系统的稳定性 常见判据

合集下载

线性定常系统稳定性及稳定判据

线性定常系统稳定性及稳定判据

s2+1=0
对其求导得零行系数: 2s1
表 s1 02
继续计算劳斯表
s0 1
劳斯表出现零行
1 2
出劳系现斯统零表一何行定时怎会么不出办稳现?定零行?
第一列全大于零,所以系统稳定
③ 解辅助错方啦程得!!对! 称根:
s1,2=±j
由综合除法可得另两
3 如何求对称的根?
个根为s3,4= -2,-3
系统稳定的充分条件:
劳斯表第一列元素不变号!
若变号系统不稳定!
变号的次数为特征根在s右半平面的个数!
劳斯表出现零行
设系统特征方程为: ① 有大小相等符号相反的
s4+5s3+7s2+5s+6=0
特征根时会出现零行
劳 s4 1 7 6
② 由零行的上一行构成 辅助方程:
s3 51 51
斯 s2 61 61
设系统特征方程为: 劳斯表介绍
s6+2s5+3s4+4s3+5s2+6s+7=0
s6 1 3

s5 2 s4 1
4 2
57
6
((61-1(064-)-/614=))//-228==1 2
77 劳斯表特点
斯 s3 0ε --88
1 右移一位降两阶

ε s2 2ε +8 7ε
s1 -8(2 +8) -7ε 2
2 行列式第一列不动 3 次对角线减主对角线 4 每两行个数相等
s0 乘以或同除以某正数
7 第一列出现零元素时,
用正无穷小量ε代替。
劳斯判据
系统稳定的必要条件: 特征方程各项系数
均大于零!

系统稳定性分析—劳斯稳定判据

系统稳定性分析—劳斯稳定判据
No.25
© BIP
例题4:s6 s5 6s4 5s3 9s2 4s 4 0
S6 1
6
S5 1
5
9
4
辅助方程
4
0
S4 1
5
4
S3
0 4
0 10
0 0
S2 2.5
4
0
0 s4 5s2 4 0
0 0 4s3 10s 0 0
S1 3.6
0
0
0
S0 4
0

0
0
某一行全为零,说明存在对称于原点的根,系统不稳定
No.15
© BIP
图7 K=15时系统的单位阶跃响应曲线
No.16
© BIP
图8 K=20时系统的单位阶跃响应曲线
No.17
© BIP
例题2:液位控制系统的稳定性分析。
进水
阀门
进水阀门的 传递函数K3
减速器
+ 电位器
-
连杆
执行电机和 减速器的传
递函数
K2/S(TS+1)
电动机
放大器
控制对象水箱的
系统稳定性分析之 ——劳斯判据
一、系统稳定的重要性
图1“舞动的格蒂”—首座塔科马大桥
No.2
© BIP
二、系统稳定性的基本概念和条件
1、定义:如果线性控制系统在初始扰动的作 用下,使被控量产生偏差,当扰动消失后,该 偏差随着时间的推移逐渐减小并趋于零,即系 统趋于原来的工作状态,则称该系统为渐进稳 定。反之,如果在初始扰动的作用下,系统的 偏差随着时间的推移而发散,系统无法趋于原 来的工作状态,则称系统不稳定。
传递函数K4/S

系统的稳定性和代数稳定判据

系统的稳定性和代数稳定判据

系统的稳定性和代数稳定判据系统的稳定性和代数稳定判据系统稳的定和代性稳数定判据系统的稳定性和代数稳定判据稳定性的本概基一、念统系稳定的性如一个果性定线常统在扰系作用消动后,失如一个果性定常线统系在扰作动用失消,能后恢够到复始的原衡状平态,能够复恢到始的平原衡态状,系即的零统输响入应是收的,则称敛统系是定的。

稳应收敛是的则,称统是系定的。

反之稳,若统不能恢系复到始的平原衡状,态反之若系,统能不复到原恢的平始衡态状,即系的零统入响应具输有幅震荡或等发性散,质即系统的零入输响具应等幅有荡或震发性质,散则称统是不稳系的。

