(完整版)PID单回路温度控制系统实训报告
pid控制实验报告

pid控制实验报告实验报告:PID控制一、实验目的通过本实验,我们的目的是深入了解PID(比例、积分、微分)控制算法,理解其在实际控制中的应用,掌握PID参数的调整方法。
二、实验原理PID控制是依据被控对象的误差(偏差)与时间的积分、微分关系来确定控制器输出的控制方式。
具体来说,PID控制器输出的控制量=Kp*(当前误差+上次误差*dt+所有误差的积分),其中Kp、Ki和Kd分别为比例系数、积分系数和微分系数。
它通过对偏差的补偿,使得被控对象能够在振荡绕过设定值、稳定达到设定值的过程中快速、准确定位设定值。
三、实验设备本实验采用的设备为PID控制器、液晶显示屏、电压控制电机和传感器。
四、实验步骤1. 首先,我们需要将系统设为手动调节状态,关闭控制器。
2. 然后,我们将传感器和记录仪建立起连接。
3. 将系统调整为自动控制状态,让控制器自行计算控制量、作出相应控制。
4. 调整PID控制器的Kp系数,以调整控制精度。
5. 调整PID控制器的Ki系数,以调整控制的灵敏度。
6. 调整PID控制器的Kd系数,以调整控制器的稳定性。
7. 最终完成调整后,我们可以用振荡器数据展示出来实验结果。
五、实验结果在完成调整后,我们得出的控制器输出的控制量稳定在理论值附近,在控制精度与控制的灵敏度达到较好平衡的情况下,控制器的稳定性得到了保证。
实验结果具有较好指导意义。
六、结论本实验通过掌握PID控制算法的实际应用方法,以及对参数的合理设置为基础,完成了对PID控制器各参数调整技巧的掌握,极大地丰富了实验基础技能。
同时,实验结果为之后的实际应用提供了参考,有着极其重要的现实意义。
pid实验报告

pid实验报告PID实验报告引言:PID控制器是一种常用的自动控制器,它通过调整输出信号来使被控对象的实际值与期望值尽可能接近。
在本次实验中,我们将通过设计一个PID控制器来控制一个温度系统,以验证PID控制器的性能和效果。
实验目的:1. 理解PID控制器的原理和工作方式;2. 掌握PID控制器的参数调节方法;3. 验证PID控制器在温度控制系统中的应用效果。
实验装置:1. 温度传感器:用于测量被控对象的温度;2. 控制器:采用PID控制算法,根据测量值和设定值计算控制信号;3. 加热器:根据控制信号调节加热功率;4. 温度系统:被控对象,通过加热器调节温度。
实验步骤:1. 搭建实验装置:将温度传感器放置在温度系统中,连接到控制器的输入端;将控制器的输出端连接到加热器;2. 参数调节:根据实际情况,初步设定PID控制器的参数,包括比例系数Kp、积分时间Ti和微分时间Td;3. 实验运行:设置温度设定值,观察温度系统的响应,并记录数据;4. 参数优化:根据实验结果,调整PID控制器的参数,使温度系统的响应更加稳定和准确;5. 重复实验:反复进行参数调节和实验运行,直到达到满意的控制效果。
实验结果:通过多次实验和参数调节,我们得到了一个较为理想的PID控制器参数设置,使温度系统的响应速度较快且稳定。
实验结果表明,PID控制器能够有效地控制温度系统,使其实际温度与设定值之间的误差保持在可接受范围内。
讨论与分析:1. 比例系数Kp的调节:较大的Kp值会使系统响应速度快,但可能导致系统震荡;较小的Kp值则会使系统的稳定性提高,但响应速度较慢。
因此,在实际应用中需要根据具体要求进行调节。
2. 积分时间Ti的调节:较大的Ti值可以减小系统的稳态误差,但可能导致系统响应速度变慢和超调现象;较小的Ti值则会使系统的响应速度提高,但可能导致稳态误差增大。
因此,需要在稳态误差和响应速度之间进行权衡。
3. 微分时间Td的调节:较大的Td值可以提高系统的稳定性,减小超调现象,但可能导致系统响应速度变慢;较小的Td值则会使系统的响应速度提高,但可能导致系统震荡。
DDC单回路PID控制实验实验报告

