初二数学证明含答案_证明题有过程
初二下册数学证明题及答案

D
A ( 1)求证: BG FG;
(2)若 AD DC 2,求 AB 的长.
B
G
C
E
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 1 / 48
精品文档
二:如图,已知矩形 ABCD,延长 CB 到 E,使 CE=CA,连结 AE 并取中点 F,连结 AE 并取中点 F,连结 BF、DF,求证 BF ⊥ DF。
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 4 / 48
精品文档 k 的图象过点 D,则其 x
于点 F, 一:解:( 1
, DE⊥ AC ABC 90°
ABC AFE.
A AC AE EAF
CAB,
ABC≌△ AFE AB AF. 连接 AG,
AG= AG,AB= AF, B D F
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 10 / 48
G
E 篇二 : 《初二数学下册证明题 ( 中等难题 _含答案 ) 》
一.计算题
21
66 ( 6)6
(6x
40 39(简便计算)
4)(3x
2)
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 7 / 48
精品文档 33
( a b)( a b)
(a
(a b c)2
b c)(a b c)
六、 (6 分 ) 、如图, P 是正方形 ABCD对角线 BD上一点, PE ⊥DC,PF⊥ BC,E、F 分别为垂足, 若 CF=3,CE=4,求 AP的长 .
七、 (8 分 ) 如图,等腰梯形 ABCD中, AD∥ BC,M、 N 分别是 AD、 BC的中点, E、 F 分别是 BM、
初二数学证明试题答案及解析

初二数学证明试题答案及解析1.如图的算式中字母ABC分别表示各不相同的一个数字,则B= .【答案】6【解析】利用竖式左侧5+5+9=19,结果下面为1,也就是前面7+8+B相加后进位是2,故C=2,2+4+4=10,则7+8+B=21.解:∵竖式左侧5+5+9=19,结果下面为1,∴C=2,∵2+4+4=10,应进位1,∴7+8+1+B=22,∴B=6.故答案为:6.点评:此题主要考查了推理与论证,根据加法法则分别分析得出C的值是解题关键.2.元旦联欢会上,林老师跟同学们玩猜匣游戏,礼物放在一只匣子中,谁猜中谁就可以得到这个礼物.三只匣子上都各有一句话.红匣子:礼物不在黄匣中;黄匣子:礼物不在此匣中;绿匣子:礼物在此匣中.林老师向同学们交了底:这三句话中,至少有一句是真的,而且至少有一句是假的.你猜猜看,礼物放在匣子中.【答案】红【解析】根据这三句话中,至少有一句是真的,而且至少有一句是假的,可以分别分析假设正确与否得出答案.解:根据红匣子:礼物不在黄匣中;黄匣子:礼物不在此匣中可以认为是对的,则绿匣子:礼物在此匣中,可以认为是错的.所以答案就是在红匣子.故答案为:红.点评:此题主要考查了推理论证,根据已知假设命题的真伪是解题关键.3.小明同学每天早上6:00钟起床,穿衣需要5min,煮早饭需要7min,他洗脸刷牙需要5min,吃早饭需要8min,吃完早饭就去上学,小明同学从开始起床到吃完早饭仅需要min.【答案】18【解析】本题需先根据题意得出最节省时间的方法,然后即可求出最少需要多少时间.解:小明起床后先煮饭需要7分钟,在煮饭的同时穿衣服需要5分钟、再刷牙需要5分钟,这时饭已煮完,在吃早饭需要8分钟所以小明同学从开始起床到吃完早饭仅需要18分钟.故答案为18.点评:本题主要考查了推理与论证,在解题时要注意统筹方法的应用.4.甲乙两个布袋中各有12个大小一样的小球,且都是红、白、蓝各4个.从甲袋中拿出尽可能少且至少两个颜色一样的球放入乙袋中,再从乙袋中拿出尽可能少的球放入甲袋中,使甲袋中每种颜色的球不少于3个,这时甲袋中有个球,乙袋中有个球(拿出时不能看).【答案】19球,5球【解析】注意满足题中的要求:从甲袋中拿出尽可能少且至少两个颜色一样的球放入乙袋中,则从甲袋拿出最少要4个;再从乙袋中拿出尽可能少的球放入甲袋中,使甲袋中每种颜色的球不少于3个,则最少要拿11个,据此求解.解:从甲袋拿出最少要4个,才可以保证至少有两个颜色一样的球.不妨设是白球拿了两个,红蓝各拿了一个,现在乙袋中有5红,5蓝,6白,一袋中有3红3蓝2白;再从乙袋中拿球保证至少有一个白球就可以保证一袋每种颜色球都不少于3个,而乙袋5红,5蓝,6白,保证至少拿到一个白球,最少要拿11个,即刚好是5红,5蓝,1白.这样最后甲袋有12﹣4+11=19球,乙袋12+4﹣11=5球.点评:解决问题的关键是读懂题意,尽量满足题中的要求,即是求解的途径.5.如图,电路中有4个电阻和一个电流表A,若没有电流通过电流表A,问电阻器断路的可能情况共有种.【答案】8+3=11种【解析】要使没有电流通过电流表A,则若总路上的电阻是断开的,其它的三个电阻无论是断开,还是通的都可以,共有23=8种情况;若总路上的电阻是通的,则每一个支路都不能是通的,所以下面的电阻一定是断开的,上面的两个电阻只要有一个是断开的即可,有3种情况.故共有11种情况.