定则称系统不是稳定的。

系统的稳定性和代数稳定判据二、线性统稳定系的充条件要设闭环系统的传函数C(s)递bmsm+m1bsm1 + +bs +b B(s)0 Φ1s( ) = = = nn 1(R) ans s+ n1sa++ a1 + as0D s()(m ≤ n )令p 系为特征统程) 方0= (Ds ,, , (i =i 12 n)而R( ) =s1 彼此等不干扰为理。

脉冲函数想:C ()s=k的根,B( ) s(Bs) R( s) =D( )s D (s)则αr js +β cji =∑ ∑ j +=1 (sσ j+j ωj ) (σs j jω j ) =i1 s pi[][]k+ 2 r=n ct() = ∑ i cei =1kpi t ∑+ej=1 rσ jt( A joc ωs j t+ B j s n i ω jt )(t≥ )0系统的稳定性和代数稳定判据式上明表:式表明上:1 当且。

仅系统当的征特根全具有负部部(和实均小。

当于且当系仅统特的征全部具有根实负部(),即征特的位根分布置在面平左半的时部,即征特根的置分布在S平面位的半左部时),零即特征根位置的分在布平的左面半时,才能成部此系时在扰动统消后能失恢复原来的平衡到态,状立此时,系统在扰消动失后能复到恢来的原衡状平态,系则统是稳的定统。

§3-5线性系统稳定性及稳定判据

§3-5线性系统稳定性及稳定判据

K* 0
560- K* 0
14 0 K* 560 即 0 K 14
若要求闭环极点 s平在面上全部位s 于1垂线之,左 则令s s1 1,代入原特征方 ,得程
s13 11s12 15s1 ( K * 27) 0 相 应 的Ro uth表 为
s13 s12
s 11
s10 则解得
或其特征根全部位于s平面的左半部。
例. 试判断系统 C(S)
1
的稳定性。
R(S) S 3 4S 2 5S 2
解:
32 S 4S
5S 2 0
2
2
(S 1)(S 3S 2) (S 1) (S 2) 0
S1 -1, S2 -1, S3 -2 由 于 三 个 特 征 根 都 具负有实 部,
00 n 0 0
an-1 an-3 0 an an-2 0
0 0
0
00 00 00
0 0 a0 0 0 0 a1 0 0 0 a2 a0
例: 设系统的特征方程式为2s4 s3 3s2 5s10 0, 试用胡尔维茨判据
判断该系统的稳定性。
解: 1 50 0
2 3 10 0 4 0 1 5 0
解: (1)特征方程各项系数大于0
(2)列劳斯阵
s4
1
1
1
s3
2
2
s2 0(用代替) 1
当ε→0时s1, s0
2
2
, 该项符号为负,因此,劳斯阵中第一列系数符号改
1
2 2 0
例设系统的特征方程为 s3 3s 2 0
试应用判据判别实部为正的特征根的个数。