DDC 单回路PID 控制实验实验报告一、对象动态特性实验22111121()1(2)1(1)(G −−++−+=ZZ K z T T T T G(s)离散化得: 差分方程:Y(k)=a0*Y(k-1)+b0*Y(k-2)+c0*R(k) 其中:a0=2.0*T1/T/(1+T1/T)b0=0.0-pow(T1/T,2.0)/(1+T1/T)/(1+T1/T)c0=K1/(1+T1/T)/(1+T1/T)程序框图:相关源程序段:double T,r0,K1,T1,Kp,Ti,Td,Beta;//定义全局变量便于参数传递void CMainFrame::OnDrawObject() { // TODO: Add your command handler code here if(T==0){ ErrorDlg errorDlg; errorDlg.DoModal(); } else{CDC * pDC=GetDC(); CPen pen1,* oldpen;oldpen=pDC->SelectObject(&pen1);//画坐标轴pen1.CreatePen(PS_SOLID,1,RGB(0,0,255));pDC->SelectObject(&pen1);pDC->MoveTo(50,50);pDC->LineTo(50,300);pDC->MoveTo(50,50);pDC->LineTo(46,58);pDC->MoveTo(50,50);pDC->LineTo(54,58);pDC->MoveTo(50,300);pDC->LineTo(490,300);pDC->LineTo(482,295);pDC->MoveTo(490,300);pDC->LineTo(482,305);pDC->SetTextColor(RGB(0,0,255));pDC->TextOut(40,298,"0");pDC->TextOut(56,48,"Y");pDC->TextOut(492,300,"t");pDC->MoveTo(50,180);pen1.DeleteObject();pen1.CreatePen(PS_DASH,1,RGB(0,0,255));pDC->SelectObject(&pen1);pDC->LineTo(480,180);pDC->TextOut(35,174,"r0");pen1.DeleteObject();pen1.CreatePen(PS_SOLID,1,RGB(255,0,0));pDC->SelectObject(&pen1);y=300,t,unity,unitt=2;//两坐标轴单位长intunity=120.0/r0;a0,b0,c0,y0=0,y1=0,y2;doublea0=2.0*T1/T/(1+T1/T);b0=0.0-pow(T1/T,2.0)/(1+T1/T)/(1+T1/T);c0=K1/(1+T1/T)/(1+T1/T);text;CStringtext.Format("对象动态特性曲线:K1=%4.1f, T1=%3.2f, T=%3.2f, r0=%3.1f",K1,T1,T,r0);pDC->TextOut(80,320,text);pDC->MoveTo(50,300);for(t=52;t<=480;t+=unitt){y2=a0*y1+b0*y0+c0*r0;pDC->LineTo(t,y-unity*y2);y0=y1;y1=y2;}pDC->SelectObject(oldpen);}}程序界面及实验输出响应曲线:二、单回路PID控制实验采用增量式:delta_u=a*e(k)+b*e(k-1)+c*e(k-2)其中:a=Kp*(1+T/Ti*L+Td/T) L为积分分离系数b=0.0-Kp*(1+2*Td/T)c=Kp*Td/T;程序框图:相关源程序段:double T,r0,K1,T1,Kp,Ti,Td,Beta;//定义全局变量便于参数传递bool pid=FALSE;void CMainFrame::OnDrawU() // CMainFrame::OnDrawY()基本相同,不再另附源程序{// TODO: Add your command handler code hereif(T==0||(!pid)){ErrorDlgerrorDlg;errorDlg.DoModal();}else{pDC=GetDC();*CDCCPen