解:本题分两种情况:①若主路的电阻不通,那么这个电路必为断路.因此共有2×2×2=8种可能;②若主路的电阻通电,那么两条支路必须同时为断路,因此共有3种可能.故电阻器断路的可能情况共有8+3=11种.点评:此题的学科综合性较强,能够结合物理中的知识进行分析求解是解答本题的关键.6.有一地球同步卫星A与地面四个科研机构B、C、D、E,它们两两之间可以互相接发信息,由于功率有限,卫星及每个科研机构都不能同时向两处发送信息(如A不能同时给B、C发信息,它可先发给B,再发给C),它们彼此之间一次接发信息的所需时间如右图所示.则一个信息由卫星发出到四个科研机构都接到该信息时所需的最短时间为.【答案】4【解析】首先卫星A传递信息给B用时1(秒),然后B传给C(3秒);同时卫星传给E(1秒),信息传给D和C的时候同时进行,所有动作在4秒钟内结束.解:开始的时候,时间0秒,卫星传给B(1秒)第1秒钟时候,B传给C(3秒);同时卫星传给E(1秒),第2秒钟的时候,E传给D,所有动作在4秒钟内结束,故接到该信息时所需的最短时间为4秒,故答案为4.点评:本题主要考查推理与论证的知识点,解答本题的关键是注意卫星传递信息的同时性,此题难度不大.7.某学生连续观察了n天的天气情况,观察结果是:①共有5个下午是晴天;②共有7个上午是晴天;③共有8个半天是雨天;④下午下雨的那天上午是晴天,则该学生观察的天数n= .【答案】10【解析】他们每天上午、下午各测一次,七次上午晴,五次下午晴,共下八次雨,所以共测了20次,所以这个学生工观察了10天.解:由题意,知:这位学生每天测两次,总共测的次数为7+5+8=20;因此x=20÷2=10(天).故答案为:10.点评:此题主要考查了推理论证,解决本题的关键是得到学生观察天气的规律:每天上午、下午各测一次.8.为了从500只外形相同的鸡蛋中找到唯一的一只双黄蛋,检查员将这些鸡蛋按1﹣500的顺序排成一列,第一次先从中取出序号为单数的蛋,发现其中没有双黄蛋,他将剩下的蛋的原来位置上又按1﹣250编号(即原来的2号变为1号,原来的4号变成2号,…,原来的500号变成250号).又从中取出新序号为单数的蛋进行检查,任没有发现双黄蛋,…,如此下去,检查到最后的一个是双黄蛋,问这只双黄蛋最初的序号是.【答案】256【解析】根据题意,知第一次剩下的是原来编号中的偶数,有250个,第二次剩下的4的倍数,即22的倍数,剩下125个,第三次剩下的是23的倍数,剩下62个,以此类推,最后剩下1个,则需取8次,即剩下28=256.解:根据分析,知最后剩下的是号是28=256.点评:此题要能够正确分析每一次取走的是原来的什么号数以及每一次剩下的个数.9.甲、乙、丙、丁和小强五位同学单循环比赛象棋,到现在为止甲已经赛了四盘,乙赛了三盘,丙赛了二盘,丁赛了一盘,则小强赛了盘.【答案】2【解析】根据甲赛的盘数,可知甲与乙、丙、丁和小强4人各赛了一盘.然后探究乙、丙、丁和小强4人之间赛的盘数(设小强赛的盘数为x),进而得到小强赛的总盘数.解:乙、丙、丁和小强除去与甲赛的一盘后,在他们之间赛的盘数分别是:2、1、0、x.即丁只和甲赛了一盘,没与乙、丙、小强比赛,则乙、丙、小强之间赛的盘数分别为2、1、x,假设丙与小强赛了一盘,那么乙赛的两盘都是与小强赛的,这与单循环比赛相矛盾,是不可能的,所以丙与乙赛了一场,乙又与小强赛了一盘,小强与甲也赛了一盘,故小强共赛了2盘.故填2.点评:解决问题的关键是读懂题意,将实际问题转化为数学问题,利用数学知识进行探讨、解答实际问题.10.10位小运动员,他们着装的运动服号码分别是1﹣10,能否将这10位运动员按某种顺序站成一排,使得每相邻3名运动员号码数之和都不大于15?【答案】不可能【解析】首先计算所有的号码之和是55,若每相连的3个号码数都不大于15,则前9个号码数的和不大于3×15=45,这样导致第10个号码必须为10;同理,后9个号码的和不大于45,可得出第一个号码必须为10,显然这是不可能的.解:不能.理由如下:因为所有号码的总和为55,如果每相连的3个号码数都不大于15,则前9个号码数的和不大于3×15=45,故第10个号码数不小于10,即只能为10.同理,后9个号码数的和不大于45,故第1个号码数不小于10,因此,也必须为10,显然这是不可能的.点评:解决本题的关键是能够根据总数的和以及每相连的3个号码数都不大于15,进行综合分析.11.问:在8×8的国际象棋盘上最多可以放多少个“+”字形(其中每个“+”字形占据棋盘的5个小方格),使得任意两个“+”字形不重叠,且每个“+”字形都不超出棋盘的边界?证明你的结论.【答案】8个【解析】本题可根据小“+”字形的中心来求,那么小“+”字形的中心应该在6×6的方格中,每3×3的方格中最多可放2个因此“+”字形的最多的个数为8个. 解:8个.证明:设“+”字形的中心为中间的那个方格,显然所有的中心在6×6的方格内,而每个3×3的方格内最多放2个中心, 6×6的棋盘内够有3×3的个数为6×6÷(3×3)=4, 因此最多的个数应该是4×2=8个.点评:解决问题的关键是读懂题意,找到所求的量的等量关系.12. 10名棋手参加比赛,规定:每两名棋手间都要比赛一次,胜者得2分,下和各得1分,输者得0分.