s3
1
-3
改变一次
s2 0

系统的稳定性分析与判据

系统的稳定性分析与判据

系统的稳定性分析与判据在信息技术快速发展的背景下,系统的稳定性成为了一个重要的议题。

不论是计算机系统、电力系统还是金融系统,其稳定性都是保证其正常运行和可靠性的关键。

因此,对系统的稳定性进行分析和判据是非常必要的。

一、稳定性分析的概念与意义稳定性分析是指对系统的各个方面进行评估和分析,以确定系统是否能够在各种条件下保持稳定运行的能力。

系统的稳定性直接关系到系统的可靠性、可用性和性能,对于用户来说也是一个重要的参考因素。

稳定性分析可以帮助我们了解系统的薄弱环节和潜在问题,并采取相应的措施来加以改进和完善。

二、稳定性分析的方法与步骤稳定性分析是一个系统工程,需要综合考虑各个方面的因素。

下面将介绍稳定性分析的一般方法与步骤。

1. 收集数据稳定性分析需要收集系统的各种数据,包括系统的架构、硬件配置、软件版本、历史运行数据等。

这些数据将为后续的分析提供基础。

2. 确定评价指标根据系统的特点和要求,确定适用的评价指标,如系统响应时间、故障率、可用性等。

评价指标的选择应当与系统的功能和使用环境相匹配。

3. 进行问题分析通过对系统的运行数据和用户反馈进行分析,确定系统存在的问题和潜在的风险。

可以利用统计学方法、故障树分析等手段来找出系统的薄弱环节和关键问题。

4. 制定改进措施根据问题分析的结果,制定相应的改进措施。

这些措施可以包括改进软件算法、优化硬件配置、增加冗余容量等。

改进措施的制定应当综合考虑成本、可行性和效果。

5. 实施和监控将改进措施付诸实施,并进行监控和评估。

通过监控系统的运行数据,评估改进措施的效果,不断优化系统的稳定性和性能。

三、稳定性判据的依据与指标稳定性判据是对系统稳定性进行评判的依据和指标,通常包括以下方面:1. 故障率故障率是指系统在一定时间内出现故障的频率。

较低的故障率意味着系统具有更高的稳定性和可靠性。

2. 可用性可用性是指系统在一定时间内能够正常工作的概率。

高可用性表示系统具有更好的稳定性和可靠性。

10 系统的稳定性分析Nyquist稳定判据

10 系统的稳定性分析Nyquist稳定判据
开环稳定时
根据米哈伊洛夫定理推论: arg DK ( j ) n 若闭环也稳定,当由0变化到时:
arg DB ( j ) n

2

2
从而:
argF ( j) argDB ( j) argDK ( j) 0
上式表明,若系统开环稳定,则当由0变化到时, F(j) 的相角变化量等于0 时,系统闭环也稳定。
注意到: F ( j) 1 G( j) H ( j) 即:
G( j ) H ( j ) F ( j ) 1
上式表明,在复平面上将F(j)的轨迹向左移动一 个单位,便得到G(j)H(j) 的轨迹。
Im
=
-1 0
=0
Re
1
G(j)H(j)
F(j)
7.4 乃奎斯特稳定性判据
7.4 乃奎斯特稳定性判据 Im
D(j)
Im

-p
j 0
'
-p
Re
由图易知,当由0变化到时, D(j)逆时针旋转 90°,即相角变化了 /2。 arg D ( j )
2
若特征根为正实根,则当由0变化到时:
arg D ( j )

2
7.4 乃奎斯特稳定性判据
代数稳定性判据判别系统的稳定性,要求必须知 道闭环系统的特征方程,而实际系统的特征方程是 难以写出来的,另外它很难判别系统稳定或不稳定 的程度,也很难知道系统中的各个参数对系统性能 的影响。
两种常用的频域稳定判据:Nyquist稳定判据(简称
乃氏判据)和对数频率稳定判据。