pen1,* oldpen;oldpen=pDC->SelectObject(&pen1);//画坐标轴pen1.CreatePen(PS_SOLID,1,RGB(0,0,255));pDC->SelectObject(&pen1);pDC->MoveTo(50,50);pDC->LineTo(50,300);pDC->MoveTo(50,50);pDC->LineTo(46,58);pDC->MoveTo(50,50);pDC->LineTo(54,58);pDC->MoveTo(50,300);pDC->LineTo(490,300);pDC->LineTo(482,295);pDC->MoveTo(490,300);pDC->LineTo(482,305);pDC->SetTextColor(RGB(0,0,255));pDC->TextOut(40,298,"0");pDC->TextOut(56,48,"U");pDC->TextOut(492,300,"t");pDC->MoveTo(50,180);pen1.DeleteObject();pen1.CreatePen(PS_DASH,1,RGB(0,0,255));pDC->SelectObject(&pen1);pDC->LineTo(480,180);pDC->TextOut(35,174,"r0");pen1.DeleteObject();pen1.CreatePen(PS_SOLID,1,RGB(0,124,111));pDC->SelectObject(&pen1);u=300,t,unitt=2;//两坐标轴单位长intdoubleunitu=120.0/r0;a,b,c,e0=0,e1=0,e2=r0,u1=0,u2,delta_u;doublea0,b0,c0,y0=0,y1=0,y2;doubleL=1;//积分分离逻辑系数inta0=2.0*T1/T/(1+T1/T);b0=0.0-pow(T1/T,2.0)/(1+T1/T)/(1+T1/T);c0=K1/(1+T1/T)/(1+T1/T);b=0.0-Kp*(1+2*Td/T);c=Kp*Td/T;text1,text2;CStringtext1.Format("PID控制u(t)阶跃响应曲线:Kp=%4.1f, Ti=%3.2f, Td=%3.2f",Kp,Ti,Td);text2.Format("K1=%4.1f, T1=%3.2f, T=%3.2f, r0=%3.1f",K1,T1,T,r0);pDC->TextOut(80,320,text1);pDC->TextOut(120,340,text2);pDC->MoveTo(50,300);for(t=52;t<=480;t+=unitt){if(Beta==0||e2<Beta)L=1;else L=0;a=Kp*(1+T/Ti*L+Td/T);delta_u=a*e2+b*e1+c*e0;u2=u1+delta_u;pDC->LineTo(t,u-unitu*u2);y2=a0*y1+b0*y0+c0*u2;e0=e1;e1=e2;e2=r0-y2;u1=u2;y0=y1;y1=y2;}}}用工程整定法整定PID参数:令T=1,r0=1,K1=1,T1=10取消积分部分作用(取极小Beta值),令Td=0,试得Kp=5时为临界状态,输出曲线:由图知此时周期Tu约为29推算出PID调节时的整定参数Kp=3.125,Ti=14.5,Td=3.625整定后的输出曲线:采用具有积分分离的数字PID算法:对象及PID控制参数均不变,以便与以上无积分分离曲线进行比较β适中(0.8)情况下得曲线β过小(0.2)时得曲线:取Ti=14.5, Td=3.625,改变Kp观察y(t)变化:Kp=10观察图中曲线研Kp=3.125 Kp=1究Kp对调节品质的影响:随着Kp增大,超调量增加,响应速度加快。
PID实验报告范文

PID实验报告范文PID(Proportional-Integral-Derivative)是一种常用于控制系统的算法,它根据当前的误差值和历史误差值的积累来调整控制量,从而实现系统的稳定性和精确性。