比赛结果表明:棋手们所得分数各不相同,前两名棋手没输过,前两名的总分之和比第三名多20分,第四名得分与后四名得分总和相等,那么前六名得分分别是多少? 【答案】17,16,13,12,11,9【解析】先设第k 名选手的得分为a k (1≤k≤10),得出a 1、a 2的值,再根据得出a 4≥12,求出a 3,再根据a 1≤a 3﹣1=12,求出a 4,最后根据a 1+a 2+a 3+…a 8+a 9+a 10=90分别求出a 5、a 6的值.解:设第k 名选手的得分为a k (1≤k≤10),依题意得:a 1>a 2>a 3>…a 9>a 10a 1≤1+2×(9﹣1)=17,a 2≤a 1﹣1=16,a 3+20=a 1+a 2,∴a 3≤13 ①,又后四名棋手相互之间要比赛=6场,每场比赛双方的得分总和为2分,∴a 7+a 8+a 9+a 10≥12,∴a 4≥12而a 3≥a 4+1≥13,②∴由①②得:a 3=13,∴a 1+a 2=33,∴a 1=17,a 2=16,又∵a 1≤a 3﹣1=12,∴a 4=12, ∵a 1+a 2+a 3+…a 8+a 9+a 10=×2=90,∴17+16+13+12+a 5+a 6+12=90,而a 5+a 6≤a 5+a 5﹣1,即:a 5≥10\frac{1}{2},又a5<a 4=12, ∴a 5=11,a 6=9,故前六名得分分别是:17,16,13,12,11,9.点评:本题考查了推理与论证;解决问题的关键是读懂题意,找到所求的量的等量关系是解题的关键.13. 我们的数学教材中有一个“抢30的游戏”,现在改为“甲、乙二人抢20”的游戏.游戏规则是:甲先说“1”或“1、2”乙接着甲的数往下说一个或两个数,然后又轮到甲再接着乙的数往下说一个或两个数,甲、乙反复轮流说,每次每人说一个或两个数都可以,但不能连续说三个数,也不能一个数也不说.谁先抢到20,谁就获胜.因为甲先说,你认为谁会获胜?请你分析获胜策略、推理说明获胜的道理. 【答案】第一个人必胜【解析】第一个人可以两个两个的说,也可以一个一个的说,还可以有时说一个,有时说两个,但不论第二个人怎样变化,2,5,8,11,17,20这些数的主动权都在第一个人手中. 解:第一个人必胜;因为是第一个人先说,所以主动权在第一个人,他肯定按2,5,8,11,17,20,报数,故第一个人必胜.点评:此题考查的知识点是推理与论证,解答此题需要逆向思维,因为是抢20,故应先从20倒推,20,17,11,8,5,2的顺序.14. 成都七中学生网站是由成都七中四大学生组织共同管理的网站,该网站是成都七中历史上首次由四大学生组织共同合作建成的一个学生网站,其内容囊括了成都七中学生学习及生活的各个方面.某学生在输入网址“http :∥www .cdqzstu .com”中的“cdqzstu .com”时,不小心调换了两个字母的位置,则可能出现的错误种数是( ) A .90 B .45 C .88 D .44【答案】D【解析】“cdqzstu .com”中字母有10个.相同字母有2个.若第一个错误的字母是第一个字母c ,那么c 和它后面除c 外任何一个字母调换后都可能出现错误,则错误的种类可能有8种.若第1个错误的字母是第二个字母d ,排除和第一个字母已经计算过的错误后,可能出现的错误应该有8种,按照此种方法,错误的种类依次为:7,6,5,4,3,2,1;共有:16+7+6+5+4+3+2+1=44种.解:“cdqzstu.com”中共有10个字母;若c与后面的字母分别调换,则有:10﹣1=9种调换方法;依此类推,调换方法共有:9+8+7+…+1=45种;由于10个字母中,有两个字母相同,因此当相同字母调换时,不会出现错误.因此出现错误的种数应该是:45﹣1=44种.故选D.点评:解答本题时需注意:相同字母调换后结果不会出现错误.15.图中小圆圈表示网络的结点,结点之间的连接表示它们有网线相连,相连标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,若信息可以分开沿不同路线同时传递,则单位时间内传递的最大信息量为()A.11B.10C.8D.7【答案】C【解析】先找出从结点A向结点B传递信息可沿A﹣C﹣B和A﹣D﹣B路线同时传递,再找出每条路线通过的最大信息量,然后相加即可得到答案.解:由于信息可以分开沿不同路线同时传递,所以从结点A向结点B传递信息可经过结点D和结点B;又因为从结点A到结点D的最大信息量为5,从结点C到结点B的最大信息量为3,所以从结点A向结点B传递信息,若信息可以分开沿不同路线同时传递,则单位时间内传递的最大信息量为5+3=8.故选C.点评:本题考查了推理与论证的方法:先分析题目所给的条件或要求,然后通过推理得到相关的结论.16.在一次1500米比赛中,有如下的判断:甲说:丙第一,我第三;乙说:我第一,丁第四;丙说:丁第二,我第三.结果是每人的两句话中都只说对了一句,则可判断第一名是()A.甲B.乙C.丙D.丁【答案】B【解析】假设甲说的前半句话是正确的,即丙第一,则乙的后半句是正确的,即丁第四,则丙说的后半句应是正确的,出现矛盾,所以必须是甲说的后半句是正确的,即甲第三,所以丙说的前半句是正确的,即丁第二,所以乙说的前半句是正确的,即乙第一.解:根据分析,知第一名应是乙.故选B.