Nyquist判据根据开环幅相曲线判别闭环系统稳定性;
7.4 乃奎斯特稳定性判据

控制系统稳定性分析

控制系统稳定性分析

控制系统稳定性分析引言控制系统是一种通过控制输入信号以达到预期输出的系统。

在实际应用中,控制系统的稳定性是非常重要的,因为它直接关系到系统的可靠性和性能。

本文将介绍控制系统稳定性分析的基本概念、稳定性判据以及常见的稳定性分析方法。

基本概念在控制系统中,稳定性是指系统的输出在输入信号发生变化或扰动时,是否能够以某种方式趋向于稳定的状态,而不产生超调或振荡。

在进行稳定性分析之前,我们需要了解几个重要的概念。

稳定性定义对于一个连续时间的线性时不变系统,如果对于任意有界输入信号,系统的输出始终有界,则称该系统是稳定的。

换句话说,稳定系统的输出不会发散或趋向于无穷大。

极点(Pole)系统的极点是指其传递函数分母化简后得到的方程的根。

极点的位置对系统的稳定性有很大的影响,不同的极点位置可能使得系统的稳定性不同。

范围稳定性(Range Stability)当输入信号有界时,系统的输出也保持有界,即系统是范围稳定的。

渐进稳定性(Asymptotic Stability)当输入信号趋向于有界时,系统的输出也趋向于有界,即系统是渐进稳定的。

稳定性判据稳定性判据是用来判断控制系统是否稳定的方法或准则。

常见的稳定性判据有:Routh-Hurwitz判据、Nyquist判据以及Bode稳定判据。

Routh-Hurwitz判据Routh-Hurwitz稳定性判据是一种基于极点位置的方法。

具体步骤如下:1.根据系统的传递函数确定极点。

2.构造Routh表。

3.根据Routh表的符号判断系统的稳定性。

Nyquist判据Nyquist稳定性判据是一种基于频率响应的方法。

具体步骤如下:1.根据系统的传递函数绘制频率响应曲线。

2.根据频率响应曲线的特征判断系统稳定性。

Bode稳定判据Bode稳定判据是一种基于系统的幅频特性和相频特性的方法。

具体步骤如下:1.根据系统的传递函数绘制Bode图。

2.根据Bode图的特征判断系统稳定性。

稳定性分析方法除了以上的稳定性判据外,还有一些常用的稳定性分析方法可以应用于控制系统的稳定性分析。

自动控制系统的稳定性分析

自动控制系统的稳定性分析

自动控制系统的稳定性分析自动控制系统在现代工程中起着至关重要的作用。

稳定性是评价自动控制系统性能的一个重要指标,系统稳定性的分析对于系统设计、调试和优化至关重要。

本文将对自动控制系统的稳定性进行分析,并探讨常用的稳定性分析方法。

1. 引言自动控制系统的稳定性是指在外部扰动或参数变化的情况下,系统能够保持稳定的能力。

稳定性分析是评价系统的关键特性之一,它决定了系统的可靠性和性能。

稳定性分析的目的是通过研究系统的传递函数或状态方程,确定系统的稳定性边界并评估系统的稳定性。

2. 稳定性的判据用于判断自动控制系统稳定性的最常见方法是分析系统的极点位置。

极点是系统传递函数或状态方程的特征根,它们的位置决定了系统的稳定性。

常见的判据有:- 实部均小于零:当系统的所有极点的实部都小于零时,系统是稳定的。

- 实部均小于等于零:当系统的所有极点的实部都小于等于零时,系统是边界稳定的。

- 实部均小于一:当系统的所有极点的实部都小于一时,系统是渐进稳定的。

- Nyquist稳定判据:通过绘制系统开环传递函数的Nyquist曲线,判断曲线与负实轴的交点个数来确定系统的稳定性。

3. 稳定性分析方法3.1 根轨迹法根轨迹法是一种图形化分析方法,通过绘制系统极点随参数变化的轨迹,可以直观地了解系统的稳定性边界。

根轨迹图能够反映了系统参数变化时的稳定性情况,并通过分析轨迹与虚轴的交点个数来判断系统的稳定性。

3.2 频率响应法频率响应法是一种以频域为基础的稳定性分析方法,它通过研究系统在不同频率下的响应特性来判断系统的稳定性。

常用的频率响应法包括振荡器法、相频曲线法和伯德图等。

这些方法通过测量输入输出之间的幅度和相位差来评估系统的稳定性。

3.3 状态空间法状态空间法是一种基于系统的状态方程进行稳定性分析的方法。

通过将系统的状态方程转化为特征方程,可以分析特征根的位置来判断系统的稳定性。

状态空间法具有较强的灵活性,可以应用于复杂的多变量系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自由响应收敛,系统稳定 2) 若有任一sk具有正实部(位于[s]平面的右半平面)
l i me
t sk t

n n si t si t A1i e A2 i e lim t i 1 i 1
自由响应发散,系统不稳定
2. 系统稳定条件
3) 若有特征根sk =±jω(位于[s]平面的虚轴上),其余极点 位于[s]平面的左半平面
如果不稳定,可能导致严重后果
①特征方程→根的分布(避免求解)
②开环传递函数→闭环系统的稳定性
(开环极点易知,闭环极点难求)
稳定判据
二、Routh (劳斯)稳定判据
——代数判据(依据根与系数的关系判断根的分布)
1. 系统稳定的必要条件
设系统特征方程为: D( s) an s n an1 s n1 a1 s a0 0
第六章