在本次实验中,我们将学习如何使用PID算法来控制一个简单的温度控制系统。
实验步骤:1.实验准备:准备一个温度传感器、一个发热器以及一个温度控制器。
将温度传感器安装在控制对象上,将发热器与温度控制器连接,并将温度控制器连接到计算机。
2.确定控制目标:我们的目标是将系统的温度稳定在一个特定的温度值。
在本次实验中,我们将目标温度设定为50°C。
3.参数调整:调整PID控制器的三个参数,即比例系数Kp、积分系数Ki和微分系数Kd。
开始时,我们可以将这些参数设置为一个合理的初始值,例如Kp=1,Ki=0.1,Kd=0.014.实验记录:记录系统的温度变化过程。
在开始实验之前,将控制对象的温度设定为初始温度,并将PID控制器的输出设定为零。
记录系统的温度、控制量和误差值。
5.PID计算:根据当前的误差值、历史误差值和时间间隔,计算PID控制器的输出。
6.控制实施:根据PID控制器的输出,控制发热器的加热功率。
根据输出值的大小调整发热器的功率大小。
7.实验分析:观察系统的温度变化过程,并分析PID控制器的参数调整对系统性能的影响。
根据实验结果,调整PID参数,使系统的稳态和动态响应性能都较好。
实验结果:我们进行了多组实验,可以观察到系统温度在初始阶段有较大的波动,但随着时间的推移,温度开始逐渐稳定在目标温度附近。
通过对PID参数进行调整,我们发现参数的选择对系统的稳定性和响应速度有很大影响。
当比例系数Kp较大时,系统对误差的响应速度很快,但也容易引起过冲现象,导致系统产生振荡。
因此,我们需要根据实际需求进行调整,找到一个合适的值。
当积分系数Ki较大时,系统对积累误差的反应较快,可以很好地消除稳态误差,但也容易引起系统的超调。
pid控制实验报告

pid控制实验报告PID控制实验报告引言PID控制是一种常用的控制算法,广泛应用于工业自动化系统中。
本实验旨在通过实际的PID控制实验,验证PID控制算法的效果和优势,并对PID控制的原理、参数调节方法等进行探讨和分析。
一、实验目的本次实验的目的是通过一个简单的温度控制系统,使用PID控制算法来实现温度的稳定控制。
通过实验,验证PID控制算法的有效性和优越性,掌握PID控制的基本原理和参数调节方法。
二、实验设备和原理本实验所用的设备为一个温度控制系统,包括一个温度传感器、一个加热器和一个控制器。
温度传感器用于实时检测环境温度,加热器用于调节环境温度,控制器用于实现PID控制算法。
PID控制算法是基于误差的反馈控制算法,其主要原理是通过不断地调整控制器的输出信号,使得系统的实际输出与期望输出之间的误差最小化。
PID控制算法由比例控制、积分控制和微分控制三部分组成。
比例控制通过比例系数调整控制器的输出信号与误差的线性关系;积分控制通过积分系数调整控制器的输出信号与误差的积分关系;微分控制通过微分系数调整控制器的输出信号与误差的微分关系。
通过合理调节这三个系数,可以实现对系统的精确控制。
三、实验步骤1. 搭建温度控制系统:将温度传感器、加热器和控制器连接在一起,确保信号传输的正常。
2. 设置期望温度:根据实验要求,设置一个期望的温度作为控制目标。
3. 调节PID参数:根据实验的具体要求和系统的特性,调节PID控制器的比例系数、积分系数和微分系数,使得系统的响应速度和稳定性达到最佳状态。
4. 开始实验:启动温度控制系统,观察实际温度与期望温度的变化情况,记录实验数据。
5. 数据分析:根据实验数据,分析PID控制算法的效果和优势,总结实验结果。
四、实验结果与讨论通过实验,我们得到了一系列的实验数据。
根据这些数据,我们可以进行进一步的分析和讨论。
首先,我们观察到在PID控制下,温度的稳定性得到了显著的提高。
PID温度控制实验

PID 温度控制实验PID(ProportionalIntegralDerivative)控制是最早发展起来的控制策略之一,它根据系统的误差,利用比例、积分、微分计算出控制量对系统进行控制。
当我们不彻底了解一个系统和被控对象,或者不能通过有效的测量手段来获得系统参数时,最适合用 PID 控制技术。