点评:此类题应从假设出发,经过推理,如果得到矛盾,则假设错误,再进一步推理即可.17.某市初中12支排球队进行比赛,如果采用单循环赛制,一共举行几场比赛()A.11B.12C.66D.72【答案】C【解析】一共有12支球队,每支队伍要比赛的场数为11场,因此共需比赛(12×11)场,由于采用单循环赛制,因此需将重复的比赛场数去掉,即比赛的场数为(12×11)÷2=66场.解:由于采用单循环赛制,则一共举行的比赛场数为:(12×11)÷2=66(场).故选C.点评:解答本题的关键是理解单循环赛的规则,即:每两个队只比赛一场.18.用锯锯木,锯会发热;用锉锉物,锉会发热;在石头上磨刀,刀会发热,所以物体摩擦会发热.此结论的得出运用的方法是()A.观察B.实验C.归纳D.类比【答案】C【解析】由多种现象得到一个规律属于归纳.解:由多种现象得到一个规律属于归纳.故选C.点评:本题考查归纳的形成.所谓归纳,是指通过对特例的分析来引出普遍结论的一种推理形式.它由推理的前提和结论两部分构成:前提是若干已知的个别事实,是个别或特殊的判断、陈述,结论是从前提中通过推理而获得的猜想,是普遍性的陈述、判断.19.甲、乙、丙、丁四位同学猜测自己的数学成绩,甲说:“如果我得优,那么乙也得优”;乙说:“如果我得优,那么丙也得优”;丙说:“如果我得优,那么丁也得优”,大家都没有说错,但只有三个人得优,请问甲、乙、丙、丁中谁没有得优()A.甲B.乙C.丙D.丁【答案】A【解析】此题含有一个隐含条件,也就是丁没有说:如果我得优,那么甲也得优…解题可以从这里突破.也就是丁得优,而甲不得优.由此进行推理即可得到结论.解:∵这个题还有一个隐含条件,也就是丁没有说:如果我得优,那么甲也得优…,也就是丁得优,而甲不得优.如果甲不得优,乙可得可不得优;如果乙不得优,而丁可以得优也可以不得优;如果丁一定要得优,因为题中说有3人得优,所以按反推法,有丙也得优;如果问题是1人得优,那肯定是丁,如果2人得优,那肯定是丁、丙.如果3人得优,那肯定是丁、丙、乙.故选A.点评:此题比较麻烦,首先要找出题目的隐含条件,然后利用隐含条件进行推理才能正确得出结论.20. A、B、C、D、E五支球队进行单循环比赛(每两支球队间都要进行一场比赛),当比赛进行到一定阶段时,统计A、B、C、D四个球队已赛过的场数,依次为A队4场,B队3场,C队2场,D队1场,这时,E队已赛过的场数是()A.1B.2C.3D.4【答案】B【解析】首先利用已知得出A队必须和B、C、D、E这四个球队各赛一场,进而得出B队只能和C、D、E中的两个队比赛,再利用D队只赛过一场,得出B队必须和C、E各赛1场,即可得出E队赛过2场.解:A、B、C、D、E五支球队进行单循环比赛,已知A队赛过4场,所以A队必须和B、C、D、E这四个球队各赛一场,已知B队赛过3场,B队已和A队赛过1场,那么B队只能和C、D、E中的两个队比赛,又知D队只赛过一场(也就是和A队赛过的一场),所以B队必须和C、E各赛1场,这样满足C队赛过2场,从而推断E队赛过2场.故选:B.点评:此题主要考查了推理论证,利用A队比赛场数得出B队、D队比赛过的对应球队是解题关键.。
初二数学第一章全等三角形证明经典例题(含答案)

初二数学全等三角形证明经典例题1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD第1题图 第2题图 第3题图2、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23、已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC第4题图 第5题图 第6题图4、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C5、已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE6、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD7、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C第7题图 第8题图 第9题图8、 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
求证:BC=AB+DC 。
9、已知:AB=CD ,∠A=∠D ,求证:∠B=∠C第10题图 第11题图 第12题图10、P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB11、已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BEF A E D C B PD A CB C D B AD B C B A C D F 2 1E ABC D E F 21 AD B CA B C D A12、已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC第13题图 第14题图 第15题图 第16题图13、如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .14、.