系统的稳定性
——系统能正常工作的首要条件
系统的稳定性与稳定条件 Routh(劳斯)稳定判据 Nyquist 稳定判据 Bode稳定判据 系统的相对稳定性
一、系统的稳定性与稳定条件
1. 系统不稳定现象
例:液压位置随动系统
原理: 外力→阀芯初始位移Xi(0)→阀口2、4打开
→活塞右移→阀口关闭(回复平衡位置)
n
或: an>0, an-1>0, … , a1>0, a0>0
二、Routh (劳斯)稳定判据
2. 系统稳定的充要条件
特征方程: D( s) an s n an1 s n1 a1 s a0 0
s
n
an
an 2 an 3 A2 B2 D2
an 4 an 5 A3 B3
n n si t si t jt lim A e A e A e 1i 2i k t i 1 i 1
简谐运动
自由响应等幅振动,系统临界稳定
4) 若有特征根sk =0(位于[s]平面的原点),其余极点位于[s]
平面的左半平面
Ak e sk t Ak
收敛(回复平衡位置)
发散(偏离越来越大)
2. 系统稳定条件
线性定常系统:
( n) ( n1) o(t ) a0 xo(t ) xi(t ) anxo (t ) an 1 xo (t ) a1 x
自由响应
强迫响应
n
xo( t ) A1i e
i 1
n
si t
A2 i e si t B( t )
an 6 an 7 A4 B4
其中:
a n 1a n 2 a n a n 3 a n 1 a a an an 5 A2 n1 n 4 a n 1 a a an an 7 A3 n 1 n 6 a n 1 A1

B1 B2 B3 A1a n 3 a n 1 A2 A1 A1a n 5 a n 1 A3 A1 A1a n 7 a n 1 A4 A1
1 19 30 s4 1 11 0 s 3 1 ( 19) 1 11 30 30 0 (改变符号一次) s2 1 s 1 ( 30) 11 1 30 12 0 0 (改变符号一次) 0 30 s 30 0 0
i 1
(
比较系数:
n a n 1 si , an i 1
i j i 1, j 2
s s )s
n
( 1)
n
s
i 1
n
i
an 3 an
i jk i 1, j 2 , k 3
s s s
i
n
j k
,
s s i j i j i 1, j 2 n a0 n ( 1) si an i 1 an 2 an
→(惯性)活塞继续右移→阀口1、3开启→活塞左移→ 平衡位置 →(惯性)活塞继续左移→阀口2、4开启…… ① 随动:活塞跟随阀芯运动 ② 惯性:引起振荡 ③ 振荡结果: ③ 增幅振荡 ① 减幅振荡 ② 等幅振荡 (收敛,稳定) (临界稳定) (发散,不稳定)
一、系统的稳定性与稳定条件
结论:
1. 系统是否稳定,取决于系统本身(结构,参数), 与输入无关 2. 不稳定现象的存在是由于反馈作用 3. 稳定性是指自由响应的收敛性 定义: 系统在初始状态作用下 输出 (响应) 无输入时的初态 输入引起的初态 系统稳定 系统不稳定
i 1
系统的初态引 起的自由响应
输入引起的 自由响应
si:系统的特征根
2. 系统稳定条件
1) 当系统所有的特征根si(i=1,2,…,n)均具有负实部(位 于[s]平面的左半平面)
n n si t si t lim A e A e 1i 2i 0 t i 1 i 1
sn a n 1 n 1 a a s 1 s 0 ( s s1 )(s s2 )( s sn ) an an an
n n n 1
s1,s2,…,sn:特征根
n 2 i j
因为
( s s1 )(s s2 )( s sn ) s ( si ) s
n n si t si t A1i e A2 i e lim Ak t i 1 i 1
自由响应收敛于常值,系统稳定
2. 系统稳定条件
结论:线性定常系统是否稳定,完全取决于系统的
特征根。
如何判别? 求出闭环极点? 实验? 思路:
①高阶难求 ②不必要
s n 1 a n 1 s n 2 A1 s n 3 B1 s s
2
D1 E1 F1
s1
0
Routh 判据:Routh表中第一列各元符号改变的次数等于系统特 征方程具有正实部特征根的个数。因此,系统稳定 的充要条件是Routh表中第一列各元的符号均为正, 且值不为零。
例1 系统的特征方程 D(s)=s4+s3-19s2+11s+30=0
相关文档
最新文档