频率响应法示例之二_对数频率特性

合集下载

自动控制原理简明教程 第五章 频率响应法

自动控制原理简明教程 第五章 频率响应法

这时,求扰动输入下的误差传递函数 en(s) ,
先求 E(s) 0 C(s) 1GG((s)s) N(s)

e(n s)
NE((ss))
1
G(s) G(s)
则 ess(2 t) An e(n j)sin(t en( j))
幅频特性
相频特性
二.频率特性的物理意义及求解方法
R
ur
C uc
RC网络微分方程为:
优点:
(1).可以根据系统的开环频率特性判断闭环系 统的稳定性,而不必求解特征方程。
(2).很容易研究系统的结构,参数变化对系统性 能的影响,并可指出改善系统性能的途径,便于
对系统进行校正。
(3).提供了一种通过实验建立元件或系统数 学模型的方法。
(4).可以方便地设计出使系统噪声小到规定 程度的系统。
一.比例环节
传递函数为G(s)=k
频率特性为 G( jw) ke j 0
幅频特性为 A(w)=k
相频特性为 (w) 0
极坐标图和伯德图为:
L(w)(dB)
20lgk
(w)(度) 0.1 1 10 100
w
0
w
-30
Bode图
j
w=0
w
0k
w
极坐标图
二.积分环节和微分环节
积分环节: G(s) C(s) R(s) 1/ s
w? ?
450 W=1/T
1 W=0 w
对数幅频特性:L(w) 20lg 1 T 2w2 1
20lg T 2w2 1
当wT≥1时,L(w)≈-20lgwT
当wT≥1时,L(w)可用一条斜率为-20dB/dec的渐近 直线来表示。
当wT≤1时,L(w)≈0,是一条与0分贝线重合的直线。 两直线交于横坐标w=1/T的地方。

信号幅频相频特性的画法(频率响应法)

信号幅频相频特性的画法(频率响应法)

1、频率响应法
•基本思想是把系统中的信号分解为多种不同频率的正弦信号,这些信号经过控制系统时,会以一定的规律产生幅值和相位的变化,通过分析这些
变化规律就能得出关于系统运动的性能指标。

•由于幅值和相位的变化称频率特性函数可以绘制在图形上,因此该方法非常直观。

另外,可以用实验法建立系统的模型,也可以据开环频率特性分析闭环系统的特性。

该方法具有很高的工程价值,深受工程技术人员欢迎。

6 频率响应分析法2
2、频率特性的图示方法
•为了直观地分析系统的特性,通常把幅频和相频特性以图形的形式表示出来:
1.幅相频率特性(奈氏图)
2.对数频率特性(Bode图)
3.对数幅相特性(尼氏图)
6 频率响应分析法5
2.1 幅相频率特性图
•极坐标图:奈奎斯特(Nyquist)图,幅相特性图,当频率连续变化时,频率特性函数在复平面的运动轨迹。

G(jω)=x(ω)+ j y(ω)
ω:0→+∞
6 频率响应分析法6。

自动控制原理(第三版)第五章频率响应法

自动控制原理(第三版)第五章频率响应法
频段的两条直线组成的折线近似表示, 如图5-18的渐近线所
示。 这两条线相交处的交接频率ω=1/T, 称为振荡环节的无阻尼
自然振荡频率。在交接频率附近, 对数幅频特性与渐近线存在
一定的误差, 其值取决于阻尼比ζ的值, 阻尼比越小, 则误差越大, 如表5-4所示。当ζ<0.707时, 在对数幅频特性上出现峰值。根
一个单位长度。设对数分度中的单位长度为L, ω0为参考点, 则 当ω以ω0为起点, 在10倍频程内变化时, 坐标点相对于ω0的距离
为表5-1中的第二行数值乘以L。
第五章 频 率 响 应 法
图 5-4 对数分度和线性分度
第五章 频 率 响 应 法
表 5-1 10倍频程内的对数分度
第五章 频 率 响 应 法
第五章 频 率 响 应 法
图 5-7 比例环节的伯德图
第五章 频 率 响 应 法
2. 积分环节 积分环节的频率特性为
其幅频特性和相频特性为
(5.18)
(5.19)
由式(5.19)可见,它的幅频特性与角频率ω成反比, 而相频特性恒
为-90°。对数幅频特性和相频特性为
(5.20)
第五章 频 率 响 应 法
T), 则有
因此有
这表明φ(ω)是关于ω=1/T, φ(ω)=-45°这一点中心对称的。 用
MATLAB画出的惯性环节的伯德图如图5-14所示(T=1)。
第五章 频 率 响 应 法
图 5-14 MATLAB绘制的惯性环节的伯德图
第五章 频 率 响 应 法
5. 一阶微分环节 一阶微分环节的频率特性为 幅频特性和相频特性为
即 所以, 惯性环节的奈氏图是圆心在(0.5, 0), 半径为0.5的半圆 (
见图5-12)。 对数幅频特性和相频特性为

