 由方程组,消去y,得x2﹣(2m+4)x+m2=0,① 当0<m<5时,方程①的判别式△=(2m+4)2﹣4m2=16(1+m)>0成立. 设M(x1,y1),N(x2,y2),则, ∴ 又∵点A到直线l的距离为 ∴ 令f(m)=m3﹣9m2+15m+25,(0<m<5) f'(m)=3m2﹣18m+15=3(m﹣1)(m﹣5),(0<m<5) ∴函数f(m)在(0,1)上单调递增,在(1,5)上单调递减. 当m=1时,f(m)有最大值32, 故当直线l的方程为y=x﹣1时,△AMN的最大面积为 点评:本题主要考查抛物线定义的应用以及直线与抛物线的综合应用,属中档题,在2015届高考中属于常考题型. 21.已知函数f(x)=2(a+1)lnx﹣ax,g(x)=x2﹣x. (1)若函数f(x)在定义域内为单调函数,求实数a的取值范围; (2)证明:若﹣1<a<7,则对于任意x1、x2∈(1,+∞),x1≠x2,有>﹣1. 考点:利用导数研究函数的单调性;利用导数研究曲线上某点切线方程. 专题:计算题;证明题;导数的综合应用. 分析:(1)先求f(x)=2(a+1)lnx﹣ax的定义域,再求导f′(x)=2(a+1)﹣a=,从而由题意知f′(x)=≥0在(0,+∞)上恒成立,从而化为最值问题; (2)由二次函数的性质易知g(x)=x2﹣x在(1,+∞)上是增函数,从而不妨设x1>x2,从而可得g(x1)>g(x2);故>﹣1可化为f(x1)﹣f(x2)>﹣(g(x1)﹣g(x2)),即证f(x1)+g(x1)>f(x2)+g(x2), 令H(x)=f(x)+g(x)=2(a+1)lnx﹣ax+x2﹣x,从而利用导数证明H(x)=f(x)+g (x)=2(a+1)lnx﹣ax+x2﹣x在(1,+∞)上是增函数即可. 解答:解:(1)f(x)=2(a+1)lnx﹣ax的定义域为(0,+∞), f′(x)=2(a+1)﹣a=, ∵f′(2)=1,又∵函数f(x)在定义域内为单调函数, ∴f′(x)=≥0在(0,+∞)上恒成立, ∴a(2﹣x)+2≥0在(0,+∞)上恒成立, 即﹣ax+2a+2≥0在(0,+∞)上恒成立, 故, 解得,﹣1≤a≤0; (2)证明:∵g(x)=x2﹣x在(1,+∞)上是增函数, ∴对于任意x1、x2∈(1,+∞),x1≠x2,不妨设x1>x2, 则g(x1)>g(x2); 则>﹣1可化为f(x1)﹣f(x2)>﹣(g(x1)﹣g(x2)), 即证f(x1)+g(x1)>f(x2)+g(x2), 令H(x)=f(x)+g(x)=2(a+1)lnx﹣ax+x2﹣x, H′(x)=2(a+1)﹣a+x﹣1=, 令M(x)=x2﹣(a+1)x+2(a+1), ①﹣1<a≤1时,0<a+1≤2, 故M(x)=x2﹣(a+1)x+2(a+1)在(1,+∞)上是增函数, 故M(x)>M(1)=1﹣a﹣1+2a+2=a+2>0, ②1<a<7时,M(x)=x2﹣(a+1)x+2(a+1)的对称轴x=∈(1,+∞), 故M(x)≥()2﹣(a+1)+2(a+1)=(a+1)(7﹣a)>0, 故﹣1<a<7时,M(x)>0在(1,+∞)上恒成立, 即H′(x)>0在(1,+∞)上恒成立, 故H(x)=f(x)+g(x)=2(a+1)lnx﹣ax+x2﹣x在(1,+∞)上是增函数, 故f(x1)+g(x1)>f(x2)+g(x2), 故原式成立. 点评:本题考查了导数的综合应用及恒成立问题,同时考查了二次函数的性质应用及分类讨论的思想应用,属于难题. 22.如图,已知⊙O和⊙M相交于A、B两点,AD为⊙M的直径,直线BD交⊙O于点C,点G为BD中点,连接AG分别交⊙O、BD于点E、F连接CE. (1)求证:AG?EF=CE?GD; (2)求证:. 考点:圆的切线的性质定理的证明;与圆有关的比例线段. 专题:证明题;压轴题. 分析:(1)要证明AG?EF=CE?GD我们可以分析积等式中四条线段的位置,然后判断它们所在的三角形是否相似,然后将其转化为一个证明三角形相似的问题. (2)由(1)的推理过程,我们易得∠DAG=∠GDF,又由公共角∠G,故△DFG∽△AGD,易得DG2=AG?GF,结合(1)的结论,不难得到要证明的结论. 