由于其算法简单、鲁棒性好和可靠性高,被广泛应用于工业过程控制。
PID 调节控制是一个传统控制方法,它合用于温度、压力、流量、液位等几乎所有现场,不同的现场,仅仅是 PID 参数应设置不同,只要参数设置得当均可以达到很好的效果。
本实验以 PID 温度控制为例,通过此实验可以加深对检测技术、自动控制技术、过程控制等专业知识的理解。
2、掌握正校实验的方法,并用正交实验法来确定最佳 P、I、D 参数3、会求根据温度变化曲线求出相应的超调量、稳态误差和调节时间的方法二、仪器与用具加热装置、加热控制模块、单片机控制及显示模块、配套软件、电脑。
三、实验原理1、数字 PID 控制原理数字 PID 算法是用差分方程近似实现的,用微分方程表示的 PID 调节规律的理想算式为:1de(t)u(t)KP[e(t)e(t)dtTD] (1)TI0dt 单片机只能处理数字信号,上式可等价于:tTUnKP[enTIeii0nTD(enen1)] (2) TTTenD(en2en1en2)] (3) TIT (2) 式为位置式 PID 算法公式。
也可把(2)式写成增量式 PID 算法形式: UnUnUn1KP[enen1 其中,en 为第 n 次采样的偏差量; en-1 为第 n-1 次采样的偏差量; T 为采样周期; TI 为积分时间;TD 为微分时间; KP 为比例系数。
2、PID 温度控制的框图设定温度(SV)温度偏差(EV)(EV=SV-PV)PID 调节器按周期调节脉冲宽度输出加热装置实际温度(PV)图 1PID 温度控制的框图温度 PID 控制是一个反馈调节的过程:比较实际温度(PV)和设定温度(SV)的偏差,偏差值经过 PID 调节器运算来获得控制信号,由该信号控制加热丝的加热时间,达到控制加热功率的目的,从而实现对系统的温度控制。
pid控制实验报告[最新版]
![pid控制实验报告[最新版]](https://img.taocdn.com/s3/m/ab6b0408640e52ea551810a6f524ccbff121ca13.png)
pid控制实验报告pid控制实验报告篇一:PID控制实验报告实验二数字PID控制计算机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量。
因此连续PID控制算法不能直接使用,需要采用离散化方法。
在计算机PID控制中,使用的是数字PID控制器。
一、位置式PID控制算法按模拟PID控制算法,以一系列的采样时刻点kT代表连续时间t,以矩形法数值积分近似代替积分,以一阶后向差分近似代替微分,可得离散PID位置式表达式:Tu T ?kpeu=para; J=0.0067;B=0.1; dy=zeros= y= -+ = k*ts; %time中存放着各采样时刻rineu_1=uerror_1=error;%误差信号更新图2-1 Simulink仿真程序其程序运行结果如表2所示。
Matlab输出结果errori = error_1 = 表2 例4程序运行结果三、离散系统的数字PID控制仿真1.Ex5 设被控对象为G?num 仿真程序:ex5.m%PID Controller clear all; close all;篇二:自动控制实验报告六-数字PID控制实验六数字PID控制一、实验目的1.研究PID控制器的参数对系统稳定性及过渡过程的影响。
2.研究采样周期T对系统特性的影响。
3.研究I型系统及系统的稳定误差。
二、实验仪器1.EL-AT-III型自动控制系统实验箱一台 2.计算机一台三、实验内容1.系统结构图如6-1图。
图6-1 系统结构图图中 Gc(s)=Kp(1+Ki/s+Kds) Gh(s)=(1-e)/s Gp1(s)=5/((0.5s+1)(0.1s+1)) Gp2(s)=1/(s(0.1s+1))-TS 2.开环系统(被控制对象)的模拟电路图如图6-2和图6-3,其中图6-2对应GP1(s),图6-3对应Gp2(s)。