线性系统的频率响应分析

线性系统的频率响应分析

实验名称:线性系统的频率响应分析系专业班姓名学号授课老师预定时间实验时间实验台号一、目的要求1.掌握波特图的绘制方法及由波特图来确定系统开环传函。

2.掌握实验方法测量系统的波特图。

二、原理简述1.频率特性当输入正弦信号时,线性系统的稳态响应具有随频率( ω由0 变至∞) 而变化的特性。

频率响应法的基本思想是:尽管控制系统的输入信号不是正弦函数,而是其它形式的周期函数或非周期函数,但是,实际上的周期信号,都能满足狄利克莱条件,可以用富氏级数展开为各种谐波分量;而非周期信号也可以使用富氏积分表示为连续的频谱函数。

因此,根据控制系统对正弦输入信号的响应,可推算出系统在任意周期信号或非周期信号作用下的运动情况。

2.线性系统的频率特性系统的正弦稳态响应具有和正弦输入信号的幅值比和相位差随角频率(ω由0 变到∞) 变化的特性。

而幅值比和相位差恰好是函数的模和幅角。

所以只要把系统的传递函数,令,即可得到。

我们把称为系统的频率特性或频率传递函数。

当由0 到∞变化时,随频率ω的变化特性成为幅频特性,随频率的变化特性称为相频特性。

幅频特性和相频特性结合在一起时称为频率特性。

3.频率特性的表达式(1) 对数频率特性:又称波特图,它包括对数幅频和对数相频两条曲线,是频率响应法中广泛使用的一组曲线。

这两组曲线连同它们的坐标组成了对数坐标图。

对数频率特性图的优点:①它把各串联环节幅值的乘除化为加减运算,简化了开环频率特性的计算与作图。

②利用渐近直线来绘制近似的对数幅频特性曲线,而且对数相频特性曲线具有奇对称于转折频率点的性质,这些可使作图大为简化。

③通过对数的表达式,可以在一张图上既能绘制出频率特性的中、高频率特性,又能清晰地画出其低频特性。

(2) 极坐标图(或称为奈奎斯特图)(3) 对数幅相图(或称为尼柯尔斯图)本次实验中,采用对数频率特性图来进行频域响应的分析研究。

实验中提供了两种实验测试方法:直接测量和间接测量。

直接频率特性的测量用来直接测量对象的输出频率特性,适用于时域响应曲线收敛的对象(如:惯性环节)。

自动控制原理 第五章 频率法

自动控制原理 第五章 频率法

频率特性
在稳态下输出:e2 = E2Sin(wt +υ ) 仍是正弦信号, 频率不变, 幅值和相角发生变化. 变化与w有关. 1/jwC 1 写成矢量形式:e2 = ————— e1 = ———— e1 R + 1/jwC 1+jwRC e2 1
-— = ———— e1 1+jwRC
与电路参数RC有关、与输入电压的频率有关
自动控制原理
蒋大明
幅相特性与传递函数之间的关系
输出输入的振幅比(幅频特性): A(w) = Ac/Ar = | G(jw)| = G(S) | 输出输入的相位差(相频特性): υ (w) = υ - 0 =∠G(jw) =∠G(S) | 所以:G(jw) = G(S)|S=jw 频率特性 传递函数 证毕
自动控制原理
蒋大明
一阶不稳定环节
一阶不稳定环节的对数幅频特性与惯性环节的完全一样;相频则有所 不同,是在-180至-90范围内变化.
L ( )
0 -20
1
10

(a )
( )
0o
90o

(b)
180o
图5-20 一阶不稳定环节 的对数频率特性
自动控制原理
蒋大明
时滞环节
传递函数: G(S) = e-τ
S
幅相频率特性:
G(jw) = e-jτ
A(w) = 1 υ (w) = -τ w
w
自动控制原理
蒋大明
时滞环节
对数频率特性: L(w) = 20 lg A(w) = 20lg 1 = 0 υ (w) = -τ w
(横坐标对数分度,曲线)
自动控制原理
蒋大明
第三节
1.