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA15、如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .16.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,(1)求证:△AED ≌△EBC .(2)在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):17.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .第17题图 第18题图 第19题图 第20题图18、如图:DF=CE ,AD=BC ,∠D=∠C 。
中考复习初中数学几何证明经典试题(含答案)

初中几何证明题经典题(一)1、已知:如图,0是半圆的圆心,C、E是圆上的两点,CD丄AB , EF丄AB , EG丄CO. 求证:CD = GF .(初二).如下图做GH丄AB,连接EO。
由于GOFE四点共圆,所以/ GFH =Z OEG, 即厶GHFOGE,可得EO = GO = CO,又CO=EO,所以CD=GF 得证。
GF GH CD2、已知:如图,P是正方形ABCD内点,/ PAD =Z PDA = 15°. 求证:△ PBC是正三角形.(初二)3、如图,已知四边形ABCD、A i B i C i D i都是正方形,A2、B2、C2、D2分别是AA i、BB i、CC i、DD i的中点.及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP = AQ .(初二)3、如果上题把直线 MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN P 、Q .4、 1、求证:四边形 A 2B 2C 2D 2是正方形.(初二)已知: 求证: 如图,在四边形 的延长线交 / DEN = Z△ ABC 中, MN F .ABCD 中,AD = BC , M 、N 分别是 AB 、CD 的中点,AD 、BC 于E 、F .经典题(二)已知: (1) 求证:AH = 20M ;(2) 若/ BAC = 60°,求证:H 为垂心 (各边高线的交点),0为外心,且 0M 丄BC 于M . AH = A0 .(初二)2、设MN 是圆O 外一直线,过O 作OA 丄MN 于A ,自A 引圆的两条直线,交圆于DCGN求证:AP = AQ .(初二)ECAM NP4、如图,分别以厶 ABC 的AC 和BC 为一边,在△ ABC 的外侧作正方形 ACDE 和正方形 CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于 AB 的一半.(初二)经典题(二)1、如图,四边形 ABCD 为正方形, 求证:CE = CF .(初二)2、如图,四边形 ABCD 为正方形,DE // AC ,且CE = CA ,直线EC 交DA 延长线于F . 求证:AE = AF .(初二)DE // AC , AE = AC , AE 与 CD 相交于 F .FEAD1、设P 是边长为1的正△ ABC 内任一点,4、如图,PC 切圆0于C , AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于3、设ABCD 为圆内接凸四边形,求证: AB • CD + AD • BC = AC • BD .(初三)B 、D .求证: AB = DC , BC = AD .(初三)1、已知:△ ABC 是正三角形,P 是三角形内一点 求:/ APB 的度数.(初二)2、设P 是平行四边形 ABCD 内部的一点,且/求证:/ PAB = Z PCB .(初二)4、平行四边形 ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且AE = CF .求证:/ DPA =Z DPC .(初二)AO DB EFC求证:4、如图,△ ABC 中,/ ABC =Z ACB = 80°, D、E 分别是AB、AC 上的点,/ DCA = 30°, / EBA = 20°,求/ BED 的度数. LiB C经典题(一)1•如下图做GH丄AB,连接E0。
初中数学证明题练习5套(含答案)

初中数学证明题练习5套(含答案)(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF .(初二)证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG∴FG EO =HGGO∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD ∴CD CO HG GO = ∴CD CO FG EO = ∵EO=CO ∴CD=GF 2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。