解答:证明:(1)连接AB,AC, ∵AD为⊙M的直径,∴∠ABD=90°, ∴AC为⊙O的直径,∴∠CEF=∠AGD, ∵∠DFG=∠CFE,∴∠ECF=∠GDF, ∵G为弧BD中点,∴∠DAG=∠GDF, ∵∠ECB=∠BAG,∴∠DAG=∠ECF, ∴△CEF∽△AGD, ∴, ∴AG?EF=CE?GD (2)由(1)知∠DAG=∠GDF, ∠G=∠G, ∴△DFG∽△AGD, ∴DG2=AG?GF, 由(1)知, ∴. 点评:证明三角形相似有三个判定定理:(1)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似(2)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似(3)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似.我们要根据已知条件进行合理的选择,以简化证明过程. 23.已知曲线C1的参数方程为(θ为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2. (Ⅰ)分别写出C1的普通方程,C2的直角坐标方程. (Ⅱ)已知M、N分别为曲线C1的上、下顶点,点P为曲线C2上任意一点,求|PM|+|PN|的最大值. 考点:参数方程化成普通方程. 专题:坐标系和参数方程. 分析:(1)根据题意和平方关系求出曲线C1的普通方程,由ρ2=x2+y2和题意求出C2的直角坐标方程; (2)法一:求出曲线C2参数方程,设P点的参数坐标,求出点M、N的坐标,利用两点间的距离公式求出|PM|+|PN|并化简,再化简(|PM|+|PN|)2,利用正弦函数的最值求出(|PM|+|PN|)2的最值,即可求出|PM|+|PN|的最大值; 法二:设P点坐标为(x,y),则x2+y2=4,求出点M、N的坐标,利用两点间的距离公式求出|PM|+|PN|并化简,再化简(|PM|+|PN|)2,再求出(|PM|+|PN|)2的最值,即可求出|PM|+|PN|的最大值. 解答:解:(1)因为曲线C1的参数方程为(θ为参数), 所以曲线C1的普通方程为,… 由曲线C2的极坐标方程为ρ=2得, 曲线C2的普通方程为x2+y2=4;… (2)法一:由曲线C2:x2+y2=4,可得其参数方程为, 所以P点坐标为(2cosα,2sinα), 由题意可知M(0,),N(0,). 因此|PM|+|PN|==+… 则(|PM|+|PN|)2=14+2. 所以当sinα=0时,(|PM|+|PN|)2有最大值28,… 因此|PM|+|PN|的最大值为.… 法二:设P点坐标为(x,y),则x2+y2=4, 由题意可知M(0,),N(0,). 因此|PM|+|PN|=+=+… 则(|PM|+|PN|)2=14+2. 所以当y=0时,(|PM|+|PN|)2有最大值28,… 因此|PM|+|PN|的最大值为.… 点评:本题考查参数方程、极坐标方程与普通方程的转化,两点间的距离公式,以及求最值问题,考查化简、计算能力. 24.已知函数f(x)=的定义域为R. (Ⅰ)求实数m的取值范围. (Ⅱ)若m的最大值为n,当正数a、b满足+=n时,求7a+4b的最小值. 考点:基本不等式;函数的定义域及其求法. 专题:不等式的解法及应用. 分析:(1)由函数定义域为R,可得|x+1|+|x﹣3|﹣m≥0恒成立,设函数g(x)=|x+1|+|x ﹣3|,利用绝对值不等式的性质求出其最小值即可; (2)由(1)知n=4,变形7a+4b=,利用基本不等式的性质即可得出. 解答:解:(1)∵函数定义域为R, ∴|x+1|+|x﹣3|﹣m≥0恒成立, 设函数g(x)=|x+1|+|x﹣3|,则m不大于函数g(x)的最小值, 又|x+1|+|x﹣3|≥|(x+1)﹣(x﹣3)|=4,即g(x)的最小值为4,∴m≤4. (2)由(1)知n=4, ∴7a+4b===, 当且仅当a+2b=3a+b,即b=2a=时取等号. ∴7a+4b的最小值为. 点评:本题考查了函数的定义域、绝对值不等式的性质、基本不等式的性质、“乘1法”,考查了推理能力与计算能力,属于中档题.。