频率响应分析法

频率响应分析法

频率响应分析法5.1 频率特性的基本概念 5.1.1频率特性的定义5.1.2频率特性和传递函数的关系 5.1.3频率特性的图形表示方法 5.2 幅相频率特性(Nyquist 图) 5.2.1典型环节的幅相特性曲线 5.2.2开环系统的幅相特性曲线 5.3 对数频率特性(Bode 图) 5.3.1典型环节的Bode 图 5.3.2开环系统的Bode 图5.3.3最小相角系统和非最小相角系统 5.4 频域稳定判据 5.4.1奈奎斯特稳定判据5.4.2奈奎斯特稳定判据的应用 5.4.3对数稳定判据 5.5 稳定裕度5.5.1稳定裕度的定义 5.5.2稳定裕度的计算5.6 利用开环频率特性分析系统的性能5.6.1)(ωL 低频渐近线与系统稳态误差的关系 5.6.2)(ωL 中频段特性与系统动态性能的关系5.6.3)(ωL 高频段对系统性能的影响 5.7 闭环频率特性曲线的绘制 5.7.1用向量法求闭环频率特性 5.7.2尼柯尔斯图线5.8 利用闭环频率特性分析系统的性能 5.8.1闭环频率特性的几个特征量 5.8.2闭环频域指标与时域指标的关系 引言频率响应法的特点1)由开环频率特性→闭环系统稳定性及性能 2)二阶系统频率特性↔时域性能指标 高阶系统频率特性↔时域性能指标3)物理意义明确许多元部件此特性都可用实验法确定工程上广泛应用 4)在校正方法中,频率法校正最为方便 5.1频率特性的基本概念1.定义1: ()sin ()()2. ()()3. ()()ss r t A t c t r t G s s j G j c t r t ωωω=⎧⎪=⎨⎪⎩时,与的幅值比,相角差构成的复数中,令得出为频率特性的富氏变换与的富氏变换之比一、 地位:三大分析方法之一二、 特点:1)2)()3)⎧⎪→⎨⎪⎩图解法,简单不直接解闭环根,从开环闭环特征特别适用于校正,设计近似法,不完全精确以右图R -C 网络为例:r cc r c c u iR u i Cu q u CuR u =+↓===+ ()(1)r c U s CRs U =+⋅ ()1()()1T CR c r U s G s U s Ts ===+ 设()sin r u t A t ω=求()c u t22()1tT c A T u t e t t T ωωωω-⎡⎤∴=-⎥+⎦22)1tT A T e t arctg t T ωωωω-=+-+ 瞬态响应稳态响应网络频率特性()()()()()ss ss c r c t G j G j r t G j arctgT ωωωϕϕω⎧⎪⎪===⎨⎪⎪∠=-=-⎩幅频特性:相频特性频率特性定义一:——频率特性物理意义:频率特性()G j ω是当输入为正弦信号时,系统稳态输出(也是一个与输入同频率的正弦信号)与输入信号的幅值比,相角差。

【实验报告】频率响应测试

【实验报告】频率响应测试

实验名称:频率响应测试课程名称:自动控制原理实验目录(一)实验目的3(二)实验内容3(三)实验设备3(四)实验原理4(五)K=2频率特性试验结果4(六)K=2频率特性试验数据记录及分析7(七)K=5频率特性试验结果9(八)K=5频率特性试验数据记录及分析12(九)实验总结及感想错误!未定义书签。

图片目录图片1 系统结构图3图片2 系统模拟电路3图片3 K=2仿真对数幅相特性曲线4图片4 K=5仿真对数幅相特性曲线4图片5 f=0.7时输出波形及李沙育图形5图片6 f=1.4时输出波形及李沙育图形5图片7 f=2.1时输出波形及李沙育图形5图片8 f=2.8时输出波形及李沙育图形5图片9 f=3.5时输出波形及李沙育图形6图片10 f=4.2时输出波形及李沙育图形6图片11 f=4.9时输出波形及李沙育图形6图片12 f=5.6时输出波形及李沙育图形6图片13 f=6.3时输出波形及李沙育图形7图片14 f=7.0时输出波形及李沙育图形7图片15 k=2拟合频率特性曲线9图片16 f=0.9波形及李沙育图形9图片17 f=1.8波形及李沙育图形10图片18 f=2.7波形及李沙育图形10图片19 f=3.6波形及李沙育图形10图片20 f=4.5波形及李沙育图形10图片21 f=5.4波形及李沙育图形11图片22 f=6.3波形及李沙育图形11图片23 f=7.2形及李沙育图形11图片24 f=8.1波形及李沙育图形11图片25 f=9.0波形及李沙育图形12图片26 k=2拟合相频特性曲线14图表目录表格1 K=2电路元件参数7表格2 K=2实测电路数据处理7表格3 K=5电路元件参数12表格4 K=5实测电路数据处理12频率响应测试(一) 实验目的1. 掌握频率特性的测试原理及方法。

2. 学习根据所测定出的系统的频率特性,确定系统传递函数的方法。

(二) 实验内容测定给定环节的的频率特性,系统模拟电路、结构图分别如下所示:图片1系统结构图由图可知,系统的传递函数为:2100()10100k G s s s k =++,其中1Rk R =,实验中R 的取值分别为200k Ω,500k Ω,且1R 始终为100k Ω。