求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15°∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15°∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD∴△BAP ≌∠CDP ∴∠BPA=∠CPD∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75°∴∠BPC=360°-75°×4=60°∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .证明:连接AC ,取AC 的中点G,连接NG 、MG ∵CN=DN ,CG=DG∴GN ∥AD ,GN=21AD∴∠DEN=∠GNM ∵AM=BM ,AG=CG∴GM ∥BC ,GM=21BC∴∠F=∠GMN ∵AD=BC ∴GN=GM∴∠GMN=∠GNM ∴∠DEN=∠F(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G∵OG ⊥AF ∴AG=FG ∵AB ⌒ =AB⌒ ∴∠F=∠ACB又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD∴BH=BF 又AD ⊥BC ∴DH=DF∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC∴∠BOM=21∠BOC=60°∴∠OBM=30°∴BO=2OM由(1)知AH=2OM ∴AH=BO=AO2、设MN 是圆O 外一条直线,过O 作OA ⊥MN 于A ,自A 引圆的两条割线交圆O 于B 、C 及D 、E ,连接CD 并延长交MN 于Q ,连接EB 并延长交MN 于P. 求证:AP =AQ .证明:作点E 关于AG 的对称点F ,连接AF 、CF 、QF ∵AG ⊥PQ ∴∠PAG=∠QAG=90°又∠GAE=∠GAF ∴∠PAG+∠GAE=∠QAG+∠GAF 即∠PAE=∠QAF∵E 、F 、C 、D 四点共圆 ∴∠AEF+∠FCQ=180° ∵EF ⊥AG ,PQ ⊥AG ∴EF ∥PQ∴∠PAF=∠AFE ∵AF=AE∴∠AFE=∠AEF ∴∠AEF=∠PAF ∵∠PAF+∠QAF=180° ∴∠FCQ=∠QAF ∴F 、C 、A 、Q 四点共圆 ∴∠AFQ=∠ACQ 又∠AEP=∠ACQ ∴∠AFQ=∠AEP3、设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)证明:作OF ⊥CD 于F ,OG ⊥BE 于G ,连接OP 、OQ 、OA 、AF 、AG ∵C 、D 、B 、E 四点共圆 ∴∠B=∠D ,∠E=∠C ∴△ABE ∽△ADC∴DF BG FD 2BG 2DC BE AD AB === ∴△ABG ∽△ADF ∴∠AGB=∠AFD ∴∠AGE=∠AFC ∵AM=AN , ∴OA ⊥MN 又OG ⊥BE ,∴∠OAQ+∠OGQ=180° ∴O 、A 、Q 、E 四点共圆 ∴∠AOQ=∠AGE 同理∠AOP=∠AFC ∴∠AOQ=∠AOP在△AEP 和△AFQ 中 ∠AFQ=∠AEP AF=AE ∠QAF=∠PAE ∴△AEP ≌△AFQ ∴AP=AQ又∠OAQ=∠OAP=90°,OA=OA ∴△OAQ ≌△OAP ∴AP=AQ4、如图,分别以△ABC 的AB 和AC 为一边,在△ABC 的外侧作正方形ABFG 和正方形ACDE ,点O 是DF 的中点,OP ⊥BC 求证:BC=2OP (初二)证明:分别过F 、A 、D 作直线BC 的垂线,垂足分别是L 、M 、N ∵OF=OD ,DN ∥OP ∥FL∴PN=PL∴OP 是梯形DFLN 的中位线 ∴DN+FL=2OP ∵ABFG 是正方形 ∴∠ABM+∠FBL=90° 又∠BFL+∠FBL=90° ∴∠ABM=∠BFL又∠FLB=∠BMA=90°,BF=AB ∴△BFL ≌△ABM ∴FL=BM同理△AMC ≌△CND ∴CM=DN∴BM+CN=FL+DN ∴BC=FL+DN=2OP(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)证明:连接BD 交AC 于O 。
初中数学几何证明经典题(含答案)

初中几何证明题经典题(一)1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF.(初二).如下图做GH⊥AB,连接EO.由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE ,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。
2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.求证:△PBC是正三角形.(初二)。
如下图做GH⊥AB,连接EO。
由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证。