图6-2 开环系统结构图1 图6-3开环系统结构图2 3.被控对象GP1(s)为“0型”系统,采用PI控制或PID控制,可使系统变为“I型”系统,被控对象Gp2(s)为“I型”系统,采用PI控制或PID控制可使系统变成“II型”系统。
控制系统实训实验报告

一、实验目的1. 了解控制系统的基本组成和原理。
2. 掌握控制系统调试和性能测试方法。
3. 培养动手能力和团队协作精神。
4. 熟悉相关实验设备和软件的使用。
二、实验原理控制系统是指通过某种方式对某个系统进行控制,使其按照预定的要求进行运行。
控制系统主要由控制器、被控对象和反馈环节组成。
控制器根据被控对象的输出信号,通过调节输入信号,实现对被控对象的控制。
本实验主要研究PID控制系统的原理和应用。
三、实验仪器与设备1. 实验箱:用于搭建控制系统实验电路。
2. 数据采集卡:用于采集实验数据。
3. 计算机:用于运行实验软件和数据处理。
4. 实验软件:用于控制系统仿真和调试。
四、实验内容1. 控制系统搭建:根据实验要求,搭建PID控制系统实验电路,包括控制器、被控对象和反馈环节。
2. 控制系统调试:对搭建好的控制系统进行调试,包括控制器参数的整定、系统稳定性和响应速度的调整等。
3. 控制系统性能测试:对调试好的控制系统进行性能测试,包括系统稳定性、响应速度、超调量等指标。
4. 控制系统仿真:利用实验软件对控制系统进行仿真,分析系统在不同参数下的性能。
五、实验步骤1. 控制系统搭建:按照实验要求,连接控制器、被控对象和反馈环节,搭建PID控制系统实验电路。
2. 控制系统调试:根据实验要求,调整控制器参数,使系统达到预定的性能指标。
3. 控制系统性能测试:对调试好的控制系统进行性能测试,记录测试数据。
4. 控制系统仿真:利用实验软件对控制系统进行仿真,分析系统在不同参数下的性能。
六、实验结果与分析1. 控制系统搭建:成功搭建了PID控制系统实验电路。
2. 控制系统调试:通过调整控制器参数,使系统达到预定的性能指标。
3. 控制系统性能测试:系统稳定性、响应速度、超调量等指标均达到预期效果。
4. 控制系统仿真:仿真结果表明,系统在不同参数下具有良好的性能。
七、实验总结1. 通过本次实验,了解了控制系统的基本组成和原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1 功能特点及技术指标
AC6611 是一款廉价通用 A/D、D/A 板,AD 工作在查询方式,采用 PCI 总线支 持即插即用、无需地址跳线。AC6611 具有 16 路单端模拟输入、32 路开关量(16 路输入及 16 路输出)、一路 12 位 D/A。AC6611 采用大规模可编程门阵列设计。
2.3 接线
4
5
3.方案设计
3.1 加热器的过程特性
指被控过程输入量发生变化时,过程输出量的变化规律。加热器的过程特性 是带滞后的一阶对象。也就是它不能发生突变,温度不能在很短的时间升高达到 一个比较大的值,只能通过 PID 的运算后慢慢的升至设定温度。同时也不能达到 瞬间降温的效果,加热器内没有安装专门的散热装置,只有通过自然冷却达到设 定的温度值(这个值一般不能低于室内温度),这个过程比较缓慢,等待的时间 会比较长。在实验中就得注意,设定的温度最好从小到大以此进行设定,这样方 便操作也节约了时间。
以 Windows XP 平台下安装 AC6611 驱动程序为例: ①关闭计算机的电源; ②将 ac6611 板卡插入 PCI 槽中; ③打开计算机电源,启动 Windows XP,Windows XP 将会显示找到新硬件; ④在“找到新硬件向导”对话窗中选择“从列表或指定位置安装”,下一步; ⑤选择驱动所在目录,进行安装(\ac6611\driver\); ⑥按找到新硬件向导的提示进行下一步; ⑦Windows XP 将显示完成添加/删除硬件向导,单击完成即可完成安装过程 安装完毕后将在设备管理器中出现一个其他设备(其他设备是问号,不表示 设备有问题,只是表示系统不知道 ac6611 板卡是何种类型设备) 驱动安装后,ac6611.sys, ac6611.dll 文件就自动被复制到系统中去了,可以 进行其他测试、开发工作了。若无法正常安装,请换一台机器再尝试安装过程, 若安装成功,说明安装不成功的机器系统有问题,考虑重装系统,在进行安装 AC6611 驱动。