《对数频率特性》课件

《对数频率特性》课件

表示信号在传输过程中产生的相位偏移。
带宽参数则表示系统能够处理的信号频率范围,这些参数对于
03
理解和优化系统性能至关重要。
数学模型的适用范围
01
对数频率特性数学模型适用于 描述和分析各种类型的电子系 统和信号处理系统,如音频处 理、通信、雷达等。
02
该模型尤其适用于分析具有非 线性或非平坦频率响应的系统 ,这些系统在常规的线性频率 坐标系下难以准确描述。
优缺点对比分析
• 对数频率特性的优点主要在于其能够 提供较大的动态范围和接近人耳的感 知特性,使得音频信号的还原更加真 实和平衡。然而,其缺点在于可能会 产生非线性失真,不易于控制,并且 可能不适合所有应用场景。在选择使 用对数频率特性时,需要根据实际需 求进行权衡和考虑。
05 对数频率特性的未来发展
分析该对数频率特性,可以发现系统在低频段增益较高,而 在高频段增益迅速下降,具有良好的低通滤波器特性。
02
03
动态范围大
对数频率特性能够提供较 大的动态范围,使得音频 信号在低频和高频之间的 变化更加平滑。
接近人耳感知
对数频率特性与人耳的感 知特性较为接近,因此能 够更好地还原声音的真实 感。
计算步骤
01
确定系统的频率响应函数$H(f )$。
02 对$H(f)$取对数,得到对数频率特性$L(f)$。
03 分析$L(f)$的特性,如最大值、最小值、转折点 等,以了解系统在不同频率下的性能。
计算实例
假设一个系统的频率响应函数为$H(f) = 10 times frac{1}{10^3 + f^2}$,则其对应的对数频率特性为$L(f) = log(10 times frac{1}{10^3 + f^2})$。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

频率响应示例之二――对数频率特性
一、绘制下列传递函数的对数幅频渐近特性曲线
)110)(1(200
)(2++=s s s s G 解:开环系统由以下典型环节组成:
2200
,11+s , 1
101+s 1
101+s 的转折频率为ω1
1+s 的转折频率为ω2因为2=m ,
K =200>1,L a )(0ω绘制频段1ωω> k ,1,11.0221=≤==<≤=ωωωωω
2003年
4.(10分/150分)已知单位反馈系统的开环传递函数为
)
164)(12()1.0(16)(22+++++=
s s s s s s s G ,试绘制对数幅频特性渐近线 解: dB
k s s s s s s s s s s s s s G n n 201.0lg 20lg 2011,4,1,1.0)116416)(12()110(1.0)164)(12()1.0(16)(323212222−========+++++=+++++=
时,转折频率为:ωζζωωω
2000年
4.(10分/70分)系统的对数幅频特性如图所示,据此写出该系统相应的传递函数。

解:图中兰色是解题时作的辅助线及环节示意
将对数幅频特性曲线进行分解,从左依次向右可得到系统所包含的开环环节为: K ,111+s T ,12+s T ,113+s T ;其中:2.011=T ;112=T ;1013
=T 故:51=T ;12=T ;1.03=T ;又因 20lgK =20,故K =10
所以,系统的传递函数:)
11.0)(15()1(10)(+++=s s s s G
w (1/sec ) db 20lg|G|
1996年
三、2.(10分/60分)系统的对数幅值曲线如图所示。

试推导:系统的传递函数。

解:图中兰色是解题时作的辅助线及环节示意
将对数幅频特性曲线进行分解,从左依次向右可得到如图辅助所示的环节
⋅s
T 11⋅+12s T ⋅+13s T ⋅+114s T ⋅+115s T 116+s T 其中:811=T ;212=T ;413=T ;814=T ;2415=T ;3616
=T 故:125.01=T ;5.02=T ;25.03=T ;125.04=T ;04.05=T ;03.06=T 所以,系统的传递函数:
)
103.0)(104.0)(1125.0()125.0)(15.0(8)(+++++=s s s s s s s G
由已知的Bode 图求对象的传递函数小结:
1. 根据给出的渐近线,先找出基本的环节与各转折频率――求出时间常数,若有二阶
环节,还需要求出ζ值。

2. 根据给出的低频段渐近线斜率等条件,共有三种方法可求出未知的Km 值:
(1) 由低频具体的频率ω1与Lm (ω1),可求――如上一题;
(2) 由某渐近线段或其延长线在ω=1时的LmG(j ω)值,因为Lm(1)=20logK ; (3) 对1型系统,渐近线段或其延长线与横坐标(0db 线)相交的频率ωx =K 1;对2
型系统,渐近线段或其延长线与横坐标(0db 线)相交的频率ω2y =K 2 。

1.。

相关文档
最新文档