如下图做GH⊥AB,连接EO.由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得EOGF=GOGH=COCD,又CO=EO,所以CD=GF得证.APCDBAFGCEBOD3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点.求证:四边形A 2B 2C 2D 2是正方形.(初二)4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .经典题(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)D 2 C 2B 2 A 2D 1 C 1 B 1 C B DA A 1 AN FE CDMB· A HEOF2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 引圆的两条直线,交圆于B 、C 及D 、E,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半.(初二经典题(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA,直线EC 交DA 延长线于F .求证:AE =AF .(初二)3、设P 是正方形ABCD 一边求证:PA =PF .(初二)4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线D .求证:AB =DC ,BC =AD .(初三)经典1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC 求:∠APB 的度数.(初二)2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)3、设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD .(初三)4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)经典难题(五)1、 设P 是边长为1的正△ABC 内任一点,L =PA +PB +PC ,求证:≤L <2.2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.C BD A F PD E CB A APCBACPDA CBPD4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.经典题(一)1.如下图做GH⊥AB,连接EO。
初二几何证明题(精选多篇)

初二几何证明题(精选多篇)第一篇:初二几何证明题1如图,在△abc中,d是bc边上的一点,e是ad的中点,过点a作bc的平行线交be的延长线于f,且af=dccf.(1)求证:d是bc的中点;(2)如果ab=acadcf的形状,并证明你的结论aeb第二篇:初二几何证明题初二几何证明题1.已知:如图,在△abc中,ad⊥bc,垂足为d,be⊥ac,垂足为e。
m 为ab中点,联结me,md、ed求证:角emd=2角dac证明:∵m为ab边的中点,ad⊥bc,be⊥ac,∴md=me=ma=mb(斜边上的中线=斜边的一半)∴△med为等腰三角形∵me=ma∴∠mae=∠mea∴∠bme=2∠mae∵md=ma∴∠mad=∠mda,∴∠bmd=2∠mad,∵∠emd=∠bme-∠bmd=2∠mae-2∠mad=2∠dac2.如图,已知四边形abcd中,ad=bc,e、f分别是ab、cd中点,ad、bc的延长线与ef的延长线交于点h、d求证:∠ahe=∠bge证明:连接ac,作em‖ad交ac于m,连接mf.如下图:∵e是cd的中点,且em‖ad,∴em=1/2ad,m是ac的中点,又因为f是ab的中点∴mf‖bc,且mf=1/2bc.∵ad=bc,∴em=mf,三角形mef为等腰三角形,即∠mef=∠mfe.∵em‖ah,∴∠mef=∠ahf∵fm‖bg,∴∠mfe=∠bgf∴∠ahf=∠bgf.3.写出“等腰三角形两底角的平分线相等”的逆命题,并证明它是一个真命题这是经典问题,证明方法有很多种,对于初二而言,下面的反证法应该可以接受如图,已知bd平分∠abc,ce平分∠acb,bd=ce,求证:ab=ac证明:bd平分∠abc==>be/ae=bc/ac==>be/ab=bc/(bc+ac)==>be=ab*bc/(bc+ac)同理:cd=ac*bc/(bc+ab)假设ab≠ac,不妨设ab>ac.....(*)ab>ac==>bc+acac*bc==>ab*ab/(bc+ac)>ac*bc/(bc+ab)==>be>cdab>ac==>∠acb>∠abc∠bec=∠a+∠acb/2,∠bdc=∠a+∠abc/2==>∠bec>∠bdc过b作ce平行线,过c作ab平行线,交于f,连df则becf为平行四边形==>∠bfc=∠bec>∠bdc (1)bf=ce=bd==>∠bdf=∠bfdcf=be>cd==>∠cdf>∠cfd==>∠bdf+∠cdf>∠bfd+∠cfd==>∠bdc>∠bfc (2)(1)(2)矛盾,从而假设(*)不成立所以ab=ac。