AC6611 性能参数 (1)模拟量输入(A/D) ●A/D转换器: 120KHZ ,12位A/D,ADS7816,A/D内置采样保持器。 ●工作方式:软件查询。
2
●16路单端输入,输入阻抗:1MΩ ●最大输入耐压电压:< +12V / -5.5V,瞬时输入耐压:-25V - +30V ●连接器:DB25孔式输入连接器。 ●A/D最大通过率: 70KHZ,输入通道建立时间<8uS。 ●双极性输入范围:错误!未找到引用源。 5V,单极性输入范围:5V、10V。 输入范围跳线器选择,对应输入幅度及精度如下:
(3)开关量输入/输出 ●16路开关量输入(2个8位),16路开关量输出(2个8位) ●TTL电平(兼容3伏逻辑) ●开关量输出复位后为输出为低电平“0”。 ●输出高电压 > 2.5V,低电压 < 0.5V,最大输出电流 :8mA ●输入电流:<0.1mA 输入高电压门限:〉2V, 低电压:〈 0.8V。
输入 系统精度(FSR)
跳字
0-10V
0.1%
错误!未找到引用
源。 1LSB
0-5V
0.1%
错误!未找到引
用源。 1.5LSB
-5V-+5V
0.1%
错误!未找到引用
源。 1LSB
(2)模拟量输出(D/A) ●1路12位DA,分辨率12位,精度:0.2%, ●电压输出,最大输出电流:5毫安。 ●输出零点误差小于±10毫伏。 ●输出范围:10伏、±10伏,跳线器选择。 ●输出建立时间小于:50微秒。 ●输出插座:DB25(孔)连接器。
3.2 加热器温度控制系统的实现方案
硬件连接好后通过静态测试软件测试硬件与电脑能正常通信后,通过可视 化程序软件对系统的设计。利用 AC6611 板卡采集数据,通过总线送入 PC,将设 定值和采样值进行比较,经过程序设定的算法后输出一个偏差,得出控制量通过 AC6611 板卡送达加热器,如果偏差大,温度加热器将对装置的温度进行加热达 到设定的温度值,如果偏差为 0,说明设定的温度比采样温度低,加热器不会加 热,而通过自然冷却的方式使加热器降温从而达到设定的温度值。我们这组是采
6
用带死区的 PID 控制算法的方式来达到控制温度的目的的。
1.3 实训要求
完成一个基本 PID 或不完全微分 PID 或微分先行 PID 或死区 PID 或积分分离 PID 或积分限幅 PID 单回路温度控制系统的设计和调试过程。
通过实训,让学生了解计算机控制系统的基本组成,提出计算机控制系统的 设计思路,初步学会计算机控制系统软硬件设计及调试的方法,具备技术实现能 力;基本上能够处理实践过程中出现的问题并提出解决办法,进一步提高学生的 计算机应用水平。
关于计算机控制系统综合实训报告
1.实习内容及其要求
1.1 实训目的
掌握计算机控制系统的组成结构 掌握数字 PID 控制算法的应用 掌握数字 PID 参数的整定 掌握数字 PID 算法改进 掌握计算机控制系统的硬件连接、调试方法与步骤
1.2 实训内容
计算机控制系统的一般形式
给定值 r
偏差 e
+ – 测量值 z
控制器
计算机
控制量 u
D/A
执行器
A/D
测量变送器
被控对象
被控量 y
基于 AC6611 的温度控制系统组成
1Hale Waihona Puke 通过温度的设定值和反馈值,计算其偏差,并使用基本 PID、或不完全微分 PID 或微分先行 PID 或死区 PID 或积分分离 PID 或积分限幅 PID 控制算法输出控 制信号,整定 PID 参数,使被控的温度达到设定值。具体实训内容包括 AC6611 过程卡的接线和测试、数据采集程序设计、PID 算法程序设计、控制输出程序设 计、人机界面程序设计、PID 参数整定、实训报告。
3
●输入耐压:高电平最大耐压:8伏,低电平:-0.4伏。 ●连接器:40脚扁平电缆插座。
(4)其它 ●符合PCI V2.1标准,供电:+5伏、+12伏、-12伏。 ●AC6611占用64个I/O选通空间(自动分配)。 ●工作温度:0-70℃,尺寸:12(W) X 9(H) (厘米)
2.2 应用方法和步骤