初中八年级数学上册的第12章全等三角形证明经典50题含答案

1.已知:AB=4,AC=2,D是BC中点,111749AD是整数,求ADABCD解:延伸AD到E,使AD=DE∵D是BC中点∴BD=DC在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=22.已知:D是AB中点,∠ACB=90°,求证:1CDAB2 ADA21EBCFD证明:连结BF和EF∵BC=ED,CF=DF,∠BCF=∠EDF∴三角形BCF全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF连结BE在三角形BEF中,BF=EF∴∠EBF=∠BEF。
∵∠ABC=∠AED。
∴∠ABE=∠AEB。
∴AB=AE。
在三角形ABF和三角形AEF中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴三角形ABF和三角形AEF全等。
∴∠BAF=∠EAF(∠1=∠2)。
4.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=ACA21F∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD均分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延伸AB取点E,使AE=AC,连结DE∵AD均分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD证明:在AE上取F,使EF=EB,连结CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC均分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE7.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD ABD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=28.已知:D是AB中点,∠ACB=90°,求证:1CDAB2 ADCB解:延伸AD到E,使AD=DE∵D是BC中点∴BD=DC在△ACD和△BDE中AD=DEA21EBCFD证明:连结BF和EF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23.(本题8分).如图,已知:△ABC 中,AD 是∠BAC 的平分线,AD 的垂直平分线交AD 于E,交BC 的延长线于F.求证:FD 2=.
24.(本题8分)已知ABC △,延长BC 到D ,使CD BC =.取AB 的中点F ,连结FD 交AC 于点E .
(1)求AE AC
的值; (2)若AB a FB EC ==,,求AC 的长.
25.(本题8分)如图:已知△ABC 中,AB=5,
BC=3,AC=4,PQ∥AB,P 点在AC 上(与A 、C 不重
合),Q 在BC 上.
(1)当△PQC 的面积等于四边形PABQ 面积的3
1,求CP 的长. (2)当△PQC 的周长与四边形PABQ 的周长相等时,求CP 的长.
(3)试问:在AB 上是否存在一点M ,使得△PQM 为等腰直角三角形,若不存在,请简要说明理由:若存在,请求出PQ 的长.
23、连接FA,证明FAC Δ∽FBA Δ,由于FD FA =,命题获证。
24、法一:连接AD FC ,;法二:过F E 或者做平行线,命题获证,在命题获证的基础上第二问求出。
25、(1)用相似CPQ Δ∽CAB Δ
(2)设出x PC =表示出CQ ,利用周长列出方程,求出PC
(3)当∠PQM=90°时(画图)
过P 作PN ⊥AB 于N
设PQ=QM=PN=MN=a
∠QMB=∠ANP=90°
∠B=90°-∠A=∠APN
∴△MQB ∽△NAP ∽△CAB
∴AN:PN=AC:BC ,BM:QM=BC:BC
∴MB=3/4a ,AN=4/3a
∵AB=AN+NM+MB
∴3/4a+4/3a+a=5
∴PQ=a=60/37
当∠QPM=90°时
同理有PQ=60/37
当∠PMQ=90°时
过P作PN⊥AB于N,过Q作QR⊥AB于R,过M作MS⊥PQ于S
设PN=QR=a
则PQ=MN=2a
类似前两种情况可得△RQB∽△NAP∽△CAB
∴RB=3/4a,AN=4/3a
∵AB=AN+NM+MB
∴3/4a+4/3a+2a=5
∴a=60/49∴PQ=2a=120/49
26、(1)1::=X:求出甲树高X=米
(2)先求墙壁上的影长展开在地上的距离1:=:X?求出X=米得出落在地面上的影长一共为+=米则1:=X:求出乙树高X=米
(3)台阶高米投影到地面则影长为1:=:X求出X=则在水平面上的总影长为++=米则1:=X:求出丙树高X=米
(4):2=X:求出X=米则1:=:X求出斜面上的影子落在水平面上的影长X=米则丁树在水平面上的总影长为+=则1:=X:求出丁树高X=米。